
Genemodulabstraxibilicity
The feeling that it’s just too difficult

Steve Love

steve@arventech.com

ACCU April 2010

Brief

Genemodulabstraxibilicity

Extensibility Maintainability
Abstraction Extensibility
Reusability Adaptibility
Generality Modularity
Testability Genericity
Flexibility Cohesion

Quality Stability
Clarity Utility

Simplicity

Part 1

Symptoms
1 Code Smells

The usual suspects
Clever tricks
Dependency jungle

2 Design Smells
One size fits all
Rigidity
The Monolith

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

The usual suspects

A number of rules have been discovered, violation of
which will either seriously impair or totally destroy the
intellectual manageability of the program. [...]
Examples are the exclusion of goto-statements and of
procedures with more than one output parameter.

Edsger Dijkstra, “The Humble Programmer”, CACM
1972

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Incomprehensible flow

goto, break, continue....and throw?

non-local variables and singletons

multiple returns

looooooooooooooooong functions

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Variations on a name

accumulator = x + 2;
accumulator2 = accumulator + y;

Often manifested in over-long functions.

Similar and related to variable re-use.

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Variable re-use

Would this example be improved with separate start
and end variables? :

DateTime stamp = DateTime.Now;
Console.WriteLine("Start at {0}", stamp);

// ... Perhaps use stamp elsewhere

stamp = DateTime.Now;
Console.WriteLine("Finish at {0}", stamp);

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Dumb getters and setters

Making stuff private does not “cause” encapsulation.

Encapsulation is an effect, not a cause

Encapsulation should not be a design goal.
Good designs achieve encapsulation...
it doesn’t happen by accident.

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

A forest of comments

Example

sum the elements of sequence seq
total = 0
for i in seq:

total += i

Better

total = reduce(lambda x, y : x + y, seq)

Best

total = sum(seq)

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

A forest of comments

Example

sum the elements of sequence seq
total = 0
for i in seq:

total += i

Better

total = reduce(lambda x, y : x + y, seq)

Best

total = sum(seq)

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Unused stuff

Is this slide pointless?

if(is_valid)
{

result = x;
}
else
{

result = x;
}

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Clever tricks

It takes one of two different forms: one programmer
places a one-line program on the desk of another and
either he proudly tells what it does and adds the
question "Can you code this in less symbols?" [...] or he
just asks "Guess what it does!".

Edsger Dijkstra, “The Humble Programmer”, CACM
1972

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Operator madness

class employee
{
public:

// What does this mean?
bool operator<(const employee &

other) { ??? }
};

Common motivations include being able to use such
types in e.g. std::set in C++.

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Operator madness

Counter examples:

string operator+(const string & l, const string & r);

template<class T>
boost::basic_format& operator%(const T & x)

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Operator madness

Mis-uses may be subtle.

Example

datetime & datetime::operator--();

Is this by 1 second? 1 nanosecond? 1 day? Who knows?

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Overloading overloading

Which one of these gets called?

void get_result(long l);
void get_result(void * p);
// ...
get_result(0);

Needing to be an expert on name lookup doesn’t help!

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Overloading overloading

Which one of these gets called?

void get_result(long l);
void get_result(void * p);
// ...
get_result(0);

Needing to be an expert on name lookup doesn’t help!

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Shiny and new

Whenever new features appear
it’s tempting to try them
everywhere...

...all nails and a shiny
new hammer

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Hieroglyphic code

string src = get_large_string();
string rep = "\\/";
char with = ’.’;

replace_if(src.begin(), src.end(),
bind(

not_equal_to< string::const_iterator >(),
bind(find< string::const_iterator, char >,

rep.begin(), rep.end(), _1),
rep.end()),

with);

Don’t Do That!

It’s not big and it’s not clever.

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Stynamic typing

It’s hard to use a dynamic languages like Python as a
statically-typed language, and it looks odd if you do this
everywhere:

result = string("foo")
value = int(10)

So, don’t try to make your statically typed language like
a dynamic one everywhere:

var host = "myhome.com";

auto name = "Arthur C. Clarke";

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Old tricks, new dog

LINQ may be an excuse to write inline SQL.

var result = new SqlCommand(
"SELECT id, name FROM products",
connection).ExecuteReader();

while(result.Read()) { ... }

versus

var result =
from product in products

select product;
foreach(var prod in result) { ... }

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Dependency jungle

Short-term convenience
Long-term consequence

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Inheritance trap

Fact

Public inheritance is the strongest form of coupling.

Spurious relationships often result in needless
inheritance.

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Inheritance trap

Fact

Deeply nested inheritance makes code obfuscated.

public class Option : Instrument
{

public void Price ()
{

/ / . . .
double rate = GetRate () ;

/ / . . .
}
/ / . . .

}

What does GetRate call?
Free function? Global or
namespace?

Member function?
Which?:

This class?
Base class?
Derived class?

Is the base class an
interface?

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

The usual suspects
Clever tricks
Dependency jungle

Multiple versions

Directory of G: \work\ l i b
05/04/2010 06:58 <DIR> .
05/04/2010 06:58 <DIR> . .
05/04/2010 06:58 <DIR> boost_1_38_0
05/04/2010 06:58 <DIR> boost_1_39_0
05/04/2010 06:58 <DIR> boost_1_40_0
. . .

Size DOES matter

Go on a version diet!

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

One size fits all
Rigidity
The Monolith

One size fits all

The open secrets of good design practice include the
importance of knowing what to keep whole, what to
combine, what to separate, and what to throw away.

Kevlin Henney, “From Mechanism to Method: Distinctly
Qualified”, Dr Dobbs, May 2001

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

One size fits all
Rigidity
The Monolith

LongOrVagueFunctionNames

void
ShowWaitCursorAndUpdateDatabaseWithProgressDisplayCl
eanupTempDir();

void DoIt();
void TestMyClass();

These are (probably) functions with too many hats. The
first one is a bit more honest about it!

Test functions with long descriptive names are different

void TestThatResizedSquareHasEqualWidthAndHeight();

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

One size fits all
Rigidity
The Monolith

“Complete” interfaces

If you haven’t
got one of
these, then
you’ve missed
something...

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

One size fits all
Rigidity
The Monolith

Speculative virtuals

...and protected data

public class summat
{

public virtual int width()
{

get{ return w; }
set{ w = value; }

}

protected int w;
}

Classes should be base classes by design not accident.

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

One size fits all
Rigidity
The Monolith

Rigidity

It is hard to change because every change affects too
many other parts of the system.

Robert C. Martin, “The Dependency Inversion
Principle”, C++ Report, May 1996

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

One size fits all
Rigidity
The Monolith

Singleton and other globals

Beware the allure of global state

Singleton
Monostate
Global variables

Stealth coupling

Dependency centre of gravity

Lifetime and scope management

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

One size fits all
Rigidity
The Monolith

Concrete inheritance

Inheritance is a powerful tool for expressing your deisgn
to the computer...

...and to other programmers!

A Circle is not an Ellipse

Use of concrete instead of abstract types leads to
rigidity and fragility.

(*no matter what the mathematicians tell you - because
they may also try to explain why a teacup is also a
doughnut).

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

One size fits all
Rigidity
The Monolith

Concrete inheritance

Inheritance is a powerful tool for expressing your deisgn
to the computer...

...and to other programmers!

A Circle is not an Ellipse

Use of concrete instead of abstract types leads to
rigidity and fragility.

(*no matter what the mathematicians tell you - because
they may also try to explain why a teacup is also a
doughnut).

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

One size fits all
Rigidity
The Monolith

The monolith

the four million-year-old black monolith has remained
completely inert, its origin and purpose still a total
mystery.

Arthur C. Clarke, 2001 A Space Odyssey

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

One size fits all
Rigidity
The Monolith

Include the world

Header files that include other header files.

...and then don’t use them
...or could operate just as well

with forward references

Components that reference other concrete
components.

...or worse,
abstract components that reference concrete ones

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

One size fits all
Rigidity
The Monolith

Unthinking references

Directly referring to
a concrete type
instead of an
abstract version
leads to rigidity
and brittle code

WifiComms comms = new WifiComms();

or

bool Attach(WifiComms comms)
{
}

Especially if that type is in another module

Steve Love Genemodulabstraxibilicity

Code Smells
Design Smells

One size fits all
Rigidity
The Monolith

The dependency horizon

Dependencies are
transitive: if A depends on
B, and B depends on C,
then A depends on C.

Steve Love Genemodulabstraxibilicity

Part 2

Diagnoses
3 Responsibility

Too much
Too little
Indeterminate

4 Testing
Untestable
Testing considered useless

5 Requirements Gap
Feature angst
Creeping scope

Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Too much responsibility

...too many hats!

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

General

Featurism Take part in all manner of expressions, often
for the sake of “cute” brevity, e.g.
conversion operators

Speculation Provide various hooks for future extension,
even if they make no sense to role of the
class

Promiscuity Able to be used by other systems, e.g. STL
containers and DI frameworks, regardless of
purpose

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Designed for re-use

Design for use, not re-use.

Predicting the future of code is just as hard as
predicting the future of anything else...

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Out parameters

Functions that return more than one thing.

Procedures that have more than one side-effect.

bool connect(string dbName, ref DbConn conn, ref List<
string > errors)

C++ non-const pointer vs. non-const reference.

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Too little responsibility

While none of the work we do is very important, it is
important that we do a great deal of it.

Joseph Heller, “Catch-22”, 1961

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Simplisticity

All collaborators and no behaviour - just plumbing.

Accessors for every field.

Written in a “straight line”.

These are not necessarily useless bits of code, unless
they make up the majority of your codebase...

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Accidental relationships

Business logic spread out through lots of functions,
classes, components, even technologies

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Irresponsible code

Resurrected after Disposal

Clever and broken custom allocators

Overriding the global new operator

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Indefinite responsibility

Information Retrieval has got him down as inoperative.
And there’s another one - Security has got him down as
excised. Administration’s got him down as completed

From “Brazil”, 1985, Terry Gilliam

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

No discernible role

Miscellaneous repositories:

#include <windows.h>

import java.util;

Indeterminate types:

LRESULT CALLBACK WndProc(HWND hwnd, UINT message,
WPARAM wParam, LPARAM lParam)

System.Decoder.Convert(byte[], int, int, char[], int,
bool, int, int, bool)

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Too much
Too little
Indeterminate

Obscured by plumbing

/ / . . .
try
{

log . Write ("Begin calc ") ;
#region critsec
lock (lockObject)
{

results .Add(value) ;
}
log . Write ("End calc ") ;
#endregion

}
catch(Exception x)
{

lock (lockObject)
{

errors .Add(value) ;
}
log . Write (x .Message) ;

}

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Untestable
Testing considered useless

Untestable

Getting existing code under test can be....stressful.

Code can be hard to test for a variety of reasons....

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Untestable
Testing considered useless

No one thing to test

Unclear responsibilities

Muddy implementations

Collaborations of convenience

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Untestable
Testing considered useless

Behaviour by side-effect

Singletons and globals
Difficult to replace when
testing
May bring unwanted
dependencies
Lock-in implementation

Mutable collaborators
Can be replaced for testing
How much behaviour?
End up testing the
(mocked) collaborator logic
instead of the real thing...

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Untestable
Testing considered useless

Testing considered useless

Program testing can be used to show the presence of
bugs, but never to show their absence!

Edsger Dijkstra, “Notes On Structured Programming”,
1970

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Untestable
Testing considered useless

One test to rule them all

“Yes, I’ve unit tested the code....”

[TestFixture]
public class TestPerson
{
[TestCase]
public void Run()
{
SetupData();
Assert.Equals(person.Name, expectedName);
Assert.Equals(person.Age, expectedAge);
Assert.IsNull(person as Manager);
Assert.IsNotNull(person as Employee)
// ...

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Untestable
Testing considered useless

Micro tests

“My code has a huge set of unit tests....”

money.setExchangeRate(2.34);
assertTrue(money.getExchangeRate().equals(2.34));
money.setExchangeRate(56.7);
assertTrue(money.getExchangeRate().equals(56.7));
// ...

(...which aren’t really testing very much!)

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Untestable
Testing considered useless

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Untestable
Testing considered useless

Fragile tests

The numbers are wrong.

Tests must change when the expected numbers change.

What if the expected numbers are wrong?

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Feature angst
Creeping scope

Feature angst

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Feature angst
Creeping scope

Indecision

Choice of different...
API
Technology
Implementation possiblity

Don’t compensate for ambiguous or amorphous
requirements by making code general enough to
handle all the options. That path leads to madness...

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Feature angst
Creeping scope

Absence

A different kind of indecision.

...different component

...different team

...different organisation

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Feature angst
Creeping scope

Creeping scope

But within a one-hour lecture...he managed to ask for
the addition of about fifty new features, little supposing
that the main source of his problems could well be that
it contained already far too many “features”.

Edsger Dijkstra, “The Humble Programmer”, CACM
1972

(About PL/1)

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Feature angst
Creeping scope

Confused class

The name of a thing -

class function variable
service module namespace

- is important

Know what a thing IS and you know what to call it.

Steve Love Genemodulabstraxibilicity

Responsibility
Testing

Requirements Gap

Feature angst
Creeping scope

Option explosion

Conditional compilation

Lots of branches

Configurable everything

When scope changes, that is a hint to hide the detail in
abstraction.

Steve Love Genemodulabstraxibilicity

Intermezzo

A short diversion

A story from history

The 1960s and 1970s were turbulent times for
programmers.

The cost of software was out-stripping that of hardware.

Project failure was expensive and well-publicised.

This was called...

The software crisis

“The turning point was the Conference on
Software Engineering in Garmisch, October
1968, a conference that created a sensation as
there occurred the first open admission of the
software crisis.”

Edsger Dijkstra, “The Humble Programmer”, CACM
1972

Here are some observations from the time....

Modularity

“[T]he quality of programmers is a decreasing
function of the density of go to statements in
the programs they produce.”

“A Case Against The Go To Statement”, a.k.a “go to
Statement Considered Harmful”. 1968 (Edsger Dijkstra)

Locality

“[T]he non-local variable is a major contributing
factor in programs which are difficult to
understand.”

“Global Variables Considered Harmful”. 1973, William
Wulf and Mary Shaw

Abstraction

“As soon as people learn to apply principles of
abstraction consciously, they won’t see the
need for go to, and the issue will just fade
away.”

“Structured Programming With Go To Statements”,
1974, Donald E. Knuth

Be a shame not to mention...

“Having at last put to rest to GOTO controversy,
we now may enter the era of the COME FROM
conundrum. “

R. Lawrence Clark, Datamation, 1973

The last 40 odd years

1968 “Software Crisis” term used at the NATO SW
Conference

1986 “No Silver Bullet”, Fred Brooks and
complexity in software

1999 The Millennium Bug

2000 It all still works! Yay! Back to business as
usual

Today 64 Bit, multi-core

Tomorrow ? Never mind what’ll happen in 2038...

The last 40 odd years

1968 “Software Crisis” term used at the NATO SW
Conference

1986 “No Silver Bullet”, Fred Brooks and
complexity in software

1999 The Millennium Bug

2000 It all still works! Yay! Back to business as
usual

Today 64 Bit, multi-core

Tomorrow ? Never mind what’ll happen in 2038...

The last 40 odd years

1968 “Software Crisis” term used at the NATO SW
Conference

1986 “No Silver Bullet”, Fred Brooks and
complexity in software

1999 The Millennium Bug

2000 It all still works! Yay! Back to business as
usual

Today 64 Bit, multi-core

Tomorrow ? Never mind what’ll happen in 2038...

The last 40 odd years

1968 “Software Crisis” term used at the NATO SW
Conference

1986 “No Silver Bullet”, Fred Brooks and
complexity in software

1999 The Millennium Bug

2000 It all still works! Yay! Back to business as
usual

Today 64 Bit, multi-core

Tomorrow ? Never mind what’ll happen in 2038...

Nothing new under the sun...

“The major cause of the software crisis is
that the machines have become several orders
of magnitude more powerful! To put it quite
bluntly: as long as there were no machines,
programming was no problem at all; when we
had a few weak computers, programming
became a mild problem, and now we have
gigantic computers, programming has become
an equally gigantic problem.”

Edsger Dijkstra, “The Humble Programmer”, CACM
1972

Part 3

Treatments
6 Be responsible

Distribute responsibility
Design for test

7 Manage complexity
Be adaptible
Manage complexity
The old ones are the best ones

Back to basics
Be responsible

Manage complexity
Recap

The oldest debate

Locality Modularity Abstraction

These are the core of our craft, and have been debated
for 30, 40 even 50 years!

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity
Recap

Simplicity

“Go to considered harmful” was never about goto itself
- it’s an essay about modularity and comprehendability.

“The price of reliability is the pursuit of the
utmost simplicity.“

C.A.R. Hoare, “The Emporer’s Old Clothes”, CACM, 1981

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity

Distribute responsibility
Design for test

Distribute responsibility

Many hands make light work

Proverb

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity

Distribute responsibility
Design for test

Refactor

Long functions usually need splitting up

A short function calling lots of other smaller functions is
better...

...but not ideal

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity

Distribute responsibility
Design for test

Order out of chaos

void get_targets (map< string , vector< string > > & targets)
{

for (auto i = targets . begin () ; i != targets .end() ; ++i) {
i f (i−>f i r s t == "URL") {
for (auto j : i−>second) {

i f (! j−>find ("http : / / ") != 0)
throw exception ("Bad format") ;

ur ls .push_back(∗ j) ;
}

}
else i f (i−>f i r s t == "LOCAL") {

for (auto j : i−>second) {
i f (! j−>find (" f i l e : / / / ") != 0)
throw exception ("Bad format") ;

f i l e s .push_back(∗ j) ;
}

}
}

}

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity

Distribute responsibility
Design for test

Order out of chaos

Improved a little by extracting a new role:
struct url
{

ur l (string type , string name)
: name(name)

{
i f (type == "URL" && ! name. find ("http : ") == 0)
throw exception ("Bad format") ;
else i f (type == "LOCAL" && ! name. find (" f i l e : ") == 0)
throw exception ("Bad format") ;

}
string name;

};

(Of course a real one would be much more
sophisticated...)

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity

Distribute responsibility
Design for test

Cohesion

A class’ data members are non-local variables

use them wisely!

“m_” doesn’t make a huge function more
comprehendable.

and are pointless in short ones

Cohesion is about responsiblity and locality NOT data
hiding.

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity

Distribute responsibility
Design for test

Design for test

Truth is what stands the test of experience

Attributed to Albert Einstein

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity

Distribute responsibility
Design for test

Good companions

Testable Decoupled

Flexible Easily adapted

Portable No platform specific
dependencies

General Single role easily “re-used”

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity

Be adaptible
Manage complexity
The old ones are the best ones

Be adaptible

As a matter of fact, the adaptability of a program to
changes in its objectives (often called maintainability)
and to challenges in its environment in terms of the
degree to which it is neatly structured.

Niklaus Wirth, "Program Development by Stepwise
Refinement”, CACM 1971

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity

Be adaptible
Manage complexity
The old ones are the best ones

Prepare for change

speculative generality != adaptibility

Change happens.
Flexibility in the face of change “happens” for cohesive,
decoupled and simple code.

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity

Be adaptible
Manage complexity
The old ones are the best ones

Indecision is positive

Henney’s Uncertainty Principle

Use the uncertainty as a driver to determine where you
can defer commitment to details and where you can
partition and abstract to reduce the significance of
design decisions.

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity

Be adaptible
Manage complexity
The old ones are the best ones

Manage complexity

Gadgets and glitter prevail over fundamental concerns
of safety and economy.

C.A.R. Hoare, “The Emporer’s Old Clothes”, CACM, 1981

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity

Be adaptible
Manage complexity
The old ones are the best ones

Prefer simplicity

Simple code does not mean ignoring complex concepts.

Iterator concepts in C++
Anonymous C# delegates
Python’s list comprehensions
Polymorphic behaviour in any OO language

Ignoring such things may even result in more complex
code!

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity

Be adaptible
Manage complexity
The old ones are the best ones

Occam’s razor

Simplistic != Simple

Choose the simpler of two equivalent things.

Distinguish between accidental and essential
complexity.

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity

Be adaptible
Manage complexity
The old ones are the best ones

Literacy

New features are introduced (usually) for good reason.

Know those reasons, and when to use the feaure
effectively.

auto record = make_tuple(x, y, z);

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity

Be adaptible
Manage complexity
The old ones are the best ones

Be specific

Abstraction is selective ignorance

not an excuse to be vague

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity

Be adaptible
Manage complexity
The old ones are the best ones

The old ones are the best ones

...of course, there’s a reason for that...

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity

Be adaptible
Manage complexity
The old ones are the best ones

Dependency inversion

1 High level modules should not depend upon low
level modules. Both should depend upon
abstractions.

2 Abstractions should not depend upon details.
Details should depend upon abstractions.

Robert C. Martin, “The Dependency Inversion Principle”,
C++ Report, May 1996

Steve Love Genemodulabstraxibilicity

Back to basics
Be responsible

Manage complexity

Be adaptible
Manage complexity
The old ones are the best ones

Single responsibility

The Single Responsibility Principle

There should never be more than one reason for a class
to change

Robert C. Martin, “Agile Software Development,
Principles, Patterns, and Practices”, Prentice Hall 2002

Steve Love Genemodulabstraxibilicity

All in all...

Genemodulabstraxibilicity

Generality

Modularity

Abstraction

Flexibility

Reusability

Simplicity

Sometimes these are competing attributes

Don’t try to do too much all in one place

If you feel it’s just too difficult...

Don’t Panic!

A good, healthy, sceptical look can show you where to
begin....

Thanks!

If you feel it’s just too difficult...

Don’t Panic!

A good, healthy, sceptical look can show you where to
begin....

Thanks!

	Symptoms
	Code Smells
	The usual suspects
	Clever tricks
	Dependency jungle

	Design Smells
	One size fits all
	Rigidity
	The Monolith

	Diagnoses
	Responsibility
	Too much
	Too little
	Indeterminate

	Testing
	Untestable
	Testing considered useless

	Requirements Gap
	Feature angst
	Creeping scope

	Nothing New
	The software crisis

	Treatments
	Back to basics
	

	Be responsible
	Distribute responsibility
	Design for test

	Manage complexity
	Be adaptible
	Manage complexity
	The old ones are the best ones

	End
	In closing

