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The usual suspects

A number of rules have been discovered, violation of
which will either seriously impair or totally destroy the
intellectual manageability of the program. [...]
Examples are the exclusion of goto-statements and of
procedures with more than one output parameter.

Edsger Dijkstra, “The Humble Programmer”, CACM
1972
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Incomprehensible flow

goto, break, continue....and throw?

non-local variables and singletons

multiple returns

looooooooooooooooong functions
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Variations on a name

accumulator = x + 2;
accumulator2 = accumulator + y;

Often manifested in over-long functions.

Similar and related to variable re-use.
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The usual suspects
Clever tricks
Dependency jungle

Variable re-use

Would this example be improved with separate start
and end variables? :

DateTime stamp = DateTime.Now;
Console.WriteLine( "Start at {0}", stamp );

// ... Perhaps use stamp elsewhere

stamp = DateTime.Now;
Console.WriteLine( "Finish at {0}", stamp );
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The usual suspects
Clever tricks
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Dumb getters and setters

Making stuff private does not “cause” encapsulation.

Encapsulation is an effect, not a cause

Encapsulation should not be a design goal.
Good designs achieve encapsulation...
it doesn’t happen by accident.
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A forest of comments

Example

# sum the elements of sequence seq
total = 0
for i in seq:

total += i

Better

total = reduce( lambda x, y : x + y, seq )

Best

total = sum( seq )
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The usual suspects
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Dependency jungle

Unused stuff

Is this slide pointless?

if( is_valid )
{

result = x;
}
else
{

result = x;
}
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The usual suspects
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Clever tricks

It takes one of two different forms: one programmer
places a one-line program on the desk of another and
either he proudly tells what it does and adds the
question "Can you code this in less symbols?" [...] or he
just asks "Guess what it does!".

Edsger Dijkstra, “The Humble Programmer”, CACM
1972
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The usual suspects
Clever tricks
Dependency jungle

Operator madness

class employee
{
public:

// What does this mean?
bool operator<( const employee &

other ) { ??? }
};

Common motivations include being able to use such
types in e.g. std::set in C++.
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Operator madness

Counter examples:

string operator+( const string & l, const string & r );

template<class T>
boost::basic_format& operator%( const T & x )
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The usual suspects
Clever tricks
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Operator madness

Mis-uses may be subtle.

Example

datetime & datetime::operator--();

Is this by 1 second? 1 nanosecond? 1 day? Who knows?
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The usual suspects
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Dependency jungle

Overloading overloading

Which one of these gets called?

void get_result( long l );
void get_result( void * p );
// ...
get_result( 0 );

Needing to be an expert on name lookup doesn’t help!
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The usual suspects
Clever tricks
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Shiny and new

Whenever new features appear
it’s tempting to try them
everywhere...

...all nails and a shiny
new hammer
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The usual suspects
Clever tricks
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Hieroglyphic code

string src = get_large_string();
string rep = "\\/";
char with = ’.’;

replace_if( src.begin(), src.end(),
bind(

not_equal_to< string::const_iterator >(),
bind( find< string::const_iterator, char >,

rep.begin(), rep.end(), _1 ),
rep.end() ),

with );

Don’t Do That!

It’s not big and it’s not clever.
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The usual suspects
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Stynamic typing

It’s hard to use a dynamic languages like Python as a
statically-typed language, and it looks odd if you do this
everywhere:

result = string( "foo" )
value = int( 10 )

So, don’t try to make your statically typed language like
a dynamic one everywhere:

var host = "myhome.com";

auto name = "Arthur C. Clarke";
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Old tricks, new dog

LINQ may be an excuse to write inline SQL.

var result = new SqlCommand(
"SELECT id, name FROM products",
connection ).ExecuteReader();

while( result.Read() ) { ... }

versus

var result =
from product in products

select product;
foreach( var prod in result ) { ... }
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Dependency jungle

Short-term convenience
Long-term consequence
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Inheritance trap

Fact

Public inheritance is the strongest form of coupling.

Spurious relationships often result in needless
inheritance.
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The usual suspects
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Inheritance trap

Fact

Deeply nested inheritance makes code obfuscated.

public class Option : Instrument
{

public void Price ( )
{

/ / . . .
double rate = GetRate ( ) ;

/ / . . .
}
/ / . . .

}

What does GetRate call?
Free function? Global or
namespace?

Member function?
Which?:

This class?
Base class?
Derived class?

Is the base class an
interface?
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The usual suspects
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Multiple versions

Directory of G: \work\ l i b
05/04/2010 06:58 <DIR> .
05/04/2010 06:58 <DIR> . .
05/04/2010 06:58 <DIR> boost_1_38_0
05/04/2010 06:58 <DIR> boost_1_39_0
05/04/2010 06:58 <DIR> boost_1_40_0
. . .

Size DOES matter

Go on a version diet!
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One size fits all

The open secrets of good design practice include the
importance of knowing what to keep whole, what to
combine, what to separate, and what to throw away.

Kevlin Henney, “From Mechanism to Method: Distinctly
Qualified”, Dr Dobbs, May 2001
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One size fits all
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LongOrVagueFunctionNames

void
ShowWaitCursorAndUpdateDatabaseWithProgressDisplayCl
eanupTempDir();

void DoIt();
void TestMyClass();

These are (probably) functions with too many hats. The
first one is a bit more honest about it!

Test functions with long descriptive names are different

void TestThatResizedSquareHasEqualWidthAndHeight();
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One size fits all
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“Complete” interfaces

If you haven’t
got one of
these, then
you’ve missed
something...
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Speculative virtuals

...and protected data

public class summat
{

public virtual int width()
{

get{ return w; }
set{ w = value; }

}

protected int w;
}

Classes should be base classes by design not accident.
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Rigidity

It is hard to change because every change affects too
many other parts of the system.

Robert C. Martin, “The Dependency Inversion
Principle”, C++ Report, May 1996
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One size fits all
Rigidity
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Singleton and other globals

Beware the allure of global state

Singleton
Monostate
Global variables

Stealth coupling

Dependency centre of gravity

Lifetime and scope management
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One size fits all
Rigidity
The Monolith

Concrete inheritance

Inheritance is a powerful tool for expressing your deisgn
to the computer...

...and to other programmers!

A Circle is not an Ellipse

Use of concrete instead of abstract types leads to
rigidity and fragility.

(*no matter what the mathematicians tell you - because
they may also try to explain why a teacup is also a
doughnut).
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The monolith

the four million-year-old black monolith has remained
completely inert, its origin and purpose still a total
mystery.

Arthur C. Clarke, 2001 A Space Odyssey
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One size fits all
Rigidity
The Monolith

Include the world

Header files that include other header files.

...and then don’t use them
...or could operate just as well

with forward references

Components that reference other concrete
components.

...or worse,
abstract components that reference concrete ones
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One size fits all
Rigidity
The Monolith

Unthinking references

Directly referring to
a concrete type
instead of an
abstract version
leads to rigidity
and brittle code

WifiComms comms = new WifiComms();

or

bool Attach( WifiComms comms )
{
}

Especially if that type is in another module
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One size fits all
Rigidity
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The dependency horizon

Dependencies are
transitive: if A depends on
B, and B depends on C,
then A depends on C.
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Too little
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Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Too much responsibility

...too many hats!

Steve Love Genemodulabstraxibilicity



Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

General

Featurism Take part in all manner of expressions, often
for the sake of “cute” brevity, e.g.
conversion operators

Speculation Provide various hooks for future extension,
even if they make no sense to role of the
class

Promiscuity Able to be used by other systems, e.g. STL
containers and DI frameworks, regardless of
purpose
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Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Designed for re-use

Design for use, not re-use.

Predicting the future of code is just as hard as
predicting the future of anything else...
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Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Out parameters

Functions that return more than one thing.

Procedures that have more than one side-effect.

bool connect( string dbName, ref DbConn conn, ref List<
string > errors )

C++ non-const pointer vs. non-const reference.
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Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Too little responsibility

While none of the work we do is very important, it is
important that we do a great deal of it.

Joseph Heller, “Catch-22”, 1961
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Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Simplisticity

All collaborators and no behaviour - just plumbing.

Accessors for every field.

Written in a “straight line”.

These are not necessarily useless bits of code, unless
they make up the majority of your codebase...

Steve Love Genemodulabstraxibilicity



Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Steve Love Genemodulabstraxibilicity



Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Accidental relationships

Business logic spread out through lots of functions,
classes, components, even technologies
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Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Irresponsible code

Resurrected after Disposal

Clever and broken custom allocators

Overriding the global new operator
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Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Indefinite responsibility

Information Retrieval has got him down as inoperative.
And there’s another one - Security has got him down as
excised. Administration’s got him down as completed

From “Brazil”, 1985, Terry Gilliam
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Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

No discernible role

Miscellaneous repositories:

#include <windows.h>

import java.util;

Indeterminate types:

LRESULT CALLBACK WndProc( HWND hwnd, UINT message,
WPARAM wParam, LPARAM lParam )

System.Decoder.Convert( byte[], int, int, char[], int,
bool, int, int, bool )
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Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Obscured by plumbing

/ / . . .
try
{

log . Write ( "Begin calc " ) ;
#region critsec
lock ( lockObject )
{

results .Add( value ) ;
}
log . Write ( "End calc " ) ;
#endregion

}
catch( Exception x )
{

lock ( lockObject )
{

errors .Add( value ) ;
}
log . Write ( x .Message ) ;

}
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Responsibility
Testing

Requirements Gap

Untestable
Testing considered useless

Untestable

Getting existing code under test can be....stressful.

Code can be hard to test for a variety of reasons....
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Responsibility
Testing

Requirements Gap

Untestable
Testing considered useless

No one thing to test

Unclear responsibilities

Muddy implementations

Collaborations of convenience
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Responsibility
Testing

Requirements Gap

Untestable
Testing considered useless

Behaviour by side-effect

Singletons and globals
Difficult to replace when
testing
May bring unwanted
dependencies
Lock-in implementation

Mutable collaborators
Can be replaced for testing
How much behaviour?
End up testing the
(mocked) collaborator logic
instead of the real thing...
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Responsibility
Testing

Requirements Gap

Untestable
Testing considered useless

Testing considered useless

Program testing can be used to show the presence of
bugs, but never to show their absence!

Edsger Dijkstra, “Notes On Structured Programming”,
1970
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Responsibility
Testing

Requirements Gap

Untestable
Testing considered useless

One test to rule them all

“Yes, I’ve unit tested the code....”

[TestFixture]
public class TestPerson
{
[TestCase]
public void Run()
{
SetupData();
Assert.Equals( person.Name, expectedName );
Assert.Equals( person.Age, expectedAge );
Assert.IsNull( person as Manager );
Assert.IsNotNull( person as Employee )
// ...
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Responsibility
Testing

Requirements Gap

Untestable
Testing considered useless

Micro tests

“My code has a huge set of unit tests....”

money.setExchangeRate( 2.34 );
assertTrue( money.getExchangeRate().equals( 2.34 ) );
money.setExchangeRate( 56.7 );
assertTrue( money.getExchangeRate().equals( 56.7 ) );
// ...

(...which aren’t really testing very much!)
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Responsibility
Testing

Requirements Gap

Untestable
Testing considered useless

Fragile tests

The numbers are wrong.

Tests must change when the expected numbers change.

What if the expected numbers are wrong?
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Testing

Requirements Gap

Feature angst
Creeping scope

Feature angst
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Responsibility
Testing

Requirements Gap

Feature angst
Creeping scope

Indecision

Choice of different...
API
Technology
Implementation possiblity

Don’t compensate for ambiguous or amorphous
requirements by making code general enough to
handle all the options. That path leads to madness...
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Responsibility
Testing

Requirements Gap

Feature angst
Creeping scope

Absence

A different kind of indecision.

...different component

...different team

...different organisation
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Responsibility
Testing

Requirements Gap

Feature angst
Creeping scope

Creeping scope

But within a one-hour lecture...he managed to ask for
the addition of about fifty new features, little supposing
that the main source of his problems could well be that
it contained already far too many “features”.

Edsger Dijkstra, “The Humble Programmer”, CACM
1972

(About PL/1)
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Responsibility
Testing

Requirements Gap

Feature angst
Creeping scope

Confused class

The name of a thing -

class function variable
service module namespace

- is important

Know what a thing IS and you know what to call it.

Steve Love Genemodulabstraxibilicity



Responsibility
Testing

Requirements Gap

Feature angst
Creeping scope

Option explosion

Conditional compilation

Lots of branches

Configurable everything

When scope changes, that is a hint to hide the detail in
abstraction.
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Intermezzo

A short diversion



A story from history

The 1960s and 1970s were turbulent times for
programmers.

The cost of software was out-stripping that of hardware.

Project failure was expensive and well-publicised.

This was called...



The software crisis

“The turning point was the Conference on
Software Engineering in Garmisch, October
1968, a conference that created a sensation as
there occurred the first open admission of the
software crisis.”

Edsger Dijkstra, “The Humble Programmer”, CACM
1972

Here are some observations from the time....



Modularity

“[T]he quality of programmers is a decreasing
function of the density of go to statements in
the programs they produce.”

“A Case Against The Go To Statement”, a.k.a “go to
Statement Considered Harmful”. 1968 (Edsger Dijkstra)



Locality

“[T]he non-local variable is a major contributing
factor in programs which are difficult to
understand.”

“Global Variables Considered Harmful”. 1973, William
Wulf and Mary Shaw



Abstraction

“As soon as people learn to apply principles of
abstraction consciously, they won’t see the
need for go to, and the issue will just fade
away.”

“Structured Programming With Go To Statements”,
1974, Donald E. Knuth



Be a shame not to mention...

“Having at last put to rest to GOTO controversy,
we now may enter the era of the COME FROM
conundrum. “

R. Lawrence Clark, Datamation, 1973



The last 40 odd years

1968 “Software Crisis” term used at the NATO SW
Conference

1986 “No Silver Bullet”, Fred Brooks and
complexity in software

1999 The Millennium Bug

2000 It all still works! Yay! Back to business as
usual

Today 64 Bit, multi-core

Tomorrow ? Never mind what’ll happen in 2038...



The last 40 odd years

1968 “Software Crisis” term used at the NATO SW
Conference

1986 “No Silver Bullet”, Fred Brooks and
complexity in software

1999 The Millennium Bug

2000 It all still works! Yay! Back to business as
usual

Today 64 Bit, multi-core

Tomorrow ? Never mind what’ll happen in 2038...



The last 40 odd years

1968 “Software Crisis” term used at the NATO SW
Conference

1986 “No Silver Bullet”, Fred Brooks and
complexity in software

1999 The Millennium Bug

2000 It all still works! Yay! Back to business as
usual

Today 64 Bit, multi-core

Tomorrow ? Never mind what’ll happen in 2038...



The last 40 odd years

1968 “Software Crisis” term used at the NATO SW
Conference

1986 “No Silver Bullet”, Fred Brooks and
complexity in software

1999 The Millennium Bug

2000 It all still works! Yay! Back to business as
usual

Today 64 Bit, multi-core

Tomorrow ? Never mind what’ll happen in 2038...



Nothing new under the sun...

“The major cause of the software crisis is
that the machines have become several orders
of magnitude more powerful! To put it quite
bluntly: as long as there were no machines,
programming was no problem at all; when we
had a few weak computers, programming
became a mild problem, and now we have
gigantic computers, programming has become
an equally gigantic problem.”

Edsger Dijkstra, “The Humble Programmer”, CACM
1972
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Treatments
6 Be responsible
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Back to basics
Be responsible

Manage complexity
Recap

The oldest debate

Locality Modularity Abstraction

These are the core of our craft, and have been debated
for 30, 40 even 50 years!
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Back to basics
Be responsible

Manage complexity
Recap

Simplicity

“Go to considered harmful” was never about goto itself
- it’s an essay about modularity and comprehendability.

“The price of reliability is the pursuit of the
utmost simplicity.“

C.A.R. Hoare, “The Emporer’s Old Clothes”, CACM, 1981
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Back to basics
Be responsible

Manage complexity

Distribute responsibility
Design for test

Distribute responsibility

Many hands make light work

Proverb
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Back to basics
Be responsible

Manage complexity

Distribute responsibility
Design for test

Refactor

Long functions usually need splitting up

A short function calling lots of other smaller functions is
better...

...but not ideal
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Back to basics
Be responsible

Manage complexity

Distribute responsibility
Design for test

Order out of chaos

void get_targets ( map< string , vector< string > > & targets )
{

for ( auto i = targets . begin ( ) ; i != targets .end( ) ; ++i ) {
i f ( i−>f i r s t == "URL" ) {
for ( auto j : i−>second ) {

i f ( ! j−>find ( "http : / / " ) != 0 )
throw exception ( "Bad format" ) ;

ur ls .push_back( ∗ j ) ;
}

}
else i f ( i−>f i r s t == "LOCAL" ) {

for ( auto j : i−>second ) {
i f ( ! j−>find ( " f i l e : / / / " ) != 0 )
throw exception ( "Bad format" ) ;

f i l e s .push_back( ∗ j ) ;
}

}
}

}
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Back to basics
Be responsible

Manage complexity

Distribute responsibility
Design for test

Order out of chaos

Improved a little by extracting a new role:
struct url
{

ur l ( string type , string name )
: name( name )

{
i f ( type == "URL" && ! name. find ( "http : " ) == 0 )
throw exception ( "Bad format" ) ;
else i f ( type == "LOCAL" && ! name. find ( " f i l e : " ) == 0 )
throw exception ( "Bad format" ) ;

}
string name;

};

(Of course a real one would be much more
sophisticated...)
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Back to basics
Be responsible

Manage complexity

Distribute responsibility
Design for test

Cohesion

A class’ data members are non-local variables

use them wisely!

“m_” doesn’t make a huge function more
comprehendable.

and are pointless in short ones

Cohesion is about responsiblity and locality NOT data
hiding.
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Back to basics
Be responsible

Manage complexity

Distribute responsibility
Design for test

Design for test

Truth is what stands the test of experience

Attributed to Albert Einstein
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Back to basics
Be responsible

Manage complexity

Distribute responsibility
Design for test

Good companions

Testable Decoupled

Flexible Easily adapted

Portable No platform specific
dependencies

General Single role easily “re-used”
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Back to basics
Be responsible

Manage complexity

Be adaptible
Manage complexity
The old ones are the best ones

Be adaptible

As a matter of fact, the adaptability of a program to
changes in its objectives (often called maintainability)
and to challenges in its environment in terms of the
degree to which it is neatly structured.

Niklaus Wirth, "Program Development by Stepwise
Refinement”, CACM 1971
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Back to basics
Be responsible

Manage complexity

Be adaptible
Manage complexity
The old ones are the best ones

Prepare for change

speculative generality != adaptibility

Change happens.
Flexibility in the face of change “happens” for cohesive,
decoupled and simple code.
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Back to basics
Be responsible

Manage complexity

Be adaptible
Manage complexity
The old ones are the best ones

Indecision is positive

Henney’s Uncertainty Principle

Use the uncertainty as a driver to determine where you
can defer commitment to details and where you can
partition and abstract to reduce the significance of
design decisions.
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Back to basics
Be responsible

Manage complexity

Be adaptible
Manage complexity
The old ones are the best ones

Manage complexity

Gadgets and glitter prevail over fundamental concerns
of safety and economy.

C.A.R. Hoare, “The Emporer’s Old Clothes”, CACM, 1981
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Prefer simplicity

Simple code does not mean ignoring complex concepts.

Iterator concepts in C++
Anonymous C# delegates
Python’s list comprehensions
Polymorphic behaviour in any OO language

Ignoring such things may even result in more complex
code!
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Occam’s razor

Simplistic != Simple

Choose the simpler of two equivalent things.

Distinguish between accidental and essential
complexity.
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Literacy

New features are introduced (usually) for good reason.

Know those reasons, and when to use the feaure
effectively.

auto record = make_tuple( x, y, z );
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Be specific

Abstraction is selective ignorance

not an excuse to be vague
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The old ones are the best ones

...of course, there’s a reason for that...
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Dependency inversion

1 High level modules should not depend upon low
level modules. Both should depend upon
abstractions.

2 Abstractions should not depend upon details.
Details should depend upon abstractions.

Robert C. Martin, “The Dependency Inversion Principle”,
C++ Report, May 1996
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Single responsibility

The Single Responsibility Principle

There should never be more than one reason for a class
to change

Robert C. Martin, “Agile Software Development,
Principles, Patterns, and Practices”, Prentice Hall 2002
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All in all...

Genemodulabstraxibilicity

Generality

Modularity

Abstraction

Flexibility

Reusability

Simplicity

Sometimes these are competing attributes

Don’t try to do too much all in one place



If you feel it’s just too difficult...

Don’t Panic!

A good, healthy, sceptical look can show you where to
begin....

Thanks!
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