
SOLID

Deconstruction

Kevlin Henney
kevlin@curbralan.com

@KevlinHenney

S

O

L

I

D

Single Responsibility

Open-Closed

Liskov Substitution

Interface Segregation

Dependency Inversion

principle

 a fundamental truth or proposition that serves as the
foundation for a system of belief or behaviour or for a
chain of reasoning.

 morally correct behaviour and attitudes.

 a general scientific theorem or law that has numerous
special applications across a wide field.

 a natural law forming the basis for the construction or
working of a machine.

Oxford Dictionary of English

pattern

 a regular form or sequence discernible in the way in
which something happens or is done.

 an example for others to follow.

 a particular recurring design problem that arises in
specific design contexts and presents a well-proven
solution for the problem. The solution is specified by
describing the roles of its constituent participants, their
responsibilities and relationships, and the ways in
which they collaborate.

Concise Oxford English Dictionary

Pattern-Oriented Software Architecture, Volume 5: On Patterns and Pattern Languages

Expert

Proficient

Competent

Advanced Beginner

Novice

Single Responsibility

Open-Closed

Liskov Substitution

Interface Segregation

Dependency Inversion

In object-oriented programming, the single responsibility
principle states that every object should have a single
responsibility, and that responsibility should be entirely
encapsulated by the class. All its services should be narrowly
aligned with that responsibility.

http://en.wikipedia.org/wiki/Single_responsibility_principle

The term was introduced by Robert C. Martin in an article by
the same name as part of his Principles of Object Oriented
Design, made popular by his book Agile Software
Development, Principles, Patterns, and Practices. Martin
described it as being based on the principle of cohesion, as
described by Tom DeMarco in his book Structured Analysis and
Systems Specification.

http://en.wikipedia.org/wiki/Single_responsibility_principle

We refer to a sound line of reasoning,

for example, as coherent. The thoughts

fit, they go together, they relate to each

other. This is exactly the characteristic

of a class that makes it coherent: the

pieces all seem to be related, they seem

to belong together, and it would feel

somewhat unnatural to pull them apart.

Such a class exhibits cohesion.

This is the Unix philosophy: Write

programs that do one thing and do

it well. Write programs to work

together. Write programs to handle

text streams, because that is a

universal interface.

Doug McIlroy

The hard part isn’t writing little

programs that do one thing well.

The hard part is combining little

programs to solve bigger

problems. In McIlroy’s summary,

the hard part is his second

sentence: Write programs to work

together.

John D Cook
http://www.johndcook.com/blog/2010/06/30/where-the-unix-philosophy-breaks-down/

Software applications do things

they’re not good at for the same

reason companies do things

they’re not good at: to avoid

transaction costs.

John D Cook
http://www.johndcook.com/blog/2010/06/30/where-the-unix-philosophy-breaks-down/

The effect of portion size on how much people eat is something of
a mystery – why don’t they simply leave what they don’t want, or
alternatively, where possible, why not help themselves to more?

http://bps-research-digest.blogspot.com/2006/06/
power-of-one-why-larger-portions-cause.html

The effect of portion size on how much people eat is something of
a mystery – why don’t they simply leave what they don’t want, or
alternatively, where possible, why not help themselves to more?

http://bps-research-digest.blogspot.com/2006/06/
power-of-one-why-larger-portions-cause.html

Andrew Geier and colleagues at the University of Pennsylvania
think it has to do with ‘Unit bias’ – “…the sense that a single
entity (within a reasonable range of sizes) is the appropriate
amount to engage, consume or consider”.

The effect of portion size on how much people eat is something of
a mystery – why don’t they simply leave what they don’t want, or
alternatively, where possible, why not help themselves to more?

http://bps-research-digest.blogspot.com/2006/06/
power-of-one-why-larger-portions-cause.html

Andrew Geier and colleagues at the University of Pennsylvania
think it has to do with ‘Unit bias’ – “…the sense that a single
entity (within a reasonable range of sizes) is the appropriate
amount to engage, consume or consider”.

The researchers concluded that this ‘unit bias’ applies in other
walks of life too – they cited the example of films: “double
features are rare, but very long movies are not”, and amusement-
park rides: “one ride on a particular attraction is usually enough,
whether it takes one or five minutes”.

Every class should

embody only about 3–5

distinct responsibilities.

Grady Booch, Object Solutions

Leaf

operation

children
Component

operation

Composite

operation

Actual implementation

of primitive operation

Forward operation

request to each child

Signature and

contract placeholder

*

To hide the hierarchical nature of the Composite

arrangement from clients, its component interface

must accumulate all methods offered by its leaf

and composite objects. The more diverse these

functions are, the more the component interface

becomes bloated with functions implemented only

by few leaf and composite objects, making the

interface useless for clients.

Frank Buschmann, Kevlin Henney & Douglas C Schmidt

Pattern-Oriented Software Architecture, Volume 4:

A Pattern Language for Distributed Computing

An Interpreter design defines a direct and

convenient way to represent and interpret

grammars for little languages, such as structured

messages and scripts, and thus avoids the

complexities of more sophisticated representation

models.

Frank Buschmann, Kevlin Henney & Douglas C Schmidt

Pattern-Oriented Software Architecture, Volume 4:

A Pattern Language for Distributed Computing

Terminal

Expression

Evaluate

Expression

Evaluate

NonTerminal

Expression

Evaluate

*

Composite: Composite Composite: Leaf

Composite: Component

Command: ConcreteCommand Command: ConcreteCommand

Command: Command

Client

Context

Context Object: ContextObject

Composite: Client

Command: Client

Context Object: Owner

Context Object: Client

Combined Method

Clients often must invoke multiple methods on a component

in the same order to perform a specific task. From a client’s

perspective, however, it is tedious and error-prone to call the

method sequence explicitly each time it wants to execute the

task on the component.

Therefore:

Combine methods that must be, or commonly are, executed

together on a component into a single method.

Frank Buschmann, Kevlin Henney & Douglas C Schmidt

Pattern-Oriented Software Architecture, Volume 4:

A Pattern Language for Distributed Computing

One of the most foundational
principles of good design is:

Gather together those things
that change for the same
reason, and separate those
things that change for
different reasons.

This principle is often known
as the single responsibility
principle, or SRP. In short, it
says that a subsystem, module,
class, or even a function,
should not have more than one
reason to change.

Single Responsibility

Open-Closed

Liskov Substitution

Interface Segregation

Dependency Inversion

Interface inheritance (subtyping) is used
whenever one can imagine that client code
should depend on less functionality than the full
interface. Services are often partitioned into
several unrelated interfaces when it is possible to
partition the clients into different roles. For
example, an administrative interface is often
unrelated and distinct in the type system from
the interface used by “normal” clients.

"General Design Principles"
CORBAservices

The dependency
should be on the
interface, the
whole interface,
and nothing but
the interface.

We refer to a sound line of reasoning,

for example, as coherent. The thoughts

fit, they go together, they relate to each

other. This is exactly the characteristic

of a class that makes it coherent: the

pieces all seem to be related, they seem

to belong together, and it would feel

somewhat unnatural to pull them apart.

Such a class exhibits cohesion.

We refer to a sound line of reasoning,

for example, as coherent. The thoughts

fit, they go together, they relate to each

other. This is exactly the characteristic of

an interface that makes it coherent: the

pieces all seem to be related, they seem

to belong together, and it would feel

somewhat unnatural to pull them apart.

Such an interface exhibits cohesion.

Single Responsibility

Open-Closed

Liskov Substitution

Interface Segregation

Dependency Inversion

In a purist view of object-oriented methodology,

dynamic dispatch is the only mechanism for

taking advantage of attributes that have been

forgotten by subsumption. This position is often
taken on abstraction grounds: no knowledge

should be obtainable about objects except by

invoking their methods. In the purist approach,

subsumption provides a simple and effective
mechanism for hiding private attributes.

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

generalisation

specialisation

commonality

variation

43

public class RecentlyUsedList
{
 public int Count
 {
 get
 {
 return list.Count;
 }
 }
 public void Add(string newItem)
 {
 if(newItem == null)
 throw new ArgumentNullException();
 list.Remove(newItem);
 list.Insert(0, newItem);
 }
 public void Clear()
 {
 list.Clear();
 }
 ...
 private List<string> list = new List<string>();
}

public class RecentlyUsedList : List<string>
{
 public override void Add(string newItem)
 {
 if(newItem == null)
 throw new ArgumentNullException();
 Remove(newItem);
 Insert(0, newItem);
 }
 ...
}

List<string> list = new RecentlyUsedList();
list.Add("Hello, World!");
list.Clear();
list.Add("Hello, World!");
list.Add("Goodbye, World!");
list.Add("Hello, World!");
Debug.Assert(list.Count == 2);
list.Insert(1, "Hello, World!");
list.Add(null); // throws

public class RecentlyUsedList
{
 public void Add(string newItem) ...
 public string this[int index] ...
 ...
}

precondition:
index >= 0 && index < Count
postcondition:
returns != null

given:
expectedSize = Count + (Contains(newItem) ? 0 : 1)
precondition:
newItem != null
postcondition:
this[0]== newItem && Count == expectedSize

What would a class derived from

RecentlyUsedList be permitted to do

and be disallowed from doing?

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

OO ≡ ADT?

OO ≡ ADT /

typedef struct RecentlyUsedList RecentlyUsedList;

RecentlyUsedList * create();

void destroy(RecentlyUsedList *);

bool isEmpty(const RecentlyUsedList *);

int size(const RecentlyUsedList *);

void add(RecentlyUsedList *, int toAdd);

int get(const RecentlyUsedList *, int index);

bool equals(const RecentlyUsedList *, const RecentlyUsedList *);

struct RecentlyUsedList

{

 int * items;

 int length;

};

RecentlyUsedList * create()

{

 RecentlyUsedList * result = (RecentlyUsedList *) malloc(sizeof(RecentlyUsedList));

 result->items = 0;

 result->length = 0;

 return result;

}

void destroy(RecentlyUsedList * self)

{

 free(self->items);

 free(self);

}

bool isEmpty(const RecentlyUsedList * self)

{

 return self->length == 0;

}

int size(const RecentlyUsedList * self)

{

 return self->length;

}

static int indexOf(const RecentlyUsedList * self, int toFind)

{

 int result = -1;

 for(int index = 0; result == -1 && index != self->length; ++index)

 if(self->items[index] == toFind)

 result = index;

 return result;

}

static void removeAt(RecentlyUsedList * self, int index)

{

 memmove(&self->items[index], &self->items[index + 1], (self->length - index - 1) * sizeof(int));

 --self->length;

}

void add(RecentlyUsedList * self, int toAdd)

{

 int found = indexOf(self, toAdd);

 if(found != -1)

 removeAt(self, found);

 self->items = (int *) realloc(self->items, (self->length + 1) * sizeof(int));

 self->items[self->length] = toAdd;

 ++self->length;

}

int get(const RecentlyUsedList * self, int index)

{

 return self->items[self->length - index - 1];

}

bool equals(const RecentlyUsedList * lhs, const RecentlyUsedList * rhs)

{

 return lhs->length == rhs->length && memcmp(lhs->items, rhs->items, lhs->length * sizeof(int)) == 0;

}

struct RecentlyUsedList

{

 std::vector<int> items;

};

extern "C"

{

 RecentlyUsedList * create()

 {

 return new RecentlyUsedList;

 }

 void destroy(RecentlyUsedList * self)

 {

 delete self;

 }

 bool isEmpty(const RecentlyUsedList * self)

 {

 return self->items.empty();

 }

 int size(const RecentlyUsedList * self)

 {

 return self->items.size();

 }

 void add(RecentlyUsedList * self, int toAdd)

 {

 std::vector<int>::iterator found =

 std::find(self->items.begin(), self->items.end(), toAdd);

 if(found != self->items.end())

 self->items.erase(found);

 self->items.push_back(toAdd);

 }

 int get(const RecentlyUsedList * self, int index)

 {

 return self->items[self->items.size() - index - 1];

 }

 bool equals(const RecentlyUsedList * lhs, const RecentlyUsedList * rhs)

 {

 return lhs->items == rhs->items;

 }

}

If we want to emphasize the programmatic
aspect of a type that has an associated
operator==, we say “objects compare
equal”, but never “objects are equal”. [...]

We deliberately avoid equivocal phrases
such as “objects are equal”, “objects are the
same”, or “objects are identical”.

John Lakos
Normative Language to Describe Value Copy Semantics
http://www.open-std.org/jtc1/sc22/WG21/docs/papers/2007/n2479.pdf

Single Responsibility

Open-Closed

Liskov Substitution

Interface Segregation

Dependency Inversion

The principle stated that a good module structure

should be both open and closed:

 Closed, because clients need the module's

services to proceed with their own development,

and once they have settled on a version of the

module should not be affected by the

introduction of new services they do not need.

 Open, because there is no guarantee that we will

include right from the start every service

potentially useful to some client.

Bertrand Meyer

Object-Oriented Software Construction

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

Single Responsibility

Open-Closed

Liskov Substitution

Interface Segregation

Dependency Inversion

In object-oriented programming, the dependency inversion
principle refers to a specific form of decoupling where
conventional dependency relationships established from high-
level, policy-setting modules to low-level, dependency
modules are inverted (i.e. reversed) for the purpose of
rendering high-level modules independent of the low-level
module implementation details.

http://en.wikipedia.org/wiki/Dependency_inversion_principle

The principle states:

A. High-level modules should not depend on low-level
modules. Both should depend on abstractions.

B. Abstractions should not depend upon details. Details should
depend upon abstractions.

http://en.wikipedia.org/wiki/Dependency_inversion_principle

inversion, noun

 the action of inverting or the state of being

inverted

 reversal of the normal order of words,

normally for rhetorical effect

 an inverted interval, chord, or phrase

 a reversal of the normal decrease of air

temperature with altitude, or of water

temperature with depth

Concise Oxford English Dictionary

Parameterize

from Above

Hardwire

from Below

Rate of change

Scenario buffering by dot-voting possible changes and then readjusting dependencies

S

O

L

I

D

F

L

U

I

D

Functional

L

U

I

D

I still have a deep fondness for the
Lisp model. It is simple, elegant, and
something with which all developers
should have an infatuation at least
once in their programming life.

Kevlin Henney
"A Fair Share (Part I)", CUJ C++ Experts Forum, October 2002

Pipes and Filters

Some applications process streams of data: input data

streams are transformed stepwise into output data

streams. However, using common and familiar

request/response semantics for structuring such types

of application is typically impractical. Instead we must

specify an appropriate data flow model for them.

Therefore:

Divide the application's task into several self-contained

data processing steps and connect these steps to a

data processing pipeline via intermediate data buffers.

pipe for

state B

pipe for

state C

completes

in state D

begins in

state A
process

from A to B

process

from B to C

process

from C to D

key, data

key, data

Functional

Loose

U

I

D

OOP to me means only messaging,
local retention and protection
and hiding of state-process, and
extreme late-binding of all
things. It can be done in
Smalltalk and in LISP. There are
possibly other systems in which
this is possible, but I'm not
aware of them.

Alan Kay

One of the most pure object-oriented

programming models yet defined is the

Component Object Model (COM). It

enforces all of these principles rigorously.

Programming in COM is very flexible and

powerful as a result. There is no built-in notion

of equality. There is no way to determine if

an object is an instance of a given class.

William Cook

"On Understanding Data Abstraction, Revisited"

Event-Based, Implicit Invocation

The idea behind implicit invocation is that instead of

invoking a procedure directly, a component can announce

(or broadcast) one or more events. Other components in the

system can register [or declare] an interest in an event by

associating a procedure with it. When the event is

announced, the system itself invokes all of the procedures

that have been registered for the event. Thus an

announcement "implicitly" causes the invocation of

procedures in other modules.

Architecturally speaking, the components in an implicit

invocation style are modules whose interfaces provide both

a collection of procedures (as with abstract data types) and

a set of events.

Mary Shaw & David Garlan

Software Architecture: Perspectives on an Emerging Discipline

Kernel

Observers and

Interceptors

Exception

Handling

Feature

Realisation

Execution

Policies

Application

Functional

Loose

Unit Testable

I

D

Test early.

Test often.

Test automatically.

Andrew Hunt and David Thomas

The Pragmatic Programmer

public static class Year
{
 public static bool IsLeap(int year) ...
}

namespace Leap_year_spec
{
 [TestFixture]
 public class A_year_is_a_leap_year
 {
 [Test] public void If_it_is_divisible_by_4_but_not_by_100()
 [Test] public void If_it_is_divisible_by_400()
 }

 [TestFixture]
 public class A_year_is_not_a_leap_year
 {
 [Test] public void If_it_is_not_divisible_by_4()
 [Test] public void If_it_is_divisble_by_100_but_not_by_400()
 }

 [TestFixture]
 public class A_year_is_not_considered_valid
 {
 [Test] public void If_it_is_0()
 [Test] public void If_it_is_negative()
 }
}

namespace Leap_year_spec
{
 [TestFixture]
 public class A_year_is_a_leap_year
 {
 [Test] public void If_it_is_divisible_by_4_but_not_by_100()
 [Test] public void If_it_is_divisible_by_400()
 }

 [TestFixture]
 public class A_year_is_not_a_leap_year
 {
 [Test] public void If_it_is_not_divisible_by_4()
 [Test] public void If_it_is_divisble_by_100_but_not_by_400()
 }

 [TestFixture]
 public class A_year_is_not_considered_valid
 {
 [Test] public void If_it_is_0()
 [Test] public void If_it_is_negative()
 }
}

A test is not a unit test if:

• It talks to the database

• It communicates across the network

• It touches the file system

• It can't run at the same time as any of your other unit tests

• You have to do special things to your environment (such as

editing config files) to run it.

Tests that do these things aren't bad. Often they are worth

writing, and they can be written in a unit test harness.

However, it is important to be able to separate them from true

unit tests so that we can keep a set of tests that we can run

fast whenever we make our changes.

Michael Feathers, "A Set of Unit Testing Rules"

http://www.artima.com/weblogs/viewpost.jsp?thread=126923

Necessarily not unit

testable, such as

interactions with

external dependencies

Unit testable in practice

Unit testable in theory,

but not unit testable in

practice

Functional

Loose

Unit Testable

Introspective

D

namespace Leap_year_spec
{
 [TestFixture]
 public class A_year_is_a_leap_year
 {
 [Test] public void If_it_is_divisible_by_4_but_not_by_100()
 [Test] public void If_it_is_divisible_by_400()
 }

 [TestFixture]
 public class A_year_is_not_a_leap_year
 {
 [Test] public void If_it_is_not_divisible_by_4()
 [Test] public void If_it_is_divisble_by_100_but_not_by_400()
 }

 [TestFixture]
 public class A_year_is_not_considered_valid
 {
 [Test] public void If_it_is_0()
 [Test] public void If_it_is_negative()
 }
}

namespace Leap_year_spec
{
 [TestFixture]
 public class A_year_is_a_leap_year
 {
 [Test] public void If_it_is_divisible_by_4_but_not_by_100()
 [Test] public void If_it_is_divisible_by_400()
 }

 [TestFixture]
 public class A_year_is_not_a_leap_year
 {
 [Test] public void If_it_is_not_divisible_by_4()
 [Test] public void If_it_is_divisble_by_100_but_not_by_400()
 }

 [TestFixture]
 public class A_year_is_not_considered_valid
 {
 [Test] public void If_it_is_0()
 [Test] public void If_it_is_negative()
 }
}

Functional

Loose

Unit Testable

Introspective

'Dempotent

Idempotence is the property of certain operations in
mathematics and computer science, that they can be applied
multiple times without changing the result beyond the initial
application. The concept of idempotence arises in a number of
places in abstract algebra (in particular, in the theory of
projectors and closure operators) and functional programming
(in which it is connected to the property of referential
transparency).

http://en.wikipedia.org/wiki/Idempotent

Asking a question
should not change
the answer.

Bertrand Meyer

Asking a question
should not change
the answer, and
nor should asking
it twice!

When it is not
necessary to
change, it is
necessary not to
change.

Lucius Cary

Functional

Loose

Unit Testable

Introspective

'Dempotent

At some level

the style

becomes the

substance.

