Growing OO C++ Software
Guided by Tests

.
| | - Alan Griffiths

alan@octopull.co.uk
#alanatoctopull

Octopull Limited

a *-"-.-E-. iy
" 4" www.octopull.co.uk

Who am 1I?

* Developed software through many fashions in
development processes, technologies and programming
languages

* Delivered working software (and development processes)
* A regular at the ACCU conference

¢ Current ACCU Chair

* Written for magazines and books

* Spoken at a number of conferences

* Made many friends in developer communities

®

A project | can talk about

Usually clients want confidentiality

Canonical doesn't

* This is an open-source (LGPL/GPL) project

®

Documentation and code is online

I've borrowed shamelessly
Links at the end

Dpen source s good For me.
Dpen source s good for me.
Dpen source s good for me.
Dpen source ¢ good for me.
Dpen source s good for me.
Dpen source is good for me.

T widl Fully emlarace &
T will fully embrace &
1wl Fully embrace &
T will fully embrace &
T will fully embrace &

T will Fully ema

b
- 1

Canonical and me

Canonical make Ubuntu Linux

Their “Unity” user interface

= Is a Compiz plugin

= Designed to cover PC, tablet, phone and TV
Contracted me to

= Improve quality of Compiz codebase

= Review Compiz and alternative codebases
Then to work on “something new”

Rewriting Software

LCAUTION

* The organisation
hasn't changed

« Existing software
incorporates many WATCH YOUR STEP

lessons

« Often a moving target® Unless significant

= Changes in requirements
= New technology

Writing good code

HOW TO WRITE GOOD CODE:

http://xked.com/844/

Growing Object-Oriented Software,
Guided by Tests

* Required reading for
team

* Inspiration for
development
approach

By: Steve Freeman & Nat Pryce 3 A gOOd read

http.//www.growing-object-oriented-software.com/

http://www.growing-object-oriented-software.com/

GOOS - Chapter 1
What is the Point of Test-Driven
Development?

Software Development as a Learning Process
Feedback Is the Fundamental Tool

Practices That Support Change

Test-Driven Development in a Nutshell

The Bigger Picture

Testing End-to-End

Levels of Testing

External and Internal Quality

GOOS - Chapter 1
Inner and outer feedback loops in TDD

GOOS - Chapter 1
Feedback Is the Fundamental Tool

“In a project organized as a set of nested feedback
loops, development is incremental and iterative.

“Incremental development builds a system feature by
feature, instead of building all the layers and
components and integrating them at the end. Each
feature is implemented as an end-to-end “slice”
through all the relevant parts of the system. The
system is always integrated and ready for deployment.

“Iterative development progressively refines the
implementation of features in response to feedback
until they are good enough.”

“You Can'tdo TDD in C++”

« Chris Matts “challenge” at XtC

= His clients made this assertion
* News to me - I've been doing it for years

= TDD is possible in C++

- (although all tooling in C++ is hard)
= TDD isn't the answer to all problems

-~ (but is a big improvement on the usual hack & fix)

®

®

®

®

Project mir - the goals

Support the Unity shell...

Across multiple form factors
Phone, tablet, TV, PC, ...

Provide driver independence
Mesa, Nvidia, Android, ...

Exploit GPU acceleration

System and Session compositing
Support for Qt and, possibly, other toolkits
Support for X applications

The Project: Mir
a new Window Manager

« X-Windows+Compiz/kwin/... is successful but:
= Designed with distributed application and server
= Pre-dates sharing GPUs
= Lots of legacy baggage

« Wayland is great but...
= |Is a protocol, not an implementation
= Covers functions Canonical didn't need

« Weston (reference implementation of Wayland)

= Not optimised for Canonical's needs
= In development (with lots of other stakeholders)

Canonical: Graphics Stack

Linux / Android
Swikch Aclive .
System Compositor

Toolkit
LightDM Unity
Greeter

Toolkit Toolkit

Multiple platforms

* Ubuntu 12.10 * Android NDK
= g++4.6 = g++44

« Ubuntu 13.x « Android/libhybris
= g++4.7 = g++4.7

Multiple Locations

* Nottingham, UK
* Athens, Greece

Greanland

« Bochum, Germany - F
« San Diego, CA, USA
e Carlisle, PA, USA N

Ethiopla

Thails
Chad
u Venezuela Nigeria
e Colombia
l K
us a Ia DR Conge "=
Indonesis
, Brazil Tanzania
g Angols
Bolivia
Namibia
Madagascar

Russla

South
Africa

Forming The Team

e A “Sprint” [Canonical's term]

Getting the developers together for, typically, a
week

Didn't quite work that way — half the team were in
Boston USA and half in London UK

Agreed development approach — GOOS, C++,
CMake, GoogleTest/Mock, Jenkins, bzr

High level desigh map

The High Level Design

-|App Filter Grab Filter

Input Dispatch

Surface Stack Surface Controller Shell Filter

Physical Input

Development approach

* Initially worked on the
core loop — with
“acceptance tests”
interfacing inside the
outer boundary

* Automating tests for
code dealing with real
drivers (graphics or
input) limited

Dealing with Multiple Locations

¢ Standups & meetings
« Pairing vs code reviews

* Documentation

Distributed standups
& other meetings

« Early in the project

= Google Hangouts for standup and discussions

= Skype for one-one

= Email and IRC used, but mostly to arrange above
« Later In the project

= Most discussions on IRC and email
= Some Google Hangouts for other discussion

Remote pairing

« Pair programming at
a distance
= TeamViewer
= Different timezones
= Different editors

= Bandwidth

®

Code reviews

Code reviews of « “Merge Proposals”
merge proposals - managed by
Less “bandwidth” Launchpad website
More “latency” ~ Shows diff

- Shows comments
and review status

= Monitored by Jenkins

Some frustration

But easier to

schedule across
timezones -~ Builds supported

configurations

- Merges “Approved”
changes

Documentation

« Launchpad Google docs
= Source control = Discussion documents
= Merge Proposals = Working notes
= Bugs = Not deliverables/public
= Blueprints * Email

* Source code o Wiki

= Doxygen (code +
markdown)

= Design images

Documentation — in the code

/| TODO comparing strings in an if-else chain isn't efficient.
Il It is probably possible to generate a Trie at compile time.
if ("connect"” == invocation.method_name())

{

invoke(&protobuf::DisplayServer::connect, invocation);

}

else if ("create_surface” == invocation.method_name())

TDD : use interfaces

ClientLib rar}r|

ClientClass

[ImplementationLibrary

|
Vv
Dependencylnterface \ ﬂ ImplementationClass

Design using Interfaces

ClientLibrary

AnotherImplementationLibrary

Implementation3

ClientLibrary

Unit Testing

ClientClass _

Dependencyinterfacel

Dependencyinterface?2

Dependencylinterface3

b

TestMock3

TestStubl

TestMock?2

Design using Interfaces

ClientLibrary

ImplementationLibrary

ClientClass Dependencyl

Dependency?2

Dependency3

L

AnotherImplemenﬁationLibrary

Implementation3

Implementationl

Implementation2

|
|

v
Dependency4

A unit test

TEST_F(ShellSurface, creation_and_destruction)

mf::SurfaceCreationParameters const params;

InSequence sequence;
EXPECT_CALL((surface_builder, create _surface(params)).Times(1);
EXPECT_CALL(surface builder, destroy surface(_)).Times(1);

msh::Surface test(
mt::fake_shared(surface_builder),
params,
null_input_channel);

A mock object

class MockSurfaceBuilder : public msh::SurfaceBuilder

{
public:

MockSurfaceBuilder()
{

ON_CALL(*this, create_surface(_)).
WillByDefault(invoke(&self, &StubSurfaceBuilder::create_surface));

ON_CALL(*this, destroy_surface(_))-
WillByDefault(Invoke(&self, &StubSurfaceBuilder::destroy_surface));
}
MOCK_METHOD1(create_surface, std::weak_ptr<ms::Surface> (const mf::SurfaceCreationParameters&));
MOCK_METHOD1(destroy_surface, void (std::weak_ptr<ms::Surface> const&));

private:
StubSurfaceBuilder self;

&

A stub object

class StubSurfaceBuilder : public msh::SurfaceBuilder

{
public:

StubSurfaceBuilder() :
buffer_bundle(new mtd::NullBufferBundle()), dummy_surface()

{
}

std::weak_ptr<ms::Surface> create_surface(mf::SurfaceCreationParameters const&)

{

dummy_surface = std::make_shared<ms::Surface>(mf::a_surface().name, buffer_bundie);
return dummy_surface;

}

void destroy_surface(std::weak_ptr<ms::Surface> const&)

{

dummy_surface.reset();

}

private:
std::shared_ptr<ms::BufferBundle> const buffer_bundle;
std::shared_ptr<ms::Surface> dummy_surface;

&

A modified test

TEST_F(ShellSurface, create_throws_means_no_destroy)

{

using namespace testing;
mf::SurfaceCreationParameters const params;

InSequence sequence;

EXPECT_CALL(surface_builder, create_surface(params)).Times(1)
WillOnce(Throw(std::runtime_error(__ PRETTY_FUNCTION_)));

EXPECT_CALL(surface_builder, destroy_surface(_)).Times(Exactly(0));

EXPECT_THROW({
msh::Surface test(
mt::fake_shared(surface_builder),
params,
null_input_channel);
}, std::runtime_error);

Configuring dependencies

 Dependencies are supplied to constructors

= Objects are known by multiple interfaces; but,
= The initial system state has “one of each”
* A DefaultServerConfiguration class
= Caches the created objects
= Knows what to supply for each interface
« A TestingServerConfiguration class overrides

= For integration & acceptance tests

ServerConfiguration

class ServerConfiguration

{
public:

virtual std:
virtual std:
virtual std:
virtual std:
virtual std:

protected:

ServerConfiguration() = default;
virtual ~ServerConfiguration() = default;

:shared_ptr<frontend::Communicator> the_communicator() = 0;
:shared_ptr<shell::SessionStore>
:shared_ptr<graphics::Display>

:shared_ptr<compositor::Drawer>
:shared_ptr<input::InputManager>

the_session_store() = 0;
the _display() = 0;
the_drawer() = 0;
the_input_manager() = 0;

ServerConfiguration(ServerConfiguration const&) = delete;
ServerConfiguration& operator=(ServerConfiguration const&) = delete;

i

main()

int main(int argc, char const* argv[])
try
{

mir::DefaultServerConfiguration config(argc, argv);

run_mir(config);

}

catch (mir::AbnormalExit const& error)

{

}

catch (std::exception const& error)

{

run_mir()

void run_mir(mir::ServerConfiguration& config)

{
signal(SIGINT, signal_terminate);

signhal(SIGTERM, signal_terminate);
signal(SIGPIPE, SIG_IGN);
mir::DisplayServer server(config);

signal_display_server.store(&server);

server.run();

Configuration magic

CachedPtr<graphics::DisplayReport> display report;

std::shared_ptr<mg::DisplayReport>
mir::DefaultServerConfiguration::the display_report()
{
return display_report(
[this] -> std::shared_ptr<graphics::DisplayReport>

{
if (the_options()->get(log_display, false))
{
return std::make_shared<ml::DisplayReport>(the_logger());
}
else
{
return std::make_shared<mg::NullDisplayReport>();
}
};

Project Testing Framework

* Test process

= Start server process

= Start client process(es)

= Wait for client(s) to complete

= Signal server to exit

= Wait for the server to exit

= Validate expectations & assertions
* Facilitates

= Injecting test doubles into server
= Injecting test code into server
= Injecting test code into client(s)

Configuring Server for Tests

class TestingServerConfiguration : public DefaultServerConfiguration

{
public:

I/l Code to run in server process
virtual void exec(DisplayServer* display_server);

I/l Code to run in server process after server exits
virtual void on_exit(DisplayServer* display_server);

virtual std::shared_ptr<input::InputManager> the_input_manager();

Starting a server with a mock

TEST_F(ApplicationMediatorReport, application_connect_called)
{

struct Server : TestingServerConfiguration

{
std::shared_ptr<mf::ApplicationMediatorReport>

the application_mediator_report()

{

auto result = std::make_shared<MockApplicationMediatorReport>();

EXPECT_CALL((*result, application_connect_called(testing::)).
Times(1);

return result;

} server_processing;

launch_server_process(server_processing);

Starting a test client process

struct Client: TestingClientConfiguration

{

void exec()

{

mt::TestProtobufClient client(mtf::test_socket_file(), rpc_timeout_ms);

client.connect_parameters.set_application_name(__PRETTY_FUNCTION_);
EXPECT_CALL(client, connect_done()).Times(testing::AtLeast(0));

client.display_server.connect(
0,
&client.connect_parameters,
&client.connection,
google::protobuf::NewCallback(&client, &mt::TestProtobufClient::connect_done));

client.wait_for_connect_done();

}

} client_process;

launch_client_process(client_process);

}

Retrospective

Retrospective

; e oy virwes oy s s
puowAny 3 Seuo Aua:d um o :: O s i exEw 20loid o) ¥ Oy 9i0oed Biow Duppy M) EX00Ig e L

s o oy $380a cormdens A ax) 93 S
wounsowro)
8IS 410Q INOGE ¥e) 'pood

p-) UoISSNASIP ‘BuiyLiens
BU} U0}l |JLM JO Bul[Bul R SIUBA® B|qeloWwaW
auy) uo s8ss89ans JybIY6IH pue jueoyiubis YIew usy) Jepisuod
0} ysm noA SOJep |Se| puUe |sil ay) Jiey L198ys
oM SIy} anoqe @2eds ay) ul (josloid siy} uo Bunjiom sjum (yay)
Jo sessa29ns Jsejealb ayy ‘ases|e. ‘uonels)l ‘6'e) Buuspisuoo BA128II(Bl S,UUsY MOj|0)
ums;;;\;\r;_._’% 8Q 0} JapIsu0d NoA op Jeym e noA pouad ayj 10} suljawi) e ajesl) 0} 8s.be suokians ssoq
peay sopea, uogsanb $988909N§ -g aujjawy e 2jeal) -17

wm%

e
1 suoi1seB6NSs Pue SjUBLILICD
$8J0U)| NOA 1BABMOY BB

Agree how long you will
sheet and write it in this

Make sure everyone
has a pen to write on
spend working on this

this sheet

Buoy v axew
uem NOA yaiym pip
. Take one question

you like. The

person closest to the question should read out

designed to
the question and take notes of the discussion.

Bungi aw e

5
[
3
Q
7
=
z
-]
®
%
g
g

sk &

g
z
3
B
-]
2
]
€
&
e
-
4
o
£
E

SR e AP

P A s 0N sl o own purponas. Cogying 1

o,

16) Software Swatagy L, 2010-201) - Permisson granted for indviais ana
| PATIoS. MOHICEBON, reSaTiOUoN and Sale o I wet 1 1ol permitnd

-

around the sheet so each question can be read
Each person should get a chance to read and

Team members should seat themselves equ
note at least one question.

This is a dialogue sheet,
promote good conversation.

9. Action plan ‘) ‘ 10- Sign-up

From the list in #8, choose W, v 1 \ Everyone who took part
3 things you will do, or not \ N g in this exercise, and

00, 10 make the next plece 2 agrees with the actions
of work better? should sign here

=
o TN
Y .
T . 4 by | ew s | s | g |
e G
>

Retrospective

* Timeline
* First (split) “sprint”
= First GBM rendering
= QT backend
= Copenhagen “sprint”

- Android rendering
= X-server rendering

= Running as system compositor
= 14st Cucumber test
= London “sprint”

Retrospective

* Difficulties

= feedback lag in code reviews
= Understanding what mir is

= Having an “in process” shell

Retrospective

* Keep
= Tests
= Code reviews

= Power to veto

= Maturity of discussion &
receptiveness to criticism

= Hangouts

= ‘“stream of consciousness” on
IRC

= Conservative
= High quality design

®

Do different

—_

—

Retrospective

Co-locate first sprint
Reduce turnover

Better support for employee
development

Better support to prevent
“burnout”

Secrecy
Language experimentation
Start earlier

Retrospective

« Action plan

= Co-locate sprints

= Be open and engage with
stakeholders

= Document

- Architecture decisions
- Requirements
-~ Design

Public release

Ubuntu Building Own Display Server, Unity To Switch to Qt/QML | OMG! Ubuntu! - Chromium B w214 o 1))) Sat 16 Mar 22:36
WebMail x '\ [Edit Profile | Linkedin ~ x ' @ ‘New Unity Stack’ App: x ' @@ OMG! Ubuntu! | Everyr x Canonical Targets Mobil %/ @ Ubuntu Building Owr x

|] www.omgubuntu.co.uk " @

CATEGORIES v UBUNTU TOUCH SUBMIT ATIP v < v _

L)
9
]
=
u
=
)
L)

JOEY-ELIJARSHRESDO

>

Eilike (426 |WTweet (255 § +1 | 243 | 5 258 paints

Xl

Canonical has today publicly confirmed that they are working on a new cross-platform displayer server for
Ubuntu.

Called "Mir', the X Window Server replacement is tasked with ‘enabling development of the next generation Unity".
Which, in yet another about-turn, is to be rebuilt in Qt/QML.

The news isn't much of as surprise.
session that hinted at the possibility of an alternative display manager.

"...The simple reality is that X doesn't meet those needs, Wayland doesn't
meet those needs.’

From looking at the commit log for Mir this opinion has been held since e last year, which is when work on Mir

»

@ @ B B T

appears to have begun

Design update

[reger] 1

Input Dispatch

Virtual Input

Physical Input

Design update

Feedback

Can | just say (from poking around the codebase) that it's fantastic to
see Canonical producing lovely C++ code like this!

Particularly | like:

* Use of modern C++ features like scoped locks, smart pointers and
auto types

* Good use of namespaces and matching directory paths

* Using protobuf for wire formats

* Good quantity of tests and use of google mock

* Nice clean CMake scripts

* Minimal debian packaging rules

| have no constructive input to add! | just wanted to highlight these
things.

Cheers
Pete

®

Links and References

mir
https://launchpad.net/mir

http://unity.ubuntu.com/mir/

https://wiki.ubuntu.com/MirSpec
GOOS

http://lIwww.growing-object-oriented-s
oftware.com/

TeamViewer

http://www.teamviewer.com
Canonical

http://www.canonical.com/
g++

http://gcc.gnu.org/

®

®

®

®

®

®

cmake
http://lIwww.cmake.org/
Jenkins
http://jenkins-ci.org/
Skype
http://lIwww.skype.com/
Android
http://www.android.com/
Dialogue sheets

http://www.softwarestrategy.co.uk/
digsheets/

Movie

http://www.youtube.com/watch?v=
7TgrEFrTBzus

https://launchpad.net/mir
http://unity.ubuntu.com/mir/
https://wiki.ubuntu.com/MirSpec
http://www.growing-object-oriented-software.com/
http://www.growing-object-oriented-software.com/
http://www.teamviewer.com/
http://www.canonical.com/
http://gcc.gnu.org/
http://www.cmake.org/
http://jenkins-ci.org/
http://www.skype.com/
http://www.android.com/
http://www.softwarestrategy.co.uk/dlgsheets/
http://www.softwarestrategy.co.uk/dlgsheets/
http://www.youtube.com/watch?v=7grEFrTBzus
http://www.youtube.com/watch?v=7grEFrTBzus

	Renovating a Legacy C++ Project
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide-1
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

