
How to program your way out of
a paper bag

Frances Buontempo 2013
@fbuontempo

https://github.com/doctorlove/paperbag

overload@accu.org

https://github.com/doctorlove/paperbag
https://github.com/doctorlove/paperbag

Why do we ask this?

• “can't even … out of a paper bag”

– Couldn't find their way out of a paper bag with a map

• http://www.bored.com/findcliches/stupidpeople.
htm

– A few photons short of a hologram/holodeck

– Couldn't hit water if he fell out of a boat

– Doesn't know which side the toast is buttered on

• Angry? Surprised? By lack of ability or knowledge

http://www.bored.com/findcliches/stupidpeople.htm
http://www.bored.com/findcliches/stupidpeople.htm

Fizz Buzz

What is fizz buzz?

 1, 2, fizz, 4, buzz, fizz, 7, 8, fizz, buzz, 11,

 fizz, 13, 14, fizzbuzz, …

What has fizz buzz got to do with paper bags?

Fizz buzz

+ -

Can write code

Can talk through problem solving Sod all to do with
paper-bags

Can spot edge cases

Can demonstrate communication
skills

Might be a good kata

Bring back the paper bag #1

How could we do this programmatically?

Let’s try drag and drop in html

DragAndDrop.html

DandD2.html

DragAndDrop.html
DandD2.html

#fail

Have we *programmed* our way *out* of a
paper bag?

 1. No, we ended up in a paper bag

 2. No, the user had to move the ant

Bring back the paper bag #2

Time for some ASCII art in C#

..\..\paperbag\expanding\expanding.exe

../../paperbag/expanding/expanding.exe
../../paperbag/expanding/expanding.exe
../../paperbag/expanding/expanding.exe
../../paperbag/expanding/expanding.exe
../../paperbag/expanding/expanding.exe
../../paperbag/expanding/expanding.exe
../../paperbag/expanding/expanding.exe
../../paperbag/expanding/expanding.exe
../../paperbag/expanding/expanding.exe

Expanding.cs

 public void Go()
 {
 Setup();
 while (Update())
 {
 Draw();
 }
 Draw();

 Console.WriteLine("\nDone");
 }

 private void Setup()

 {

 _buffer = new char[_width*_width];

 for (int row = 0; row < _width; ++row)

 {

 if (row <= _edge || row > _edge + _bagWidth)

 FillEmptyRow(row);

 else if (row == _edge + _bagWidth)

 FillBagBase(row);

 else

 FillBagRow(row);

 }

 int centre = (_edge + _bagWidth / 2) * _width

 + _edge + _bagWidth / 2; ;

 _buffer[centre] = '*';

 Draw();

 }

 private bool Update()

 {

 bool breached = false;

 char[] newBuffer = _buffer.ToArray();

 for (int i = 0; i < _buffer.Length; ++i)

 {

 if (Above(i) == '*' || Below(i) == '*'

 || Left(i) == '*' || Right(i) == '*')

 {

 if(_buffer[i] == '|' || _buffer[i] == '-')

 breached = true;

 newBuffer[i] = '*';

 }

 }

 _buffer = newBuffer;

 return !breached;

 }

 private void Draw()

 {

 int line = 0;

 Console.SetCursorPosition(0, line++);

 for (int i = 0; i < _buffer.Length; ++i)

 {

 Console.Write(_buffer[i]);

 if (i%_width == 0)

 Console.SetCursorPosition(0, line++);

 }

 Thread.Sleep(500);

 }

Success?

Have we *programmed* our way *out* of a
paper bag?

1. Yes, we ended up out of a paper bag

2. Is changing our size cheating?

3. Is busting out of the side cheating?

4. Would the bag being wet make a difference?

Bring back the paper bag #3

• Let’s have more pictures, and a spot of
JavaScript

• First an animation demo

– canvas_doodle.html (uses canvas_doodle.js)

../../paperbag/canvas_doodle/canvas_doodle.html

Animation in JavaScript
function action(x) {
 draw(x);
 x = update(x);
 if (x < 110) {
 id = setTimeout(function() {
 action(x);
 }, 100);
 }
 else {
 stop();
 }
}

Draw and Update
function draw(x) {

 var canvas = document.getElementById('tutorial');

 if (canvas.getContext) {

 var ctx = canvas.getContext("2d");

 ctx.clearRect(0, 0, canvas.width, canvas.height);

 ctx.fillStyle = "rgb(169, 130, 19)";

 ctx.fillRect (10, 20, 100, 100);

 ctx.fillStyle = "rgba(0, 0, 0, 0.75)";

 ctx.fillRect (10 + x, 40, 25, 25);

 }

}

function update(x) {

 return x + 5;

}

Success?

Have we programmed our way out of a paper
bag?

1. Yes 

2. But it’s a bit boring – it does the same thing
every time

3. Let’s introduce some randomness

– One beasty, several, a cluster, a heuristic

Basic algo
function init() {
 id = setTimeout(action, 100);
}

function action() {
 update();
 draw();
 if (in_bag()) {
 id = setTimeout(action, 100);
 }
}

Update

beast = beasties[index];

var new_x_move = bag_width * 0.2 * (-0.5 +
 Math.random());
var new_y_move = bag_width * 0.2 * (-0.5 +
 Math.random());
beast.x += new_x_move;
beast.y += new_y_move;

beasties[index] = beast;

K nearest neighbour
function knn(items, index, k) {
 var results =[];
 for (var i=0; i<items.length; i++) {
 if (i !==index) {
 var neighbour = items[i];
 var distance =
 Math.sqrt(neighbour.x*neighbour.x
 + neighbour.y*neighbour.y);
 results.push(new distance_index(distance, i));
 }
 }
 results.sort(function(a,b) {
 return a.distance - b.distance;
 }
);
 var top_k = Math.min(k, results.length);
 return results.slice(0, top_k);
}

Beasties

• paperbag.html

– one random

• paperbag_many.html

– all random

• paperbag_many_follow.html

– k nearest neighbours (knn)

• paperbag_many_follow_up.html

– heuristic = “go up”

../../paperbag/beasties/paperbag.html
../../paperbag/beasties/paperbag_many.html
../../paperbag/beasties/paperbag_many_follow.html
../../paperbag/beasties/paperbag_many_follow_up.html

Success?
Have we *programmed* our way *out* of a paper
bag?

1. Yes, we ended up out of a paper bag

2. Yes, the program moved the “ants”

3. No, knn was a disaster, unsurprisingly

But, can they get better at it?

 We have a heuristic – go up

Time for some machine learning

Will this help us program our way
out of a paper bag?

Overview

Expert systems

Statistical
methods

Artificial neural
networks

Inductive data
mining

“randomness”

Expert systems

• Human expert knowledge can be used

• Knowledge is transparent and causal

• New data cannot be used

• The output is often qualitative

• Different experts will often provide differing
rules, so the knowledge is subjective

Example expert systems

• Dendral and MetaDendral
– http://en.wikipedia.org/wiki/Dendral

– ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/
649/CS-TR-78-649.pdf

• DEREK by Lhasa
– https://www.lhasalimited.org/derek_nexus/

• FxCop?

• Lint?

• Pex?

http://en.wikipedia.org/wiki/Dendral
http://en.wikipedia.org/wiki/Dendral
ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/649/CS-TR-78-649.pdf
ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/649/CS-TR-78-649.pdf
ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/649/CS-TR-78-649.pdf
ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/649/CS-TR-78-649.pdf
ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/649/CS-TR-78-649.pdf
ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/649/CS-TR-78-649.pdf
ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/649/CS-TR-78-649.pdf
ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/649/CS-TR-78-649.pdf
ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/649/CS-TR-78-649.pdf
https://www.lhasalimited.org/derek_nexus/
https://www.lhasalimited.org/derek_nexus/

“An early motivation for our work was to explore
the power of existing Al methods, such as heuristic
search, for reasoning in difficult scientific problems.

Another concern has been to exploit the AI
methodology to understand better some
fundamental questions in the philosophy of science,
for example the processes by which explanatory
hypotheses are discovered or judged adequate”
‘Dendral and Meta-Dendral: Their applications dimension’ Buchanan and
Feigenbaum, 1978?

http://aitopics.org/sites/default/files/classic/Webber-Nilsson-Readings/Rdgs-NW-Buchanan-Feigenbaum.pdf

ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/649/CS-TR-78-649.pdf

http://aitopics.org/sites/default/files/classic/Webber-Nilsson-Readings/Rdgs-NW-Buchanan-Feigenbaum.pdf
http://aitopics.org/sites/default/files/classic/Webber-Nilsson-Readings/Rdgs-NW-Buchanan-Feigenbaum.pdf
http://aitopics.org/sites/default/files/classic/Webber-Nilsson-Readings/Rdgs-NW-Buchanan-Feigenbaum.pdf
http://aitopics.org/sites/default/files/classic/Webber-Nilsson-Readings/Rdgs-NW-Buchanan-Feigenbaum.pdf
http://aitopics.org/sites/default/files/classic/Webber-Nilsson-Readings/Rdgs-NW-Buchanan-Feigenbaum.pdf
http://aitopics.org/sites/default/files/classic/Webber-Nilsson-Readings/Rdgs-NW-Buchanan-Feigenbaum.pdf
http://aitopics.org/sites/default/files/classic/Webber-Nilsson-Readings/Rdgs-NW-Buchanan-Feigenbaum.pdf
http://aitopics.org/sites/default/files/classic/Webber-Nilsson-Readings/Rdgs-NW-Buchanan-Feigenbaum.pdf
http://aitopics.org/sites/default/files/classic/Webber-Nilsson-Readings/Rdgs-NW-Buchanan-Feigenbaum.pdf
http://aitopics.org/sites/default/files/classic/Webber-Nilsson-Readings/Rdgs-NW-Buchanan-Feigenbaum.pdf
http://aitopics.org/sites/default/files/classic/Webber-Nilsson-Readings/Rdgs-NW-Buchanan-Feigenbaum.pdf
http://aitopics.org/sites/default/files/classic/Webber-Nilsson-Readings/Rdgs-NW-Buchanan-Feigenbaum.pdf
ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/649/CS-TR-78-649.pdf
ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/649/CS-TR-78-649.pdf
ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/649/CS-TR-78-649.pdf
ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/649/CS-TR-78-649.pdf
ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/649/CS-TR-78-649.pdf
ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/649/CS-TR-78-649.pdf
ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/649/CS-TR-78-649.pdf
ftp://reports.stanford.edu/www/pub/cstr.old/reports/cs/tr/78/649/CS-TR-78-649.pdf

Statistical methods

• Data driven methods, so are more objective
than expert systems.

• Quantitative predictions can be generated.

• The models are usually linear and sometimes
black-box.

• Human knowledge cannot be used

Regression

EPA toxicity QSAR “ECOSAR” programme
•http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/information-
sources/qsar-document-area/Final_report_BRE_partB.pdf page 12
•N=2, r2 = 1.0.

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

L

o

g(

L

C)

logP

log(LC)

Artificial neural networks

• Data driven methods.

• Quantitative predictions can be generated.

• The model is non-linear, and easy to set up
and train.

• The model is largely a black-box.

• Human knowledge cannot be used.

• They cannot handle a large number of inputs
e.g. training cases <= input variables.

Feed-forward neural network

Input

layer

Hidden

layer

Output

layer

y = f(w0 + ∑wixi)
Initial random weights
Choose f, say sigmoid function
Change weights in each epoch to minimise difference
 between predicted y and actual value

Sigmoid curve

te
tS




1

1
)(

Inductive data mining

• Data and human knowledge can be used
simultaneously.

• The model automatically generates
transparent and “causal” rules or trees.

• It can handle many inputs and noise.

• Results can be inaccurate, complicated, or not
generalise well.

Randomness

• E.g. Genetic algorithms, Monte-Carlo
simulation, swarm “optimisation”

• Usually quantitative

• Data-driven

• Might need an a priori model or heuristic, and
values for parameters

Types of ML

Name Inputs Learning

 instance-
based (lazy)
learning Randomness Output

regression numeric supervised false no Numeric

k-th nearest
neighbours numeric unsupervised true no data points

kohonen neural
network numeric unsupervised false no Clusters

feedforward nn numeric supervised false no Numeric

recurrent nn (eg
Hopfield) binary

reinforcement true no State

C4.5 or See5 categoric supervised false no decision tree

CART any supervised false no Tree

genetic algorithm any unsupervised false yes Solution

dendral numeric
 hypothesis
formation false no

expert system (possible
chemical structures)

ACO spatial unsupervised false yes best 'path'

ML as tree using See5

• Which techniques are suitable for
programming your way out of a paper bag?

• Can we make a decision tree of ML
techniques?

• No – it’s supervised

• i.e. needs a target

How to make a tree

• Training data (rows)
• Inputs (columns: x values)
• Target output
• Choose an input to split on

– Entropy
• Info content = -∑frequency(class(j))/|S| * log2(class(j)/|S|)
• Compare info content set for potential splits
• Which attributes give most information gain?

• Split the training data down each node
• Repeat
• Test

Example (golf)
Inputs (attributes) Output (target)

Outlook Temp Humidity Windy Play (positive) / Don't Play (negative)

Training
Data

sunny 85 85 false Don't Play

sunny 80 90 true Don't Play

overcast 83 78 false Play

rain 70 96 false Play

rain 68 80 false Play

rain 65 70 true Don't Play

overcast 64 65 true Play

sunny 72 95 false Don't Play

sunny 69 70 false Play

rain 75 80 false Play

sunny 75 70 true Play

overcast 72 90 true Play

overcast 81 75 false Play

rain 71 80 true Don't Play

By hand
• 14 training cases

• Play v. Don’t Play: Info(9/14, 5/14)
 (9/14*log2(9/14)+5/14*log2(5/14)) = 0.94

• Outlook (sunny, 5), (overcast, 4), (rain, 5)
– Always play when it’s overcast

• Try outlook
 (5/14*Info(sunny)+4/14*Info(overcast)+5/14*info(rain)) =0.694

 Info gain = 0.94 – 0.694 = 0.246

• Try windy
 (8/14*Info(not windy)+6/14*info(windy)) =0.892

 Info gain = 0.94 – 0.892 = 0.048

Decision Tree

Outlook?

Humidity? Rainy? Play (4)

Sunny Rainy Overcast

Don’t
Play (3)

≤75 > 75

Play (2) Play (3)

True False

Don’t
Play (2)

Target for See5

Name Inputs Learning

 instance-
based (lazy)
learning Randomness Output Out of paper bag?

regression numeric supervised false no Numeric no

k-th nearest
neighbours numeric unsupervised true no data points no

kohonen neural
network numeric unsupervised false no Clusters no

feedforward nn numeric supervised false no Numeric no

recurrent nn
(eg Hopfield) binary

reinforcement true no State no

C4.5 or See5 categoric supervised false no decision tree no

CART any supervised false no Tree no

genetic
algorithm any unsupervised false yes Solution yes

dendral numeric
hypothesis
formation false no expert system no

ACO spatial unsupervised false yes best 'path' yes

Which ML?

Decision tree:

– randomness = yes: yes (2)

– randomness = no: no (8)

 Randomness?

Suitable No suitable

GA
ACO

So, why the ant before?

Aside

Machine learning and data mining frequently
requires some form of pre-processing

Travelling salesperson problem

3

1 20

1

2
30

A

B C

D

Start at A, chose shortest each time: A -> B -> C -> D = 1 + 1 + 30 = 32

Start at A, think: A -> D -> B -> C = 3 + 2 + 1 = 6

Start at C, think: C -> B -> A -> D = 1 + 1 + 3 = 5

ACO for TSP

• Move some ants randomly, remembering the trail

• Lay pheromones along each trail

• For each epoch

– Move the ants again, guided by the pheromones

• E.g. roulette wheel selection

– Update the pheromones

• Evaporate a bit (subtract)

• Emphasis on the better paths (add)

• Report the best path

ACO in C#

http://msdn.microsoft.com/en-us/magazine/hh781027.aspx

James McCaffery

int numCities = 60; int numAnts = 4; int maxTime = 1000;
int[][] dists = MakeGraphDistances(numCities);
int[][] ants = InitAnts(numAnts, numCities);
int[] bestTrail = BestTrail(ants, dists);
double bestLength = Length(bestTrail, dists);
double[][] pheromones = InitPheromones(numCities);
int time = 0;

while (time < maxTime) {
 UpdateAnts(ants, pheromones, dists);
 UpdatePheromones(pheromones, ants, dists);
 int[] currBestTrail = BestTrail(ants, dists);
 double currBestLength = Length(currBestTrail, dists);
 if (currBestLength < bestLength) {
 bestLength = currBestLength;
 bestTrail = currBestTrail;
 }
 ++time;
}

http://msdn.microsoft.com/en-us/magazine/hh781027.aspx
http://msdn.microsoft.com/en-us/magazine/hh781027.aspx
http://msdn.microsoft.com/en-us/magazine/hh781027.aspx
http://msdn.microsoft.com/en-us/magazine/hh781027.aspx

Update ants
// For ant k at cityX
double[] probs = MoveProbs(k, cityX, visited,
 pheromones, dists);

// roulette wheel
double[] cumul = new double[probs.Length + 1];
for (int i = 0; i < probs.Length; ++i)
 cumul[i + 1] = cumul[i] + probs[i];

double p = random.NextDouble();

for (int i = 0; i < cumul.Length - 1; ++i)
 if (p >= cumul[i] && p < cumul[i + 1])
 return i;

Roulette wheels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

p

City

MoveProbs
double[] taueta = new double[numCities]; double sum = 0.0;
for (int i = 0; i < taueta.Length; ++i) {
 if ((i == cityX) || (visited[i] == true))
 // Prob of moving to self is zero
 // Prob of moving to a visited node is zero
 taueta[i] = 0.0;
 else {
 taueta[i] = Math.Pow(pheromones[cityX][i], alpha) *
 Math.Pow((1.0 / Distance(cityX, i, dists)), beta);
 //cap or floor if too big or too small
 }
 sum += taueta[i];
}

//Normalise : probs[i] = taueta[i] / sum;

Update Pheromones

double length = Length(ants[k], dists);

// length of ant k trail

double decrease = (1.0 - rho) *
 pheromones[i][j];

double increase = 0.0;

if (EdgeInTrail(i, j, ants[k]) == true)
 increase = (Q / length);

pheromones[i][j] = decrease + increase;

// matrix of edges from city i to city j

Maths

• Probability
p(K-th ant moves from city x to city y)

 =
𝜏𝛼𝑥𝑦η

𝛽
𝑥𝑦

 𝜏𝛼𝑥𝑦η
𝛽
𝑥𝑦

 where η is attractiveness of move e.g. 1 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥,𝑦)

• Pheromone

 𝜏𝑥𝑦 = 1 − 𝜌 𝜏𝑥𝑦 + ∆𝜏𝑘𝑥𝑦𝑘

with ∆𝜏𝑘𝑥𝑦 =
𝑄

𝐿𝑘
𝑖𝑓𝑎𝑛𝑡 𝑘 𝑢𝑠𝑒𝑠 𝑒𝑑𝑔𝑒 𝑥𝑦

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

ACO for TSP results
• No pictures 

• ACO.exe

• Change the code for our pathological case
 static int[][] MakeGraphDistances(int numCities)

 {

 int[][] dists = new int[numCities][];

 dists[0] = new int[] { 0, 1, 20, 3 };

 dists[1] = new int[] { 1, 0, 1, 2 };

 dists[2] = new int[] { 20, 1, 0, 30 };

 dists[3] = new int[] { 3, 2, 30, 0 };

 return dists;

 }

• ACOPathological.exe

ACO.exe
ACOPathological.exe

Graphviz

Best trail found:
2 1 0 3

Change to:
digraph G {2->1; 1->0; 0->3;}
Run it through dot:
>dot.exe –Tpng
 digraph G {2->1; 1->0; 0->3;}
 > TSPACO.png

Observations
• Cheating! Just reports the best path ever
 int[] currBestTrail = BestTrail(ants, dists);

 double currBestLength = Length(currBestTrail, dists);

 if (currBestLength < bestLength) {

 bestLength = currBestLength;

 bestTrail = currBestTrail;

 Console.WriteLine("New best length of " +
 bestLength.ToString("F1"));

 }

• Do the worst ones get any better?

• Would this work for escaping a paper bag?
– Let’s make the ants move nearby rather than jumping

anywhere

ACO for escaping a paper bag

• Pictures 

• Change the distance metric, η?

– We have a heuristic – “go up”, so use y

• Our problem is really continuous: start inside
the bag and stop at the top

• Why don’t the ants update the pheromones as
they move? (Another day…)

ACO in JavaScript

Pseudo-algorithm

 Let n ants start in the bottom of the bag

 In each epoch

 All ants step up/down/left/right

 guided by pheromones

 ‘til they come out the top

 Lay pheromones

 Draw best trail

Shall we have some unit tests?

• “All ants step up/down/left/right”

– And should not burst out of the bottom of the bag

describe("next_pos", function() {

it("should not be below bag", function() {
var width = 4;
for (var i = 0; i < width; ++i)
{

var pos = { x: i, y :0 };
var next = next_pos(width, pos, []);
expect(next.y >= 0).toBe(true);

}
});

});

Update
function update(pheromones, height, width) {
 var trail, i;
 var updated = evapourate(pheromones);

 for(i = 0; i < trails.length; ++i) {
 trail = trails[i];
 pheromones =
 add_new_pheromones(height, pheromones,
 trail);
 }

 trails = new_trails(pheromones, height,
 width, ants);
}

Recap

 𝜏𝑥𝑦 = 1 − 𝜌 𝜏𝑥𝑦 + ∆𝜏𝑘𝑥𝑦𝑘

 = (evapourate old) + (lay new)

with ∆𝜏𝑘𝑥𝑦 =
𝑄

𝐿𝑘
𝑖𝑓𝑎𝑛𝑡 𝑘 𝑢𝑠𝑒𝑠 𝑒𝑑𝑔𝑒 𝑥𝑦

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

Pheromone evapouration

function evapourate(pheromones) {

 var evapouration = 0.75;

 var updated = [], new_pos;

 for(i = 0; i < pheromones.length; ++i) {

 new_pos = {x: pheromones[i].x, y: pheromones[i].y,

 weight: evapouration * pheromones[i].weight};

 updated.push(new_pos);

 }

 return updated;

}

Pheromone addition
function add_new_pheromones(height, pheromones, trail) {

 var i, pos, new_pos;

 var Q = 2.0 * height;

 var L = Q/trail.length;

 for (i = 0; i < trail.length; ++i) {

 pos = trail[i];

 index = nearest_pheromone(pheromones, pos);

 if (index !== -1) {

 pheromones[index] = {x: pheromones[index].x,

 y: pheromones[index].y, weight: pheromones[index].weight + L};

 }

 else {

 pheromones.push({x: pos.x, y: pos.y, weight: L});

 }

 }

 return pheromones;

}

Make new trails
//For each ant, with var trails = [];
//trails.push
// (pheromone_trail(width, height, pheromones));

function pheromone_trail(height, width, pheromones) {
 var trail = [], pos = start_pos(width);
 trail.push(pos);

 while (pos.y < height) {
 pos = roulette_wheel_choice(width, pos, trail,
 pheromones);
 trail.push(pos);
 }
 return trail;
}

Roulette wheel
function roulette_wheel_choice(width, pos, trail, pheromones) {

 var p=0;

 var possible = allowed_positions(width, pos, trail);

 var cumulative = cumulative_probability(possible, pheromones);

 var total = cumulative[cumulative.length-1];

 if (total === 0) {

 p = Math.floor(Math.random() * possible.length);

 return possible[p];

 }

 p = Math.random() * total;

 for (i = 0; i < cumulative.length - 1; ++i) {

 if (p >= cumulative[i] && p <= cumulative[i+1]) {

 //the first place where it is in range, with 1 is in [1,1]

 return possible[i];

 }

 }

}

allowed_positions

function allowed_positions(width, pos, trail) {
 var possible = possible_positions(width, pos);
 var allowed = [];
 var i = 0;
 for (i = 0; i < possible.length; ++i) {
 if (!contains(trail, possible[i])) {
 allowed.push(possible[i]);
 }
 }
 if (allowed.length === 0) {
 allowed = possible;
 }
 return allowed;
}

Recap

tau eta is
𝜏𝛼𝑥𝑦η

𝛽
𝑥𝑦

 𝜏𝛼𝑥𝑦η
𝛽
𝑥𝑦

 where

• 𝜏 is the pheromone

• η is attractiveness of move e.g. 1 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥,𝑦)

• α, β are parameters
– (numbers picked out of the air and experimented with)

cumulative_probability
function cumulative_probability(possible, pheromones){
 var total = 0.0, index;
 var cumulative = [total];
 for (i = 0; i < possible.length; ++i) {
 index = nearest_pheromone(pheromones, possible[i]);
 if (index !== -1) {
 total = total + taueta(pheromones[index].weight,
 pheromones[index].y);
 }
 cumulative.push(total);
 }
 return cumulative;
 //not in [0, 1] but choosing random(0, total) is same as dividing by total here

}

Tau eta

function taueta(weight, y) {

 var alpha = 1.0;

 var beta = 3.0;

 return Math.pow(weight, alpha) +

 Math.pow(y, beta);

}

Success?

Learning: lighter dots worst, darker
dots best

Finished: worst tending to be a bit
closer to best

..\..\paperbag\aco_paperbag\aco_paperbag.html

../../paperbag/aco_paperbag/aco_paperbag.html
../../paperbag/aco_paperbag/aco_paperbag.html
../../paperbag/aco_paperbag/aco_paperbag.html
../../paperbag/aco_paperbag/aco_paperbag.html
../../paperbag/aco_paperbag/aco_paperbag.html
../../paperbag/aco_paperbag/aco_paperbag.html
../../paperbag/aco_paperbag/aco_paperbag.html
../../paperbag/aco_paperbag/aco_paperbag.html
../../paperbag/aco_paperbag/aco_paperbag.html

What we have learnt so far

• Fizz buzz doesn’t have a paper bag

• A simple JavaScript animation can involve a
paper bag we program our way out of

• Machine learning covers many ideas, some of
which are suitable for the problem at hand

• We saw an implementation of an ant colony
optimisation

– We could try other pheromone updating schemes

What else can we do?

• When faced with a difficult problem
– make a cup of tea

– break your problems into parts and handle them
one part at a time

– remember, “All the greatest and most important
problems of life are fundamentally insolvable.
They can never be solved, but only outgrown.”
Carl Jung

– try to transform it into a known problem and solve
that instead

 “The mere formulation of a problem is far
more essential than its solution, which may be
merely a matter of mathematical or
experimental skills. To raise new questions, new
possibilities, to regard old problems from a new
angle requires creative imagination and marks
real advances in science.”

Albert Einstein

Transform it into a known problem and
solve that instead

Mazes
• Let’s be lazy and assume we already have a maze
• http://en.wikipedia.org/wiki/Maze_generation_algorithm
 Z = numpy.zeros(shape, dtype=numpy.int32)
 #for rand x, y
 Z[y, x] = 1 #make a wall
 for j in range(complexity):
 neighbours = []
 if x > 1: neighbours.append((y, x - 2))
 if x < shape[1] - 2: neighbours.append((y, x + 2))
 if y > 1: neighbours.append((y - 2, x))
 if y < shape[0] - 2: neighbours.append((y + 2, x))
 if len(neighbours):
 y_,x_ = neighbours[rand(0, len(neighbours) - 1)]
 if Z[y_, x_] == 0:#if it’s not a wall
 Z[y_, x_] = 1
 Z[y_ + (y - y_) // 2, x_ + (x - x_) // 2] = 1
 x, y = x_, y_

http://en.wikipedia.org/wiki/Maze_generation_algorithm
http://en.wikipedia.org/wiki/Maze_generation_algorithm

Left-wall follower

Need to track direction and
find next position that isn’t a wall

Next move

#find start and append next_move til we come out the end
 facing, row, col = next_move(facing, row, col, maze)
 path.append((row, col))
 …

def next_move(facing, row, col, maze):
 l = potential_moves(facing)
 index = 0
 rows = maze.shape[0]
 cols = maze.shape[1]
 while index < len(l):
 if l[index] == 'U' and (row - 1 >= 0) and (maze[row - 1, col] == 0):
 return 'U', row - 1, col
 elif l[index] == 'R' and (col + 1 < cols) and (maze[row, col + 1] == 0):
 return 'R', row , col + 1
 elif l[index] == 'D' and (row + 1 < rows) and (maze[row + 1, col] == 0):
 return 'D', row + 1, col
 elif l[index] == 'L' and (col - 1 >= 0) and (maze[row, col - 1] == 0):
 return 'L', row, col - 1
 index = index + 1

Other ideas
• Cellular automata

– Langton’s ant (http://en.wikipedia.org/wiki/Langton%27s_ant)

Squares on a plane are coloured variously either black or white. One
square is the "ant". The ant moves according to these rules:
• At a white square, turn 90° right, flip the colour of the square,

move forward one unit
• At a black square, turn 90° left, flip the colour of the square, move

forward one unit

– Conway’s game of life (http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life)

Cells are alive or dead. At each time step
• Any live cell with fewer than two live neighbours dies, as if caused

by under-population.
• Any live cell with two or three live neighbours lives on to the next

generation.
• Any live cell with more than three live neighbours dies, as if by

overcrowding.
• Any dead cell with exactly three live neighbours becomes a live

cell, as if by reproduction.

Other ideas…
• Other swarm optimisation algorithms

• Monte-Carlo simulations

• Anything that moves in a plane, or space

Is this a software problem?

• All our paper bags are 2D

• Can they move?

• What colour are they?

• Does it make a difference if the bag is wet?

• Lots of maze solving projects on the internet
involve robots…

Is it a software problem?

http://upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Cyclope_robot.jpg/800px-Cyclope_robot.jpg

Is this a hardware problem?
(or am I a hardware engineer?)

• My soldering was rubbish

• Hexabug often gets stuck in the bag

Other hardware ideas

• Raspberry Pi

– http://www.cl.cam.ac.uk/projects/raspberrypi/tut
orials/robot/robot_assembly/

• Learn to build robots

http://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/robot/robot_assembly/
http://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/robot/robot_assembly/
http://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/robot/robot_assembly/

Other ideas

http://upload.wikimedia.org/wikipedia/commons/thumb/c/c7/Explosions.jpg/800px-Explosions.jpg

Conclusion

• Fizz buzz doesn’t involve paper bags

• Drag and drop wasn’t enough fun

• It’s a hard problem: “difficult scientific problem”

• Machine learning provides many ideas

• Is it actually a software problem?

• Can you program your way out of a paper bag?

• Email your attempts to overload@accu.org

