

L
ig

h
tn

in
g

 T
a

lk
s

Jonathan Wakely – Smarter Than The Average Pointer

Seb Rose – Transformation Priority Premise

Aaron Ridout – Advocating References

Mike Long - Metricide

Anna-Jayne Metcalfe – Don't Let The Big Ball of Mud Sneak

Up on You

Roger Orr – Code Critiques

Pete Goodliffe – The C++ Cathedral & The Bizarre

Peter Sommerlad – C++'s “hello, world” Considered Harmful

Uncle Bob’s 3 rules
Over the years I have come to describe Test Driven
Development in terms of three simple rules.
They are:
1. You are not allowed to write any production

code unless it is to make a failing unit test pass.
2. You are not allowed to write any more of a unit

test than is sufficient to fail; and compilation
failures are failures.

3. You are not allowed to write any more
production code than is sufficient to pass the
one failing unit test.

3. You are not allowed
to write any more
production code than
is sufficient to pass
the one failing unit
test.

@Test
public void gutterGame()
{
 for (int i=0; i<20; i++)
 game.roll(0);

 assertEquals(0, game.score());
}

public int score()
{
 return 0;
}

Transformations

• Transformations are simple operations that
change the behavior of code.

• Transformations can be used as the sole
means for passing the currently failing test in
the red/green/refactor cycle.

• Transformations have a priority, or a preferred
ordering, which if maintained, by the ordering
of the tests, will prevent impasses, or long
outages in the red/green/refactor cycle.

Impasse

“We pose a test only to find that
we don’t know how to solve it
without changing a large amount
of code.”

1. ({}–>nil) no code at all->code that employs nil
2. (nil->constant)
3. (constant->constant+) a simple constant to a more complex

constant
4. (constant->scalar) replacing a constant with a variable or an

argument
5. (statement->statements) adding more unconditional

statements.
6. (unconditional->if) splitting the execution path
7. (scalar->array)
8. (array->container)
9. (statement->recursion)
10. (if->while)
11. (expression->function) replacing an expression with a
12. (variable->assignment) replacing the value of a variable.

Priority Premise

“… if you choose the tests and
implementations that employ
transformations that are higher on
the list, you will avoid the
impasse.”

“It is better (or simpler) to change a constant into a
variable than it is to add an if statement. So when
making a test pass, you try to do so with
transformations that are simpler (higher on the list)
than those that are more complex.”

Uncle Bob Says…

“What’s more, when you pose a test, you try to pose
one that allows simpler transformations rather than
complex transformations; since the more complexity
required by the test the larger the risk you take to get
that test to pass.”

A guideline in the process of stepwise
refinement should be the principle to
decompose decisions as much as possible, to
untangle aspects which are only seemingly
interdependent, and to defer those decisions
which concern details of representation as long
as possible.

Wirth, N.: Program development by stepwise refinement.
Comm. ACM 14(4) (1968) 221–227.

http://cleancoder.posterous.com/the-transformation-priority-premise

