
Growing OO C++ Software
Guided by Tests

Alan GriffithsAlan Griffiths
alan@octopull.co.uk

#alanatoctopull

Octopull LimitedOctopull Limited

www.octopull.co.uk

Who am I?

Developed software through many fashions in
development processes, technologies and programming
languages

Delivered working software (and development processes)

A regular at the ACCU conference

Current ACCU Chair

Written for magazines and books

Spoken at a number of conferences

Made many friends in developer communities

A project I can talk about

Usually clients want confidentiality

Canonical doesn't

This is an open-source (LGPL/GPL) project

Documentation and code is online

I've borrowed shamelessly

Links at the end

Canonical and me

Canonical make Ubuntu Linux

Their “Unity” user interface

Is a Compiz plugin

Designed to cover PC, tablet, phone and TV

Contracted me to

Improve quality of Compiz codebase

Review Compiz and alternative codebases

Then to work on “something new”

Rewriting Software

The organisation
hasn't changed

Existing software
incorporates many
lessons

Often a moving target Unless significant

Changes in requirements

New technology

Writing good code

http://xkcd.com/844/http://xkcd.com/844/

Growing Object-Oriented Software,
Guided by Tests

By: Steve Freeman & Nat Pryce

http://www.growing-object-oriented-software.com/

Required reading for
team

Inspiration for
development
approach

A good read

http://www.growing-object-oriented-software.com/

GOOS - Chapter 1
What is the Point of Test-Driven

Development?

Software Development as a Learning Process

Feedback Is the Fundamental Tool

Practices That Support Change

Test-Driven Development in a Nutshell

The Bigger Picture

Testing End-to-End

Levels of Testing

External and Internal Quality

GOOS - Chapter 1
Inner and outer feedback loops in TDD

GOOS - Chapter 1
Feedback Is the Fundamental Tool

“In a project organized as a set of nested feedback
loops, development is incremental and iterative.

“Incremental development builds a system feature by
feature, instead of building all the layers and
components and integrating them at the end. Each
feature is implemented as an end-to-end “slice”
through all the relevant parts of the system. The
system is always integrated and ready for deployment.

“Iterative development progressively refines the
implementation of features in response to feedback
until they are good enough.”

“You Can't do TDD in C++”

Chris Matts “challenge” at XtC

His clients made this assertion

News to me – I've been doing it for years

TDD is possible in C++

(although all tooling in C++ is hard)

TDD isn't the answer to all problems

(but is a big improvement on the usual hack & fix)

Project mir - the goals

Support the Unity shell...

Across multiple form factors

Phone, tablet, TV, PC, ...

Provide driver independence

Mesa, Nvidia, Android, …

Exploit GPU acceleration

System and Session compositing

Support for Qt and, possibly, other toolkits

Support for X applications

The Project: Mir
a new Window Manager

X-Windows+Compiz/kwin/... is successful but:

Designed with distributed application and server

Pre-dates sharing GPUs

Lots of legacy baggage

Wayland is great but...

Is a protocol, not an implementation

Covers functions Canonical didn't need

Weston (reference implementation of Wayland)

Not optimised for Canonical's needs

In development (with lots of other stakeholders)

Canonical: Graphics Stack

Multiple platforms

Ubuntu 12.10

g++ 4.6

Android NDK

g++ 4.4

Android/libhybris

g++ 4.7

Ubuntu 13.x

g++ 4.7

Multiple Locations

Nottingham, UK

Athens, Greece

Bochum, Germany

San Diego, CA, USA

Carlisle, PA, USA

Perth, Australia

...

“The most efficient and effective method
of conveying information to and within a
development team is face-to-face
conversation” Agile Manifesto

“The most efficient and effective method
of conveying information to and within a
development team is face-to-face
conversation” Agile Manifesto

Forming The Team

A “Sprint” [Canonical's term]

Getting the developers together for, typically, a
week

Didn't quite work that way – half the team were in
Boston USA and half in London UK

Agreed development approach – GOOS, C++,
CMake, GoogleTest/Mock, Jenkins, bzr

High level design map

The High Level Design

Development approach

Initially worked on the
core loop – with
“acceptance tests”
interfacing inside the
outer boundary

Automating tests for
code dealing with real
drivers (graphics or
input) limited

Dealing with Multiple Locations

Standups & meetings

Pairing vs code reviews

Documentation

Distributed standups
& other meetings

Early in the project

Google Hangouts for standup and discussions

Skype for one-one

Email and IRC used, but mostly to arrange above

Later in the project

Most discussions on IRC and email

Some Google Hangouts for other discussion

Remote pairing

Pair programming at
a distance

TeamViewer

Different timezones

Different editors

Bandwidth

Code reviews

Code reviews of
merge proposals

Less “bandwidth”

More “latency”

Some frustration

But easier to
schedule across
timezones

“Merge Proposals”

managed by
Launchpad website

Shows diff

Shows comments
and review status

Monitored by Jenkins

Builds supported
configurations

Merges “Approved”
changes

Documentation

Launchpad

Source control

Merge Proposals

Bugs

Blueprints

Source code

Doxygen (code +
markdown)

Design images

Google docs

Discussion documents

Working notes

Not deliverables/public

Email

Wiki

Documentation – in the code

 // TODO comparing strings in an if-else chain isn't efficient.
 // It is probably possible to generate a Trie at compile time.
 if ("connect" == invocation.method_name())
 {
 invoke(&protobuf::DisplayServer::connect, invocation);
 }
 else if ("create_surface" == invocation.method_name())
 ...

TDD : use interfaces

Design using Interfaces

ClientLibrary ImplementationLibrary

ClientClass DependencyInterface1
Implementation1

DependencyInterface2

Implementation2

AnotherImplementationLibrary

DependencyInterface3

Implementation3

Unit Testing

ClientLibrary

ClientClass DependencyInterface1

DependencyInterface2

TestMock2

DependencyInterface3

TestMock3

TestStub1

Design using Interfaces

ClientLibrary ImplementationLibrary

ClientClass
Dependency1

Implementation1

Dependency2

Implementation2

AnotherImplementationLibrary

Dependency3

Implementation3
Dependency4

A unit test

struct ShellSurface : testing::Test
{
 std::shared_ptr<mi::InputChannel> const null_input_channel;
 MockSurfaceBuilder surface_builder;
};

TEST_F(ShellSurface, creation_and_destruction)
{
 using namespace testing;

 mf::SurfaceCreationParameters const params;

 InSequence sequence;
 EXPECT_CALL(surface_builder, create_surface(params)).Times(1);
 EXPECT_CALL(surface_builder, destroy_surface(_)).Times(1);

 msh::Surface test(
 mt::fake_shared(surface_builder),
 params,
 null_input_channel);
}

A mock object

class MockSurfaceBuilder : public msh::SurfaceBuilder
{
public:
 MockSurfaceBuilder()
 {
 using namespace testing;
 ON_CALL(*this, create_surface(_)).
 WillByDefault(Invoke(&self, &StubSurfaceBuilder::create_surface));

 ON_CALL(*this, destroy_surface(_)).
 WillByDefault(Invoke(&self, &StubSurfaceBuilder::destroy_surface));
 }

 MOCK_METHOD1(create_surface, std::weak_ptr<ms::Surface> (const mf::SurfaceCreationParameters&));

 MOCK_METHOD1(destroy_surface, void (std::weak_ptr<ms::Surface> const&));

private:
 StubSurfaceBuilder self;
};

A stub object

class StubSurfaceBuilder : public msh::SurfaceBuilder
{
public:
 StubSurfaceBuilder() :
 buffer_bundle(new mtd::NullBufferBundle()), dummy_surface()
 {
 }

 std::weak_ptr<ms::Surface> create_surface(mf::SurfaceCreationParameters const&)
 {
 dummy_surface = std::make_shared<ms::Surface>(mf::a_surface().name, buffer_bundle);
 return dummy_surface;
 }

 void destroy_surface(std::weak_ptr<ms::Surface> const&)
 {
 dummy_surface.reset();
 }

private:
 std::shared_ptr<ms::BufferBundle> const buffer_bundle;
 std::shared_ptr<ms::Surface> dummy_surface;
};

A modified test

TEST_F(ShellSurface, create_throws_means_no_destroy)
{
 using namespace testing;

 mf::SurfaceCreationParameters const params;

 InSequence sequence;
 EXPECT_CALL(surface_builder, create_surface(params)).Times(1)
 .WillOnce(Throw(std::runtime_error(__PRETTY_FUNCTION__)));
 EXPECT_CALL(surface_builder, destroy_surface(_)).Times(Exactly(0));

 EXPECT_THROW({
 msh::Surface test(
 mt::fake_shared(surface_builder),
 params,
 null_input_channel);
 }, std::runtime_error);
}

Configuring dependencies

Dependencies are supplied to constructors

Objects are known by multiple interfaces; but,

The initial system state has “one of each”

A DefaultServerConfiguration class

Caches the created objects

Knows what to supply for each interface

A TestingServerConfiguration class overrides

For integration & acceptance tests

ServerConfiguration

class ServerConfiguration
{
public:
 virtual std::shared_ptr<frontend::Communicator> the_communicator() = 0;
 virtual std::shared_ptr<shell::SessionStore> the_session_store() = 0;
 virtual std::shared_ptr<graphics::Display> the_display() = 0;
 virtual std::shared_ptr<compositor::Drawer> the_drawer() = 0;
 virtual std::shared_ptr<input::InputManager> the_input_manager() = 0;

protected:
 ServerConfiguration() = default;
 virtual ~ServerConfiguration() = default;

 ServerConfiguration(ServerConfiguration const&) = delete;
 ServerConfiguration& operator=(ServerConfiguration const&) = delete;
};

main()

int main(int argc, char const* argv[])
try
{
 mir::DefaultServerConfiguration config(argc, argv);

 run_mir(config);
 return 0;
}
catch (mir::AbnormalExit const& error)
{
 std::cerr << error.what() << std::endl;
 return 1;
}
catch (std::exception const& error)
{
 std::cerr << "ERROR: " << boost::diagnostic_information(error) << std::endl;
 return 1;
}

run_mir()

void run_mir(mir::ServerConfiguration& config)
{
 signal(SIGINT, signal_terminate);
 signal(SIGTERM, signal_terminate);
 signal(SIGPIPE, SIG_IGN);

 mir::DisplayServer server(config);

 signal_display_server.store(&server);

 server.run();
}

std::atomic<mir::DisplayServer*> signal_display_server;

extern "C" void signal_terminate(int)
{
 while (!signal_display_server.load())
 std::this_thread::yield();

 signal_display_server.load()->stop();
}

Configuration magic

std::shared_ptr<mg::DisplayReport>
mir::DefaultServerConfiguration::the_display_report()
{
 return display_report(
 [this] -> std::shared_ptr<graphics::DisplayReport>
 {
 if (the_options()->get(log_display, false))
 {
 return std::make_shared<ml::DisplayReport>(the_logger());
 }
 else
 {
 return std::make_shared<mg::NullDisplayReport>();
 }
 });
}

 CachedPtr<graphics::DisplayReport> display_report;

Project Testing Framework

Test process

Start server process

Start client process(es)

Wait for client(s) to complete

Signal server to exit

Wait for the server to exit

Validate expectations & assertions

Facilitates

Injecting test doubles into server

Injecting test code into server

Injecting test code into client(s)

Configuring Server for Tests

class TestingServerConfiguration : public DefaultServerConfiguration
{
public:
 ...

 // Code to run in server process
 virtual void exec(DisplayServer* display_server);

 // Code to run in server process after server exits
 virtual void on_exit(DisplayServer* display_server);
 ...

 // We override the_input_manager in the default server configuration
 // to avoid starting and stopping the full android input stack for tests
 // which do not leverage input.
 virtual std::shared_ptr<input::InputManager> the_input_manager();
 ...
};

Starting a server with a mock

TEST_F(ApplicationMediatorReport, application_connect_called)
{
 struct Server : TestingServerConfiguration
 {
 std::shared_ptr<mf::ApplicationMediatorReport>
 the_application_mediator_report()
 {
 auto result = std::make_shared<MockApplicationMediatorReport>();

 EXPECT_CALL(*result, application_connect_called(testing::_)).
 Times(1);

 return result;
 }
 } server_processing;

 launch_server_process(server_processing);

 ...

Starting a test client process

 …
 struct Client: TestingClientConfiguration
 {
 void exec()
 {
 mt::TestProtobufClient client(mtf::test_socket_file(), rpc_timeout_ms);

 client.connect_parameters.set_application_name(__PRETTY_FUNCTION__);
 EXPECT_CALL(client, connect_done()).Times(testing::AtLeast(0));

 client.display_server.connect(
 0,
 &client.connect_parameters,
 &client.connection,
 google::protobuf::NewCallback(&client, &mt::TestProtobufClient::connect_done));

 client.wait_for_connect_done();
 }
 } client_process;

 launch_client_process(client_process);
}

Retrospective

“At regular intervals, the team reflects on how
to become more effective, then tunes and adjusts

its behavior accordingly.” - Agile Manifesto

Retrospective

Retrospective

Timeline

First (split) “sprint”

First GBM rendering

QT backend

Copenhagen “sprint”

Android rendering

X-server rendering

Running as system compositor

1st Cucumber test

London “sprint”

Retrospective

Difficulties

feedback lag in code reviews

Understanding what mir is

Having an “in process” shell

Retrospective

Keep

Tests

Code reviews

Power to veto

Maturity of discussion &
receptiveness to criticism

Hangouts

“stream of consciousness” on
IRC

Conservative

High quality design

Retrospective

Do different

Co-locate first sprint

Reduce turnover

Better support for employee
development

Better support to prevent
“burnout”

Secrecy

Language experimentation

Start earlier

Retrospective

Action plan

Co-locate sprints

Be open and engage with
stakeholders

Document

Architecture decisions

Requirements

Design

Public release

Design update

Surface Stack

Surface Controller

Compositor

Shell

Application Mediator

Input Dispatch

Graphics

Application API

Priviledged API Application

lightdm

Physical Input

Virtual Input
OSK

multi-touch

Mouse

Keyboard

android

Voice

Display

App Filter

Shell Filter

Display

MVC
View

View

Model

Controller View

Time Source

Buffer Manager

System Clock

Nvidia

gbm

Inter Process Comms

Design update

Surface Stack

Surface Controller

Compositor

Shell

Application Mediator

Input Dispatch

Graphics

Application API

Priviledged API Application

lightdm

Physical Input

Virtual Input
OSK

multi-touch

Mouse

Keyboard

android

Voice

Display

App Filter

Shell Filter

Display

MVC
View

View

Model

Controller View

Time Source

Buffer Manager

System Clock

Nvidia

gbm

Inter Process Comms

Feedback

Can I just say (from poking around the codebase) that it's fantastic to
see Canonical producing lovely C++ code like this!

Particularly I like:
* Use of modern C++ features like scoped locks, smart pointers and
auto types
* Good use of namespaces and matching directory paths
* Using protobuf for wire formats
* Good quantity of tests and use of google mock
* Nice clean CMake scripts
* Minimal debian packaging rules

I have no constructive input to add! I just wanted to highlight these
things.

Cheers
Pete

Links and References

mir

https://launchpad.net/mir

http://unity.ubuntu.com/mir/

https://wiki.ubuntu.com/MirSpec

GOOS

http://www.growing-object-oriented-s
oftware.com/

TeamViewer

http://www.teamviewer.com

Canonical

http://www.canonical.com/

g++

http://gcc.gnu.org/

cmake

http://www.cmake.org/

Jenkins

http://jenkins-ci.org/

Skype

http://www.skype.com/

Android

http://www.android.com/

Dialogue sheets

http://www.softwarestrategy.co.uk/
dlgsheets/

Movie

http://www.youtube.com/watch?v=
7grEFrTBzus

https://launchpad.net/mir
http://unity.ubuntu.com/mir/
https://wiki.ubuntu.com/MirSpec
http://www.growing-object-oriented-software.com/
http://www.growing-object-oriented-software.com/
http://www.teamviewer.com/
http://www.canonical.com/
http://gcc.gnu.org/
http://www.cmake.org/
http://jenkins-ci.org/
http://www.skype.com/
http://www.android.com/
http://www.softwarestrategy.co.uk/dlgsheets/
http://www.softwarestrategy.co.uk/dlgsheets/
http://www.youtube.com/watch?v=7grEFrTBzus
http://www.youtube.com/watch?v=7grEFrTBzus

	Renovating a Legacy C++ Project
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide-1
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

