
Git – Why should I care about the index?

Charles Bailey

Bloomberg LP

12th April 2013



Why should I care about the index?



Introduction

What is Git?



The Git object model

I blob

I tree

I commit

I tag



Synonyms for the index

I index

I dircache

I cache

I staging area



Yes, but what is it?

I binary file

I maps paths to blob ids

I caches lstat information



What is it for?

I Uses cached information to speed up tree operations (e.g.
diff, status)

I Record the versions of files checked out

I Record the identity of files being checked in

I Record multiple versions of files being merged



Where do I find it?

I Only applies to non-bare repositories

I Usually found at .git/index

I Path can be overridden with the GIT INDEX FILE

environment variable



Visualizing the index

I Like a commit, the index contains all currently tracked files

I Like a commit, we often only look at the changes implied by
the index

I git status shows tracked changes that differ between the
current state of the index and HEAD



Viewing the index

I hexdump .git/index - use
Documentation/technical/index-format.txt

I git ls-files -s

I git ls-files --debug



Delete it!

I Doesn’t delete any metadata

I Easy to recreate

I May delete difficult to recreate metadata



Recreating an index

git reset

or

git read-tree <tree-object>

Config variable: core.preloadindex



Making a commit

git write-tree

and (now nothing to do with the index)

git commit-tree



Updating the index

I git add

I git rm --cached

I git update-index



Updating the index (from the database)

I git reset <treeish> <file>

or

I git update-index --cacheinfo



Updating the working tree

I git checkout -- <file>

I git checkout-index



Index “slots”

I Normally only slot 0 is populated

I In a merge, slots 1, 2 and 3 are used instead



Index “slots”

I Slot 1 - common base

I Slot 2 - “ours” (base branch in rebase)

I Slot 3 - “theirs” (feature branch in rebase)

Any of these slots may be empty, e.g. for baseless merge or “other
sided delete” conflicts.



Merge resolution

The act of replacing entries in slots 1, 2 and 3 with a single
resolved slot 0 entry.

I Automatically done on successful resolution with git

mergetool

I Manually, with git add



Assume unchanged

git update-index --[no-]assume-unchanged <file>

Config variable: core.ignoreStat



Skip worktree

git update-index --[no-]skip-worktree <file>



Executable bit

git update-index --chmod=(+|-)x <file>

Config variable: core.fileMode



Intent to add

git add -N <new file>



I precached trees

I resolve undo



Changing an entry

Make a path refer to a different object

git update-index --cacheinfo <mode> <object-id> <path>

Use --add if the path is a new entry



Changing an entry - part ii

Update the index without adding the file contents to the repository

git update-index --info-only <path>

Use --add if the path is a new entry

DANGER!
git hash-object -w <path>



Batch update

git update-index --index-info

I Reads from stdin

I Can update index entries other than zero



Recreating a unresolved merge state

git update-index --index-info

I Write mode 0 to delete the slot 0 entry first

I Add entries for slots 1, 2 and 3 afterwards



Recreating the unresolved state the easy way

git ls-files --resolve-undo <path>

git update-index --unresolve <path>

git merge-index git-merge-one-file <path>



Q&A


	Introduction
	Demystifying the index
	Merging
	Implementation details
	Extensions
	Juggling the index
	Questions

