
History of a cacheHistory of a cache
An experience reportAn experience report

Hubert MatthewsHubert Matthews

ACCU 2013ACCU 2013

hubert@oxyware.comhubert@oxyware.com

April 2013April 2013

Copyright © 2013 Oxyware Ltd 22

OverviewOverview

•• A mixture of issues from a real projectA mixture of issues from a real project

•• The trials and tribulations of TDD The trials and tribulations of TDD

–– when itwhen it’’s goods good

–– what to do when itwhat to do when it’’s nots not

•• Dealing with significant requirements changeDealing with significant requirements change

•• Interface design and concurrency issuesInterface design and concurrency issues

•• Incremental changeIncremental change

•• The endless need for speedThe endless need for speed

Copyright © 2013 Oxyware Ltd 33

Original architectureOriginal architecture

MySQL

storage

engine

MySQL

server

cache

process process

ZeroMQ

main focus of

this talk

Copyright © 2013 Oxyware Ltd 44

Original server design Original server design –– the good bitsthe good bits

•• Built in modern C++ with TDD from the startBuilt in modern C++ with TDD from the start

•• Only one class that talks to the environmentOnly one class that talks to the environment
–– sending and receiving network messagessending and receiving network messages

–– in the main polling loop and calls all the other classesin the main polling loop and calls all the other classes

•• Everything else inEverything else in--memory and single threadedmemory and single threaded

•• Dependency injection Dependency injection –– c/trsc/trs wire up objects onlywire up objects only

•• 94% line coverage using 94% line coverage using GoogleTestGoogleTest and and gcov/lcovgcov/lcov

•• 450 unit tests that run in < 1 sec (on file save)450 unit tests that run in < 1 sec (on file save)

•• State machines per message type + FSM base classState machines per message type + FSM base class

•• Cache based on Cache based on std::mapstd::map and and iteratorsiterators

•• 5K LOC server + 6K LOC unit tests5K LOC server + 6K LOC unit tests

Copyright © 2013 Oxyware Ltd 55

Copyright © 2013 Oxyware Ltd

State machine base classState machine base class
class Fsm {

struct StateFuncProxy;

typedef StateFuncProxy (Fsm::*FuncPtr)(const Message & msg);

struct StateFuncProxy {

StateFuncProxy(FuncPtr pp) : p(pp) {}

operator FuncPtr() const { return p; }

FuncPtr p;

};

virtual StateFuncProxy initState(const Message & msg);

virtual StateFuncProxy finalState(const Message & msg);

public:

StateFuncProxy currentState; // what state we are in currently

int count; // internal state of FSM

Fsm() : currentState(initState), count(0) {}

void handleMessage(const Message & msg) {

currentState = (this->*currentState)(msg);

}

bool isInFinalState() const { // can we delete this FSM?

return currentState == &Fsm::finalState;

}

};

class Fsm {

struct StateFuncProxy;

typedef StateFuncProxy (Fsm::*FuncPtr)(const Message & msg);

struct StateFuncProxy {

StateFuncProxy(FuncPtr pp) : p(pp) {}

operator FuncPtr() const { return p; }

FuncPtr p;

};

virtual StateFuncProxy initState(const Message & msg);

virtual StateFuncProxy finalState(const Message & msg);

public:

StateFuncProxy currentState; // what state we are in currently

int count; // internal state of FSM

Fsm() : currentState(initState), count(0) {}

void handleMessage(const Message & msg) {

currentState = (this->*currentState)(msg);

}

bool isInFinalState() const { // can we delete this FSM?

return currentState == &Fsm::finalState;

}

};

Copyright © 2013 Oxyware Ltd 77

Original architecture Original architecture –– the good bitsthe good bits

•• Keep legacy MySQL code separate from serverKeep legacy MySQL code separate from server

–– No RTTI or exceptionsNo RTTI or exceptions

•• MessageMessage--driven approach allows for easier driven approach allows for easier

debugging, tracing, system testing, supportdebugging, tracing, system testing, support

•• All business logic in server so unit testableAll business logic in server so unit testable

•• Asynchronous and eventAsynchronous and event--driven for performancedriven for performance

•• Performance was expected to be disk limited Performance was expected to be disk limited

because of the use of cachingbecause of the use of caching

•• Original version worked well and good Original version worked well and good

development progressdevelopment progress

Copyright © 2013 Oxyware Ltd

……then things changedthen things changed……

Copyright © 2013 Oxyware Ltd 99

The problem and optionsThe problem and options

•• Speed now became a major requirementSpeed now became a major requirement

•• Benchmark resultsBenchmark results

–– 1010--20x too slow on simple single20x too slow on simple single--threaded queriesthreaded queries

–– even slower than that on complex range querieseven slower than that on complex range queries

•• OptionsOptions

–– start again with a different architecture?start again with a different architecture?

–– migrate to a new architecture?migrate to a new architecture?

–– tune our way out of the problem?tune our way out of the problem?

–– go multigo multi--threaded?threaded?

•• Time for some measurementsTime for some measurements……..

Copyright © 2013 Oxyware Ltd 1010

Thoughts and experimentsThoughts and experiments

•• Is it messaging overhead?Is it messaging overhead?

–– tests with tests with ZeroMQZeroMQ between threads (12K/sec), shared between threads (12K/sec), shared

memory queue (57K/sec), Boost message queue memory queue (57K/sec), Boost message queue

(53K/sec) and spin loops on an atomic (2,000K/sec)(53K/sec) and spin loops on an atomic (2,000K/sec)

•• For all but the spin loop there were 4 context For all but the spin loop there were 4 context

switches per message (synchronous protocol)switches per message (synchronous protocol)

–– the spin loop burns CPU but has great throughputthe spin loop burns CPU but has great throughput

•• Therefore, avoid context switches for speedTherefore, avoid context switches for speed

–– original design used asynchronous messaging protocoloriginal design used asynchronous messaging protocol

•• This implies we need to use This implies we need to use MySQLMySQL’’ss threads threads

directly to query the cachedirectly to query the cache

Copyright © 2013 Oxyware Ltd 1111

New architectureNew architecture

MySQL

storage

engine

MySQL

server

cache

process process

ZeroMQ (miss)

shared memory

Copyright © 2013 Oxyware Ltd 1212

Implications of new architectureImplications of new architecture

•• Cache now needs to be in shared memoryCache now needs to be in shared memory

–– but but std::mapstd::map wonwon’’t work directly in shared memoryt work directly in shared memory

–– use a custom use a custom allocatorallocator for for std::mapstd::map??

–– build a build a std::mapstd::map equivalent?equivalent?

–– lifetime management of cache entries?lifetime management of cache entries?

•• Cache now needs to be thread safeCache now needs to be thread safe

–– will adding locks be sufficient?will adding locks be sufficient?

–– how to handle concurrent modifications?how to handle concurrent modifications?

•• How to unit test concurrent code?How to unit test concurrent code?

–– TDD and concurrency?TDD and concurrency?

Copyright © 2013 Oxyware Ltd 1313

New architecture New architecture –– first stepsfirst steps

•• Use Use boost::interprocess::mapboost::interprocess::map, string and friends, string and friends

•• Provides a crossProvides a cross--platform platform std::mapstd::map equivalent equivalent

mapped into shared memorymapped into shared memory

•• This solves some of the shared memory issues but This solves some of the shared memory issues but

not the concurrency onesnot the concurrency ones

•• Just adding internal locking to all the cacheJust adding internal locking to all the cache’’s s

methods is not sufficientmethods is not sufficient

•• std::mapstd::map has the wrong interface for concurrency!has the wrong interface for concurrency!

Copyright © 2013 Oxyware Ltd 1414

Concurrency and Concurrency and std::mapstd::map interfaceinterface

•• Standard usage for Standard usage for std::mapstd::map has two race windowshas two race windows

•• Locking each operation individually doesnLocking each operation individually doesn’’t helpt help

•• What are the options?What are the options?

// standard std::map usage pattern

MapIterator i = cache.find(key);

if (i != cache.end()) {

doSomethingWith(i->first, i->second);
}

// standard std::map usage pattern

MapIterator i = cache.find(key);

if (i != cache.end()) {

doSomethingWith(i->first, i->second);
}

what if someone changes

the cache here and

cache.end() changes?

what if someone deletes

or changes the item you

just retrieved?

Copyright © 2013 Oxyware Ltd

Cache interface optionsCache interface options

•• Lock the entire cache over all three operationsLock the entire cache over all three operations
–– kills performance by serialising access to the cachekills performance by serialising access to the cache

–– relies on all callers doing so explicitly (one offender is relies on all callers doing so explicitly (one offender is
sufficient to cause nasty intermittent bugs)sufficient to cause nasty intermittent bugs)

–– requires changing all of the client coderequires changing all of the client code

•• Change the cache interface to a raceChange the cache interface to a race--free interfacefree interface
–– requires changing all of the client code and unit testsrequires changing all of the client code and unit tests

•• Changing the cache interface breaks all the unit Changing the cache interface breaks all the unit
teststests
–– refactoringrefactoring in the dark with no safety netin the dark with no safety net

•• Is it possible to support this interface in a parallelIs it possible to support this interface in a parallel--
friendly fashion? Yes!friendly fashion? Yes!

Copyright © 2013 Oxyware Ltd

RaceRace--free free std::mapstd::map compatible interfacecompatible interface

Original Original std::mapstd::map i/fi/f
refers to the cache refers to the cache
for all three for all three
operationsoperations

New New ““thickthick”” iteratoriterator
with with key+valuekey+value is is
returned by (locked) returned by (locked)
find; end and find; end and derefderef
do not refer to the do not refer to the
cache at all so no cache at all so no
race windowsrace windows

iterator

std::map

find, end, deref

(key, val)

std::map

find

end, deref

end() true if

key == “” value stored

in iterator

Copyright © 2013 Oxyware Ltd

RaceRace--free free std::mapstd::map detailsdetails

boost::ip::map

(SKey, SMsg)

shared memory

iterator (handle/body)

key + value + cache

local memory

iterator (handle/body)

key + value + cache

local memory

handle/body to

hide Boost

copy in/

copy out

internal format

as shared

memory

Copyright © 2013 Oxyware Ltd

Shared memory aspectsShared memory aspects

•• Needed an antiNeeded an anti--corruption wrapper to hide the shared corruption wrapper to hide the shared

memory implementationmemory implementation

–– MySQL canMySQL can’’t compile Boost so had to wrap t compile Boost so had to wrap boost::interprocessboost::interprocess::* ::*

–– shadow classes: shadow classes: SharedMsgSharedMsg wrapped Messagewrapped Message

•• This implied a copyThis implied a copy--in/copyin/copy--out approach for all cache out approach for all cache

accesses as we couldnaccesses as we couldn’’t refer directly to the values in the t refer directly to the values in the

cachecache

–– we gained a factor of 10% in speed, only 20x to gowe gained a factor of 10% in speed, only 20x to go……

–– essentially replaced a messaging layer with copying dataessentially replaced a messaging layer with copying data

•• All of the unit tests passed without changeAll of the unit tests passed without change

•• No change to client code eitherNo change to client code either

–– typedeftypedef for cache allowed fast switching of implementationsfor cache allowed fast switching of implementations

Copyright © 2013 Oxyware Ltd

Testing concurrent codeTesting concurrent code

•• How do you know itHow do you know it’’s correct?s correct?

–– just by chance because you didnjust by chance because you didn’’t find the race yet?t find the race yet?

–– run unit tests in parallelrun unit tests in parallel

•• Use Use GoogleTestGoogleTest repeat and shuffle functions to run unit repeat and shuffle functions to run unit

tests 100 times in random ordertests 100 times in random order

•• Use Use linuxlinux xargsxargs to run processes in parallel to check to run processes in parallel to check

exclusion worksexclusion works

•• echo $(echo $(seqseq 1 10) | 1 10) | xargsxargs ––P 0 P 0 ––n 1 n 1

./test ./test ––gtest_repeatgtest_repeat=100 =100 ––gtest_shufflegtest_shuffle

•• Shared memory causes Shared memory causes startupstartup issues when running parallelissues when running parallel

–– cancan’’t start from zero state t start from zero state –– have to use shared statehave to use shared state

•• And still there was a concurrency bugAnd still there was a concurrency bug…….(more on that later).(more on that later)

Copyright © 2013 Oxyware Ltd

Performance countersPerformance counters

•• Added performance counters Added performance counters

–– stats, visibility, debuggingstats, visibility, debugging

–– very useful for checking cache hits and missesvery useful for checking cache hits and misses

•• Cache aligned padded Cache aligned padded structstruct –– name + atomic 64name + atomic 64--bit counterbit counter

•• Static reference to each counter in cache operationsStatic reference to each counter in cache operations
–– static static Utils::Stats::CounterUtils::Stats::Counter & & statsInsertstatsInsert ==

Utils::GetStats().findCounter("cache.insertUtils::GetStats().findCounter("cache.insert");");

•• MemoryMemory--mapped file plus dump programmapped file plus dump program

•• Allows realAllows real--time monitoring of updatestime monitoring of updates

•• $ watch $ watch ––n 1 n 1 ––d ./cached ./cache--dump statsdump stats--filefile

–– highlights changing counters on a per second basishighlights changing counters on a per second basis

•• Using performance counters highly recommended Using performance counters highly recommended

Copyright © 2013 Oxyware Ltd

Counter odditiesCounter oddities

•• Counter for cache memory use was massively large Counter for cache memory use was massively large
at timesat times

•• Memory overwrite? Bug? Counter issue?Memory overwrite? Bug? Counter issue?
–– But weBut we’’re using TDD it canre using TDD it can’’t be a bug, or can it?t be a bug, or can it?

•• Added invariant assertion to cache update methodsAdded invariant assertion to cache update methods
–– assert(invariantassert(invariant()); ()); -- class invariants + data sanity checkclass invariants + data sanity check

•• Found a bug! Found a bug!
–– cacheSizecacheSize += += size(newElemsize(newElem)) –– size(oldElemsize(oldElem););

–– cacheSizecacheSize is unsigned and size calculation is is unsigned and size calculation is
approximate so can go negative approximate so can go negative –– oops!oops!

–– added sanity check on cache size updateadded sanity check on cache size update

•• Assertions to check invariants highly recommendedAssertions to check invariants highly recommended

Copyright © 2013 Oxyware Ltd

Key comparison speedKey comparison speed

•• The key for the cache was a threeThe key for the cache was a three--field composite field composite

key: (database, table, key)key: (database, table, key)

•• Benchmarks showed that op< for this key used a Benchmarks showed that op< for this key used a

significant portion of the timesignificant portion of the time

bool operator<(const SharedGKey & gkey1,

const SharedGKey & gkey2)

{

return gkey1.database.compare(gkey2.database) < 0

|| (gkey1.database.compare(gkey2.database) == 0

&& gkey1.table.compare(gkey2.table) < 0)

|| (gkey1.database.compare(gkey2.database) == 0

&& gkey1.table.compare(gkey2.table) == 0

&& gkey1.key.compare(gkey2.key) < 0);

}

bool operator<(const SharedGKey & gkey1,

const SharedGKey & gkey2)

{

return gkey1.database.compare(gkey2.database) < 0

|| (gkey1.database.compare(gkey2.database) == 0

&& gkey1.table.compare(gkey2.table) < 0)

|| (gkey1.database.compare(gkey2.database) == 0

&& gkey1.table.compare(gkey2.table) == 0

&& gkey1.key.compare(gkey2.key) < 0);

}

Copyright © 2013 Oxyware Ltd

More speed, pleaseMore speed, please……

•• RefactoringRefactoring the key to be a single the key to be a single std::stringstd::string with with

the three fields separated by NUL characters the three fields separated by NUL characters

allowed for simpler and faster key comparisonallowed for simpler and faster key comparison

•• A factor of 3x faster lookupA factor of 3x faster lookup

GlobalKey(const Database & database,
const Table & table, const Key & key)

{

composite = database; composite += '\0';

composite += table; composite += '\0';

composite += key;

}

bool operator<(const GlobalKey & other) const {

return composite < other.composite;

}

GlobalKey(const Database & database,
const Table & table, const Key & key)

{

composite = database; composite += '\0';

composite += table; composite += '\0';

composite += key;

}

bool operator<(const GlobalKey & other) const {

return composite < other.composite;

}

Copyright © 2013 Oxyware Ltd

Shared memory and fixed addressesShared memory and fixed addresses

•• Shared memory mapping into different processes Shared memory mapping into different processes
means that internal native pointers donmeans that internal native pointers don’’t workt work
–– mapped to different virtual addresses in each processmapped to different virtual addresses in each process

–– need to use offset (relative) pointers insteadneed to use offset (relative) pointers instead

•• Slower dereferencing as canSlower dereferencing as can’’t use native pointerst use native pointers

•• Use fixedUse fixed--position shared memory segment in position shared memory segment in
BoostBoost
–– gave a factor of 2x in speed as it can use native pointers gave a factor of 2x in speed as it can use native pointers

instead of relative pointers/offsetsinstead of relative pointers/offsets

•• Still copying data in and out (potentially large)Still copying data in and out (potentially large)

•• Using native pointers internally means we can use Using native pointers internally means we can use
shared addresses to avoid copiesshared addresses to avoid copies

Copyright © 2013 Oxyware Ltd

Shared dataShared data

boost::ip::map

(key, value)

shared memory

iterator (handle/body)

key + value + cache

local memory

iterator (handle/body)

key + value + cache

local memory

handle/body to

hide Boost

reference

counted shared

memory strings

same format as

local memory

Copyright © 2013 Oxyware Ltd

Shared immutable cache itemsShared immutable cache items

•• Immutable cache items means that they can be Immutable cache items means that they can be

shared between threads with no copyshared between threads with no copy--onon--write or write or

other fancy stuff that would require lockingother fancy stuff that would require locking

–– reference counting means that even if an item is deleted reference counting means that even if an item is deleted

from or overwritten in the cache it is still accessiblefrom or overwritten in the cache it is still accessible

•• Only locking is on atomic Only locking is on atomic incr/decrincr/decr of reference of reference

countcount

–– use use gccgcc intrinsicsintrinsics for atomic operationsfor atomic operations

•• Used Boost shared memory Used Boost shared memory allocatorallocator plus own plus own

simple simple ShmStringShmString that allocates all memory for that allocates all memory for

string plus length and ref count in one allocationstring plus length and ref count in one allocation

•• A factor of 3x in speed A factor of 3x in speed –– wewe’’re looking better!re looking better!

Copyright © 2013 Oxyware Ltd

Shared immutable cache items Shared immutable cache items -- detaildetail

•• aa

class ShmString {

public:

ShmString() { rep = 0; }

ShmString(const char * p, uint32_t len) {

void * where = SharedMemory::allocate(sizeof(Rep) + len);

rep = new (where) Rep(p, len);

}

ShmString(const ShmString & other) : rep(other.rep) {

if (rep) __sync_fetch_and_add(&rep->refCount, 1);

}

private:

struct Rep {

Rep() : refCount(1), size(0) { body[0] = '\0'; }

Rep(const char * p, uint32_t len) : refCount(1), size(len) {

memcpy(body, p, len);

}

uint32_t refCount, size;

char body[1]; // will be longer than this....

};

Rep * rep;

};

class ShmString {

public:

ShmString() { rep = 0; }

ShmString(const char * p, uint32_t len) {

void * where = SharedMemory::allocate(sizeof(Rep) + len);

rep = new (where) Rep(p, len);

}

ShmString(const ShmString & other) : rep(other.rep) {

if (rep) __sync_fetch_and_add(&rep->refCount, 1);

}

private:

struct Rep {

Rep() : refCount(1), size(0) { body[0] = '\0'; }

Rep(const char * p, uint32_t len) : refCount(1), size(len) {

memcpy(body, p, len);

}

uint32_t refCount, size;

char body[1]; // will be longer than this....

};

Rep * rep;

};

Copyright © 2013 Oxyware Ltd

Mixing native Mixing native iteratorsiterators and findand find

•• Range queries require Range queries require iteratoriterator++ to work++ to work

•• op++ is a simple and fast operation on a singleop++ is a simple and fast operation on a single--
threaded cache such as threaded cache such as std::mapstd::map (internal pointer)(internal pointer)

•• How to support op++ on a concurrent cache? races!How to support op++ on a concurrent cache? races!

•• Using Using upper_boundupper_bound to find next key in cache is to find next key in cache is
slow (cache slow (cache iteratoriterator uses key by value, not uses key by value, not iteratoriterator))

•• Solution: use a composite Solution: use a composite iteratoriterator with (key, value) with (key, value)
pair plus a native pair plus a native iteratoriterator and a cache sequence and a cache sequence
numbernumber

•• op++ performed by the cache when locked and uses op++ performed by the cache when locked and uses
native native iteratoriterator if if seqseq num not changed or num not changed or
upper_boundupper_bound if it hasif it has

Copyright © 2013 Oxyware Ltd

Mixing native Mixing native iteratorsiterators –– details details

•• Cache Cache iteratoriterator = key + value + = key + value + iteratoriterator + + seqseq numnum

void Cache::insert(Key key, Value value) { /*…*/ seq_num++; }

iterator Cache::findNext(iterator i) {
if (i.seq_num == seq_num)

return ++(i.native);
else {

return findNextBasedOnKey(i.key);
}

}

void Cache::insert(Key key, Value value) { /*…*/ seq_num++; }

iterator Cache::findNext(iterator i) {
if (i.seq_num == seq_num)

return ++(i.native);
else {

return findNextBasedOnKey(i.key);
}

}

•• Factor of 4xFactor of 4x--5x in speed for range queries with no 5x in speed for range queries with no

concurrent updatesconcurrent updates

Copyright © 2013 Oxyware Ltd

Cache eviction policyCache eviction policy

•• The cache uses a leastThe cache uses a least--recently used eviction policyrecently used eviction policy

•• This is implemented using a This is implemented using a std::liststd::list and when a and when a

node is looked up through the node is looked up through the std::mapstd::map interface interface

the node is moved to the head of the listthe node is moved to the head of the list

•• When a node needs to be evicted then the last node When a node needs to be evicted then the last node

on the on the std::liststd::list is erased and its key removed from is erased and its key removed from

the lookup mapthe lookup map

•• This policy caused too many new/delete pairs so This policy caused too many new/delete pairs so

LRU eviction was turned off if the cache size was LRU eviction was turned off if the cache size was

less than the max cache sizeless than the max cache size

•• Performance gain estimated at 20%Performance gain estimated at 20%

Copyright © 2013 Oxyware Ltd

/usr/lib/libcloudfabric.so.0(Daemon::SharedCache<Messaging::GlobalKey,

Messaging::MsgHandle, std::less<Messaging::GlobalKey>

>::evictOldestElement()+0x2a4) [0x7f50e6d0ea14]

/usr/lib/libcloudfabric.so.0(Daemon::SharedCache<Messaging::GlobalKey,

Messaging::MsgHandle, std::less<Messaging::GlobalKey>

>::SharedCache(int)+0x2ef) [0x7f50e6d11a3f]

/usr/lib/libcloudfabric.so.0(Daemon::RowCache::RowCache(unsigned

long)+0x31) [0x7f50e6d0b931]

/usr/lib/libcloudfabric.so.0(cf::CloudFabric::Impl::Impl(zmq::context_t&

, std::string const&)+0x1a1) [0x7f50e6cff3e1]

/usr/lib/libcloudfabric.so.0(cf::CloudFabric::CloudFabric(cf::Context&,

std::string const&)+0x3c) [0x7f50e6cf4fcc]

/usr/lib/libcloudfabric.so.0(cf_connect+0x68) [0x7f50e6cf5068]

/usr/lib/mysql/plugin/ha_geniedb.so(geniedb::genieHandler::getConnection

()+0x29) [0x7f50e6f49fd9]

/usr/lib/mysql/plugin/ha_geniedb.so(geniedb::genieHandler::connection()+

0x59) [0x7f50e6f4a1a9]

/usr/lib/mysql/plugin/ha_geniedb.so(geniedb::genieHandler::getRecordCoun

t()+0x30) [0x7f50e6f4a200]

/usr/lib/mysql/plugin/ha_geniedb.so(geniedb::genieHandler::info(unsigned

int)+0xb8) [0x7f50e6f4c578]

/usr/sbin/mysqld(+0x3eb010) [0x7f50ebd30010]

/usr/sbin/mysqld(JOIN::optimize()+0x50d) [0x7f50ebd324ed]

/usr/sbin/mysqld(mysql_select(THD*, Item***, TABLE_LIST*, unsigned int,

List<Item>&, Item*, unsigned int, st_order*, st_order*, Item*,

st_order*, unsigned long long, select_result*, st_select_lex_unit*,

st_select_lex*)+0xd7) [0x7f50ebd35b57]

/usr/sbin/mysqld(handle_select(THD*, st_lex*, select_result*, unsigned

long)+0x174) [0x7f50ebd3b524]

/usr/lib/libcloudfabric.so.0(Daemon::SharedCache<Messaging::GlobalKey,

Messaging::MsgHandle, std::less<Messaging::GlobalKey>

>::evictOldestElement()+0x2a4) [0x7f50e6d0ea14]

/usr/lib/libcloudfabric.so.0(Daemon::SharedCache<Messaging::GlobalKey,

Messaging::MsgHandle, std::less<Messaging::GlobalKey>

>::SharedCache(int)+0x2ef) [0x7f50e6d11a3f]

/usr/lib/libcloudfabric.so.0(Daemon::RowCache::RowCache(unsigned

long)+0x31) [0x7f50e6d0b931]

/usr/lib/libcloudfabric.so.0(cf::CloudFabric::Impl::Impl(zmq::context_t&

, std::string const&)+0x1a1) [0x7f50e6cff3e1]

/usr/lib/libcloudfabric.so.0(cf::CloudFabric::CloudFabric(cf::Context&,

std::string const&)+0x3c) [0x7f50e6cf4fcc]

/usr/lib/libcloudfabric.so.0(cf_connect+0x68) [0x7f50e6cf5068]

/usr/lib/mysql/plugin/ha_geniedb.so(geniedb::genieHandler::getConnection

()+0x29) [0x7f50e6f49fd9]

/usr/lib/mysql/plugin/ha_geniedb.so(geniedb::genieHandler::connection()+

0x59) [0x7f50e6f4a1a9]

/usr/lib/mysql/plugin/ha_geniedb.so(geniedb::genieHandler::getRecordCoun

t()+0x30) [0x7f50e6f4a200]

/usr/lib/mysql/plugin/ha_geniedb.so(geniedb::genieHandler::info(unsigned

int)+0xb8) [0x7f50e6f4c578]

/usr/sbin/mysqld(+0x3eb010) [0x7f50ebd30010]

/usr/sbin/mysqld(JOIN::optimize()+0x50d) [0x7f50ebd324ed]

/usr/sbin/mysqld(mysql_select(THD*, Item***, TABLE_LIST*, unsigned int,

List<Item>&, Item*, unsigned int, st_order*, st_order*, Item*,

st_order*, unsigned long long, select_result*, st_select_lex_unit*,

st_select_lex*)+0xd7) [0x7f50ebd35b57]

/usr/sbin/mysqld(handle_select(THD*, st_lex*, select_result*, unsigned

long)+0x174) [0x7f50ebd3b524]

Copyright © 2013 Oxyware Ltd

Concurrency bugConcurrency bug

•• After After ½½ hour loading in 2GB of datahour loading in 2GB of data
–– /usr/lib/libcloudfabric.so.0(Daemon::RowCache/usr/lib/libcloudfabric.so.0(Daemon::RowCache

::RowCache(unsigned long)+0x31) ::RowCache(unsigned long)+0x31)

[0x7f50e6d0b931][0x7f50e6d0b931]

•• Why is the code still in the Why is the code still in the c/trc/tr after after ½½ hour?!hour?!

–– Clients create and delete cache objects per connectionClients create and delete cache objects per connection

•• The The c/trc/tr wasnwasn’’t lockedt locked

–– normally normally c/trc/tr isnisn’’t locked as you cant locked as you can’’t share an object t share an object

until ituntil it’’s been createds been created

–– not true for not true for statefulstateful objects with shared memory!objects with shared memory!

•• 10 10 minsmins to fix the problem, 4 hours to reproduce itto fix the problem, 4 hours to reproduce it

Copyright © 2013 Oxyware Ltd

Version control branchingVersion control branching

•• All these cache modifications were made on trunk All these cache modifications were made on trunk

•• Allows for early feedback on performance and Allows for early feedback on performance and

integration issuesintegration issues

•• Branching in VC is a design smellBranching in VC is a design smell

–– caused by semantic differencescaused by semantic differences

•• VCs merge syntactically and not semanticallyVCs merge syntactically and not semantically

•• DonDon’’t branch unless you have toot branch unless you have too

–– simple incremental changes or simple incremental changes or refactorrefactor until you canuntil you can

•• DonDon’’t take off unless you know where yout take off unless you know where you’’re going re going

to land!to land!

Copyright © 2013 Oxyware Ltd

Lessons learntLessons learnt

•• TDD works best when you design for testabilityTDD works best when you design for testability
–– critically dependent on the quality of tests so get good at critically dependent on the quality of tests so get good at

test thinkingtest thinking

•• Assumptions about requirements need to be Assumptions about requirements need to be
validated validated –– caveat architect!caveat architect!

•• Incremental changes are preferable to major changeIncremental changes are preferable to major change
–– relative progress may seem slower at the time but the relative progress may seem slower at the time but the

overall arrival time is shorter (and less stressful)overall arrival time is shorter (and less stressful)

–– branch as a last resort and plan your return trip carefullybranch as a last resort and plan your return trip carefully

•• Concurrency correctness is tricky to unit testConcurrency correctness is tricky to unit test

•• Immutable data makes sharing easierImmutable data makes sharing easier

Copyright © 2013 Oxyware Ltd

Lessons learnt (contLessons learnt (cont’’d)d)

•• Assertions that check class invariants and data Assertions that check class invariants and data

items are well worthwhileitems are well worthwhile

–– make it make it triggerabletriggerable at runtimeat runtime

•• Performance counters really help to understand a Performance counters really help to understand a

systemsystem’’s behaviours behaviour

–– help developers as well as testers and operatorshelp developers as well as testers and operators

