MapReduce with Apache Hadoop
Analysing Big Data

April 2010
Gavin Heavyside
gavin.heavyside@journeydynamics.com
About Journey Dynamics

- Founded in 2006 to develop software technology to address the issues of congestion, fuel efficiency, driving safety and eco-driving
- Based in the Surrey Technology Centre, Guildford, UK
- Analyse large amounts (TB) of GPS data from cars, vans & trucks
- TrafficSpeedsEQ® - Accurate traffic speed forecasts by hour of day and day of week for every link in the road network
- MyDrive® - Unique & sophisticated system that learns how drivers behave
 - Drivers can improve fuel economy
 - Insurance companies can understand driver risk
 - Navigation devices can improved route choice & ETA
 - Fleet managers can monitor their fleet to improve safety & eco-driving
Big Data

• Data volumes increasing
• NYSE: 1TB new trade data/day
• Google: Processes 20PB/day (Sep 2007) http://tcrn.ch/agYjEL
• LHC: 15PB data/year
• Facebook: several TB photos uploaded/day
“Medium” Data

- Most of us aren’t at Google or Facebook scale
- But: data at the GB/TB scale is becoming more common
- Outgrow conventional databases
- Disks are cheap, but slow

- 1TB drive - £50
- 2.5 hours to read 1TB at 100MB/s
Two Challenges

• Managing lots of data

• Doing something useful with it
Managing Lots of Data

• Access and analyse any or all of your data
• SAN technologies (FC, iSCSI, NFS)
• Querying (MySQL, PostgreSQL, Oracle)

➤ Cost, network bandwidth, concurrent access, resilience

➤ When you have 1000s of nodes, MTBF < 1 day
Analysing Lots of Data

• Parallel processing
• HPC
• Grid Computing
• MPI
• Sharding

➡ Too big for memory, specialised HW, complex, scalability
➡ Hardware reliability in large clusters
Apache Hadoop

• Reliable, scalable distributed computing platform

• HDFS - high throughput fault-tolerant distributed file system
• MapReduce - fault-tolerant distributed processing

• Runs on commodity hardware
• Cost-effective

• Open source (Apache License)
Hadoop History

• 2003-2004 Google publishes MapReduce & GFS papers
• 2004 Doug Cutting add DFS & MapReduce to Nutch
• 2006 Cutting joins Yahoo!, Hadoop moves out of Nutch
• Jan 2008 - top level Apache project
• April 2010: 95 companies on PoweredBy Hadoop wiki
• Yahoo!, Twitter, Facebook, Microsoft, New York Times, LinkedIn, Last.fm, IBM, Baidu, Adobe

"The name my kid gave a stuffed yellow elephant. Short, relatively easy to spell and pronounce, meaningless, and not used elsewhere: those are my naming criteria. Kids are good at generating such. Googol is a kid's term"
Doug Cutting
Hadoop Ecosystem

- HDFS
- MapReduce
- HBase
- ZooKeeper
- Pig
- Hive
- Chukwa
- Avro
HDFS

• Reliable shared storage
• Modelled after GFS
• Very large files
• Streaming data access
• Commodity Hardware
• Replication
• Tolerate regular hardware failure
HDFS

- Block size 64MB
- Default replication factor = 3
HDFS

- Block size 64MB
- Default replication factor = 3
MapReduce

• Based on 2004 Google paper
• Concepts from Functional Programming
• Used for lots of things within Google (and now everywhere)
• Parallel Map => Shuffle & Sort => Parallel Reduce
• Easy to understand and write MapReduce programs
• Move the computation to the data
• Rack-aware
• Linear Scalability
• Works with HDFS, S3, KFS, file:// and more
MapReduce

• "Single Threaded" MapReduce:

 | cat input/* | map | sort | reduce > output |

• Map program parses the input and emits [key,value] pairs
• Sort by key
• Reduce computes output from values with same key

• Extrapolate to PB of data on thousands of nodes
MapReduce

• Distributed Example
MapReduce can be good for:

• “Embarrassingly Parallel” problems
• Semi-structured or unstructured data
• Index generation
• Log analysis
• Statistical analysis of patterns in data
• Image processing
• Generating map tiles
• Data Mining
• Much, much more
MapReduce is not be good for:

- Real-time or low-latency queries
- Some graph algorithms
- Algorithms that can’t be split into independent chunks
- Some types of joins*
- Not a replacement for RDBMS

* Can be tricky to write unless you use an abstraction e.g. Pig, Hive
Writing MapReduce Programs

• Java
• Pipes (C++, sockets)
• **Streaming**
 • Frameworks, e.g. wukong(ruby), dumbo(python)
• JVM languages e.g. JRuby, Clojure, Scala
• Cascading.org
• Cascalog
• **Pig**
• **Hive**
Streaming Example (ruby)

• mapper.rb

```ruby
candidates = {"Cameroon" => :con, "Broon" => :lab, "Cloggs" => :lib} # etc
while vote = gets
  puts candidates[vote.strip] || "Spoiled"
end
```

• reducer.rb

```ruby
party_votes = Hash.new(0)
while party = gets
  party_votes[party.strip] = party_votes[party.strip] + 1
end

party_votes.each{|[party, count]| puts [party, count].join(":")}
```
Pig

- High level language for writing data analysis programs
- Runs MapReduce jobs
- Joins, grouping, filtering, sorting, statistical functions
- User-defined functions
- Optional schemas
- Sampling
- Pig Latin similar to imperative language, define steps to run
Pig Example

```pig
votes = LOAD 'voting/votes' AS (candidate:chararray);
parties = LOAD 'voting/parties' AS (candidate:chararray, party:chararray);
grouped = GROUP votes BY candidate;
grouped_parties = JOIN grouped BY group, parties BY candidate;
party_counts = FOREACH grouped_parties GENERATE party, COUNT(votes);
DUMP party_counts;
```
Hive

- Data warehousing and querying
- HiveQL - SQL-like language for querying data
- Runs MapReduce jobs
- Joins, grouping, filtering, sorting, statistical functions
- Partitioning of data
- User-defined functions
- Sampling
- Declarative syntax
Hive Example

CREATE TABLE votes (candidate STRING)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY 't' STORED AS TEXTFILE;

LOAD DATA INPATH 'voting/votes' OVERWRITE INTO TABLE votes;

CREATE TABLE parties (candidate STRING, party STRING)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY 't' STORED AS TEXTFILE;

LOAD DATA INPATH 'voting/parties' OVERWRITE INTO TABLE parties;

SELECT p.party, COUNT(v.candidate) from votes v
 JOIN parties p ON v.candidate = p.candidate
GROUP BY p.party;
Getting Started

• http://hadoop.apache.org
• Cloudera Distribution (VM, source, rpm, deb)
• Elastic MapReduce

• Cloudera VM
• Pseudo-distributed cluster
Learn More

• http://hadoop.apache.org
• Books

• Mailing Lists
• Commercial Support & Training, e.g. Cloudera
Related

• Cassandra 0.6 has Hadoop integration - run MapReduce jobs against data in Cassandra
• NoSQL DBs with MapReduce functionality include CouchDB, MongoDB, Riak and more
• RDBMS with MapReduce include Aster, Greenplum, HadoopDB and more
Gavin Heavyside

gavin.heavyside@journeydynamics.com

www.journeydynamics.com