History of a cache

An experience report

Hubert Matthews
ACCU 2013

hubert @oxyware.com

April 2013




Overview

A mixture of 1ssues from a real project

The trials and tribulations of TDD
— when it’s good
— what to do when it’s not

Dealing with significant requirements change
Interface design and concurrency 1SSues

Incremental change
The endless need for speed

Copyright © 2013 Oxyware Ltd




Original architecture

process process

MySQL
storage server
engine

main focus of
this talk

Copyright © 2013 Oxyware Ltd




Original server design — the good bits

Built in modern C++ with TDD from the start

Only one class that talks to the environment
— sending and receiving network messages
— 1n the main polling loop and calls all the other classes

Everything else in-memory and single threaded
Dependency injection — ¢/trs wire up objects only
94% line coverage using GoogleTest and gcov/Icov
450 unit tests that run 1n < 1 sec (on file save)

State machines per message type + FSM base class
Cache based on std::map and iterators

5K LOC server + 6K LOC unit tests

Copyright © 2013 Oxyware Ltd




class Owerwview of Daemaon

Handler: MainLoop
MessageHandler

CrutboundMessagelist

FsmMessageHandler TimeMessageHandler HetworklF
+networkl F

+fsmStore S /

-y

Fsm5Store

TimeoutGueus

+ T bers_ﬁ

+tablelnfo -l-s-EWErStstE"."' MembershipTable|

+serverState
—

Tablelnfo BemrerSiate

#HzserverState

WriteMotificationFsm ClientReadFsm ClientWriteFsm ClientTableCreateFsm

CO])_Vuglu W LULD UAYWdLC LU




State machine base class

class Fsm {
struct StateFuncProxy;
typedef StateFuncProxy (Fsm::*FuncPtr) (const Message & msg);

struct StateFuncProxy {
StateFuncProxy (FuncPtr pp) : p(pp) {1}
operator FuncPtr () const { return p; }
FuncPtr p;

};

virtual StateFuncProxy initState (const Message & msqg);
virtual StateFuncProxy finalState (const Message & msg);

public:
StateFuncProxy currentState; // what state we are in currently
int count; // internal state of FSM

Fsm() : currentState(initState), count (0) {}

void handleMessage (const Message & msg) {
currentState = (this->*currentState) (msg);

bool isInFinalState() const { // can we delete this FSM?
return currentState == &Fsm::finalState;

Copyright © 2013 Oxyware Ltd




Original architecture — the good bits

Keep legacy MySQL code separate from server
— No RTTI or exceptions

Message-driven approach allows for easier
debugging, tracing, system testing, support
All business logic in server so unit testable
Asynchronous and event-driven for performance

Performance was expected to be disk limited
because of the use of caching

Original version worked well and good
development progress

Copyright © 2013 Oxyware Ltd




...then things changed...




The problem and options

e Speed now became a major requirement

e Benchmark results
— 10-20x too slow on simple single-threaded queries
— even slower than that on complex range queries
e Options
— start again with a different architecture?
— migrate to a new architecture?
— tune our way out of the problem?
— go multi-threaded?

e Time for some measurements....

Copyright © 2013 Oxyware Ltd




Thoughts and experiments

Is 1t messaging overhead?

— tests with ZeroMQ between threads (12K/sec), shared
memory queue (57K/sec), Boost message queue
(33K/sec) and spin loops on an atomic (2,000K/sec)

For all but the spin loop there were 4 context
switches per message (synchronous protocol)
— the spin loop burns CPU but has great throughput

Therefore, avoid context switches for speed
— original design used asynchronous messaging protocol

This implies we need to use MySQL’s threads
directly to query the cache

Copyright © 2013 Oxyware Ltd




New architecture

process process

MySQL ZeroMQ (miss)
storage > server
engine

\/

shared memory

Copyright © 2013 Oxyware Ltd




Implications of new architecture

e Cache now needs to be in shared memory
— but std::map won’t work directly in shared memory
— use a custom allocator for std::map?
— build a std::map equivalent?
— lifetime management of cache entries?
e Cache now needs to be thread safe
— will adding locks be sufficient?
— how to handle concurrent modifications?
 How to unit test concurrent code?
— TDD and concurrency?

Copyright © 2013 Oxyware Ltd




New architecture — first steps

Use boost::interprocess::map, string and friends

Provides a cross-platform std::map equivalent
mapped 1nto shared memory

This solves some of the shared memory issues but
not the concurrency ones

Just adding internal locking to all the cache’s
methods 1s not sufficient

std::map has the wrong interface for concurrency!

Copyright © 2013 Oxyware Ltd




Concurrency and std::map interface

// standard std::map usage pattern

MapIterator i = cache.find (kGY) ’ What lf someone Changes
< the cache here and
cache.end() changes?

what if someone deletes

if (1 !'= cache.end()) {

< :: or changes the item you
just retrieved?

doSomethingWith (i->first, i->second);

e Standard usage for std::map has two race windows
* Locking each operation individually doesn’t help
 What are the options?

Copyright © 2013 Oxyware Ltd




Cache interface options

e Lock the entire cache over all three operations
— kills performance by serialising access to the cache

— relies on all callers doing so explicitly (one offender 1s
sufficient to cause nasty intermittent bugs)

— requires changing all of the client code

e Change the cache interface to a race-free interface
— requires changing all of the client code and unit tests
e Changing the cache interface breaks all the unit
tests
— refactoring in the dark with no safety net
e [s it possible to support this interface in a parallel-
friendly fashion? Yes!

Copyright © 2013 Oxyware Ltd




Race-free std::map compatible interface

1terator find, end, deref
\
std::map

end() true if
key ==’ value stored
in iterator
(key, val)  find

end, deref

std::map

Copyright © 2013 Oxyware Ltd

Original std::map 1/f
refers to the cache
for all three
operations

New “thick’ iterator
with key+value 1s
returned by (locked)
find; end and deref
do not refer to the
cache at all so no
race windows




Race-tfree std::map details

handle/body to
hide Boost

local memory ! / local memory

copy in/
copy out
internal format

as shared
shared memory memory

Copyright © 2013 Oxyware Ltd




Shared memory aspects

Needed an anti-corruption wrapper to hide the shared
memory implementation

— MySQL can’t compile Boost so had to wrap boost::interprocess::*

— shadow classes: SharedMsg wrapped Message
This implied a copy-in/copy-out approach for all cache
accesses as we couldn’t refer directly to the values in the
cache

— we gained a factor of 10% in speed, only 20x to go...

— essentially replaced a messaging layer with copying data

All of the unit tests passed without change

No change to client code either
— typedef for cache allowed fast switching of implementations

Copyright © 2013 Oxyware Ltd




Testing concurrent code

How do you know it’s correct?

— just by chance because you didn’t find the race yet?
— run unit tests i parallel

Use GoogleTest repeat and shuffle functions to run unit

tests 100 times in random order

Use linux xargs to run processes in parallel to check

exclusion works

echo $(seqg 1 10) | xargs -P 0 -n 1
./test —gtest_repeat=100 —-gtest_shuffle

Shared memory causes startup issues when running parallel
— can’t start from zero state — have to use shared state

And still there was a concurrency bug....(more on that later)

Copyright © 2013 Oxyware Ltd




Performance counters

 Added performance counters
— stats, visibility, debugging
— very useful for checking cache hits and misses

Cache aligned padded struct — name + atomic 64-bit counter

Static reference to each counter in cache operations

— static Utils::Stats::Counter & statsInsert =
Utils: :GetStats () .findCounter ("cache.insert") ;

Memory-mapped file plus dump program

Allows real-time monitoring of updates
S watch -n 1 -d ./cache-dump stats-file

— highlights changing counters on a per second basis

Using performance counters highly recommended

Copyright © 2013 Oxyware Ltd




Counter oddities

Counter for cache memory use was massively large
at times

Memory overwrite? Bug? Counter issue?
— But we’re using TDD it can’t be a bug, or can it?

Added invariant assertion to cache update methods
— assert(invariant()); - class invariants + data sanity check

Found a bug!

— cacheSize += size(newkElem) — size(oldElem) ;

— cacheSize 1s unsigned and size calculation 1s
approximate so can go negative — oops!

— added sanity check on cache size update
Assertions to check invariants highly recommended

Copyright © 2013 Oxyware Ltd




Key comparison speed

 The key for the cache was a three-field composite
key: (database, table, key)

e Benchmarks showed that op< for this key used a
significant portion of the time

bool operator<(const SharedGKey & gkeyl,
const SharedGKey & gkey2)
{
return gkeyl.database.compare (gkey2.database) < 0
|| (gkeyl.database.compare (gkey2.database) == 0
&& gkeyl.table.compare (gkey2.table) < 0)
| | (gkeyl.database.compare (gkey2.database) == 0
&& gkeyl.table.compare (gkey2.table) == 0
&& gkeyl.key.compare (gkey2.key) < 0);

Copyright © 2013 Oxyware Ltd




More speed, please...

e Refactoring the key to be a single std::string with
the three fields separated by NUL characters
allowed for simpler and faster key comparison

e A factor of 3x faster lookup

GlobalKey (const Database & database,
const Table & table, const Key & key)
{
composite = database; composite += '\0';
composite += table; composite += '\0';
composite += key;

}

bool operator<(const GlobalKey & other) const ({
return composite < other.composite;

}

CO])_Vl'ight © 2uio UAYWALC L




Shared memory and fixed addresses

e Shared memory mapping into different processes
means that internal native pointers don’t work
— mapped to different virtual addresses in each process
— need to use ofiset (relative) pointers instead

Slower dereferencing as can’t use native pointers

Use fixed-position shared memory segment in

Boost

— gave a factor of 2x in speed as it can use native pointers
instead of relative pointers/offsets

Still copying data in and out (potentially large)

Using native pointers internally means we can use
shared addresses to avoid copies

Copyright © 2013 Oxyware Ltd




Shared data

handle/body to
hide Boost

local memory._ local memory

reference
counted shared
memory strings

same format as
local memory

shared memory

Copyright © 2013 Oxyware Ltd




Shared immutable cache items

e Immutable cache items means that they can be
shared between threads with no copy-on-write or
other fancy stuff that would require locking

— reference counting means that even if an item 1s deleted
from or overwritten in the cache it 1s still accessible

e Only locking 1s on atomic incr/decr of reference
count
— use gcc Intrinsics for atomic operations

e Used Boost shared memory allocator plus own

simple ShmString that allocates all memory for
string plus length and ref count in one allocation

e A factor of 3x in speed — we’re looking better!

Copyright © 2013 Oxyware Ltd




Shared immutable cache items - detail

class ShmString {
public:
ShmString() { rep = 0; }
ShmString(const char * p, uint32_t 1len) ({
void * where = SharedMemory::allocate(sizeof (Rep) + len);
rep = new (where) Rep(p, len);
}
ShmString (const ShmString & other) : rep(other.rep) ({
if (rep) _ sync_fetch_and add(&rep—->refCount, 1);
}
private:
struct Rep {
Rep() : refCount(l), size(0) { body[0] = '\0'; }
Rep (const char * p, uint32_t len) : refCount(l), size(len) {
memcpy (body, p, len);
}
uint32_t refCount, size;
char body[1l]; // will be longer than this....
}s
Rep * rep;
};

Copyright © 2013 Oxyware Ltd




Mixing native iterators and find

Range queries require iterator++ to work

op++ 1s a simple and fast operation on a single-
threaded cache such as std::map (internal pointer)

How to support op++ on a concurrent cache? races!

Using upper_bound to find next key in cache 1s
slow (cache iterator uses key by value, not iterator)

Solution: use a composite iterator with (key, value)
pair plus a native iterator and a cache sequence
number

op++ performed by the cache when locked and uses
native iterator if seq num not changed or
upper_bound if it has

Copyright © 2013 Oxyware Ltd




Mixing native iterators — details

e (Cache iterator = key + value + iterator + seq num

void Cache: :insert (Key key, Value value) { /*..*/ seq num++; }

iterator Cache: :findNext (iterator i) {
if (i.seq num == seq num)
return ++(i.native);
else {

return findNextBasedOnKey (i.key);
}

}

e Factor of 4x-3x 1n speed for range queries with no
concurrent updates

Copyright © 2013 Oxyware Ltd




Cache eviction policy

I'he cache uses a least-recently used eviction policy

This 1s implemented using a std::list and when a
node 1s looked up through the std::map intertace
the node 1s moved to the head of the list

When a node needs to be evicted then the last node
on the std::list 1s erased and its key removed from
the lookup map

This policy caused too many new/delete pairs so
[LRU eviction was turned off if the cache size was
less than the max cache size

e Performance gain estimated at 20%

Copyright © 2013 Oxyware Ltd




Copyright ©

/usr/lib/libcloudfabric.so.0 (Daemon: : SharedCache<Messaging: : GlobalKey,
Messaging: :MsgHandle, std::less<Messaging: :GlobalKey>
>::evictOldestElement () +0x2a4) [0x7f£50e6d0eald]
/usr/lib/libcloudfabric.so.0 (Daemon: : SharedCache<Messaging: :GlobalKey,
Messaging: :MsgHandle, std::less<Messaging: :GlobalKey>
>::SharedCache (int) +0x2ef) [0x7£50e6dlla3f]
/usr/lib/libcloudfabric.so.0 (Daemon: :RowCache: : RowCache (unsigned
long) +0x31) [0x7£50e6d0b931]
/usr/lib/libcloudfabric.so.0(cf: :CloudFabric: :Impl: :Impl (zmq: :context_té&
, std::string consté&)+0xlal) [0x7f50e6cff3el]
/usr/lib/libcloudfabric.so.0 (cf: :CloudFabric: :CloudFabric (cf: :Contextg,
std: :string consté&)+0x3c) [0x7£50e6cfdfec]
/usr/lib/libcloudfabric.so.0 (cf _connect+0x68) [0x7£f50e6cf5068]
/usr/lib/mysql/plugin/ha_geniedb.so (geniedb: :genieHandler: :getConnection
() +0x29) [0x7£f50e6£49£fd9]
/usr/lib/mysql/plugin/ha_geniedb.so (geniedb: :genieHandler: :connection () +
0x59) [0x7£f50e6f4alal]
/usr/lib/mysql/plugin/ha_geniedb.so (geniedb: :genieHandler: :getRecordCoun
t ()+0x30) [0x7f50e6£4a200]
/usr/lib/mysql/plugin/ha_geniedb.so (geniedb: :genieHandler: :info (unsigned
int)+0xb8) [0x7£50e6£4c578]
/usr/sbin/mysqld (+0x3eb010) [0x7£50ebd30010]
/usr/sbin/mysqld (JOIN: :optimize () +0x50d) [0x7£50ebd324ed]
/usr/sbin/mysqld (mysql_select (THD*, Item***,6 TABLE_LIST*, unsigned int,
List<Item>&, Item*, unsigned int, st_order*, st_order*, Item¥,
st_order*, unsigned long long, select_result*, st_select_lex unit¥,
st_select_lex*)+0xd7) [0x7£50ebd35b57]
/usr/sbin/mysqld (handle_select (THD*, st_lex*, select_result*, unsigned
long) +0x174) [0x7£50ebd3b524]




Concurrency bug

e After %2 hour loading in 2GB of data

— /Jusr/lib/libcloudfabric.so.0 (Daemon: :RowCache
: :RowCache (unsigned long) +0x31)
[0xT7£50e6d0b931 ]

 Why is the code still in the c/tr after %2 hour?!
— Clients create and delete cache objects per connection

e The c/tr wasn’t locked

— normally c/tr 1sn’t locked as you can’t share an object
until i1t’s been created

— not true for stateful objects with shared memory!

e 10 mins to fix the problem, 4 hours to reproduce it

Copyright © 2013 Oxyware Ltd




Version control branching

All these cache modifications were made on trunk

Allows for early feedback on performance and
Integration 1SSues
Branching in VC is a design smell

— caused by semantic differences
VCs merge syntactically and not semantically
Don’t branch unless you have too

— simple incremental changes or refactor until you can

Don’t take off unless you know where you’re going
to land!

Copyright © 2013 Oxyware Ltd




[ essons learnt

TDD works best when you design for testability

— critically dependent on the quality of tests so get good at
test thinking

Assumptions about requirements need to be
validated — caveat architect!

Incremental changes are preferable to major change

— relative progress may seem slower at the time but the
overall arrival time 1s shorter (and less stressful)

— branch as a last resort and plan your return trip carefully
Concurrency correctness 1s tricky to unit test
Immutable data makes sharing easier

Copyright © 2013 Oxyware Ltd




[Lessons learnt (cont’d)

e Assertions that check class invariants and data
items are well worthwhile
— make it triggerable at runtime
* Performance counters really help to understand a
system’s behaviour
— help developers as well as testers and operators

Copyright © 2013 Oxyware Ltd




