_CCU - _
=0 1 o Llghtning Talks

Jason McGuiness — Anti-Parallelism
Paul Black — Malware Research Protocol
James Bach — The “Also” Heuristic of Test Oracles
Rachel Davies — Learn From Experience With Retrospectives
Chris Oldwood — Recycle Bin 101
Tom Gilb — A Real Revolutionary Agile Manifesto
Jim Hague — Are You Getting Enough
Dietmar Kihl — Law of The Big Three (Revised)
Phil Nash — What Will | Be Missing Out On If | Don't Develop
For The iPhone or iPad
Bonus:
John Lakos — The Birthday Problem
Kevlin Henney — Birthday Surprise

ECCI_I

=0 1 o Lightning Talks

Jason McGuiness — Anti-Parallelism
Paul Black — Malware Research Protocol
James Bach — The “Also” Heuristic of Test Oracles
Rachel Davies — Learn From Experience With Retrospectives
Chris Oldwood — Recycle Bin 101
Tom Gilb — A Real Revolutionary Agile Manifesto
Jim Hague — Are You Getting Enough
Dietmar Kihl — Law of The Big Three (Revised)
Phil Nash — What Will | Be Missing Out On If | Don't Develop
For The iPhone or iPad

Anti-Parrallelism

Why and Where have “We" Gone Wrong™: A Personal,
Passionate and Pragamatic Polemic.

Jason MCGuiness!

Laccu2010@hussar.demon.co.uk

ACCU, 2010

(o0 (30 8 JEL] E [EHE)

Planning To Fail...

@ Because “the boss says so”.

@ The incumbents know best, don’t they? They wrote the code!
s Did they enjoy using “mangletons’?

@ Shared-state is evil!
@ In the C++ code I've seen, I've not yet seen a properly
implemented singleton!

@ Test cases? “We've heard of 'em.” (We Don't Use Them 'Coz
We're Not Whimps)

@ Actually the code-base is truly evil, and not your friend!

s Grok this, my friend.

(o0 (30 8 JEL] E [EHE)

More False Prophets...

@ Because “it's too slow and parallelism will make it faster” say
the bearded-gurus...

o It's a magic bullet, isn't it?

o Of course we believe the lore that it is slow due to not being
parallel. So naturally we won't measure.

o Assumptions are the root of all evil!

(o0 (30 8 JEL] E [EHE)

But But | Want To, Please...

@ Because we can or just fancy doing it - we're geeks and it's
just too cool. ;-}P>

@ Come on: writing parallel code makes you a guru, doesn’t it?

@ You'll earn more, and all your desires will be satisfied by an
adoring team and better still - management!!

o Anthony Williams (of just::thread & boost.thread fame) is
looked up to as one of the Great Gurus, isn't he?

@ I'm not taking his name in vain, just making the point that
good thread libraries are hard to come by and harder to write,
and he’s doing not one but two.

L L=l dl D EP] B[R

Jason M€Guiness Anti-Parrallelism

For Further Reading |

@ Intel “Thread Building Blocks".

@ OpenMP in MSCV 2010

o “Efficient Parallel Algorithms” Gibbons & Rytter.

@ “Parallel Algorithms” Casanova, Legrand & Robert.

¥ http://www.justthread.com/
¥ http://www.boost.org/
® http://libjmmcg.sf.net/

(o0 (30 8 JEL] E [EHE)

http://www.justthread.com/
http://www.boost.org/
http://libjmmcg.sf.net/

ECCI_I

=0 1 o Lightning Talks

Jason McGuiness — Anti-Parallelism
Paul Black — Malware Research Protocol
James Bach — The “Also” Heuristic of Test Oracles
Rachel Davies — Learn From Experience With Retrospectives
Chris Oldwood — Recycle Bin 101
Tom Gilb — A Real Revolutionary Agile Manifesto
Jim Hague — Are You Getting Enough
Dietmar Kihl — Law of The Big Three (Revised)
Phil Nash — What Will | Be Missing Out On If | Don't Develop
For The iPhone or iPad

Researching Risky Software

* Many people research malware, but there are
no widely accepted protocols.

e Biological research has defined R
levels with associated practices, Bl
safety equipment, and facilities.

e Some approaches are
— Weakened programs (auxotrophs)

— Programs that ALERT
— Outgoing firewalls
— Isolated networks

ECCI_I

=0 1 o Lightning Talks

Jason McGuiness — Anti-Parallelism
Paul Black — Malware Research Protocol
James Bach — The “Also” Heuristic of Test Oracles
Rachel Davies — Learn From Experience With Retrospectives
Chris Oldwood — Recycle Bin 101
Tom Gilb — A Real Revolutionary Agile Manifesto
Jim Hague — Are You Getting Enough
Dietmar Kihl — Law of The Big Three (Revised)
Phil Nash — What Will | Be Missing Out On If | Don't Develop
For The iPhone or iPad

ECCI_I

=0 1 o Lightning Talks

Jason McGuiness — Anti-Parallelism
Paul Black — Malware Research Protocol
James Bach — The “Also” Heuristic of Test Oracles
Rachel Davies — Learn From Experience With Retrospectives
Chris Oldwood — Recycle Bin 101

Tom Gilb — A Real Revolutionary Agile Manifesto

Jim Hague — Are You Getting Enough
Dietmar Kihl — Law of The Big Three (Revised)
Phil Nash — What Will | Be Missing Out On If | Don't Develop
For The iPhone or iPad

Learn from
Experience with
Retrospectives

Rachel Davies

rachel@agilexp.com

Sankofa bird - “go back + fetch it”

What is a Retrospective!

A meeting where a team looks back on
a past period of work so that they can
learn from their experience and apply
this learning to future projects

Project
Retrospectives

Pioneered by Norm Kerth

Hmm? Really? So!?

James Bach’s 3 words to trigger critical thinking

THOSE WHO DON’T
% LEARN FROM THE

=< MISTAKES

S IN THE PAST
ARE DESTINED TO
REPEAT THEM

d
>
O
.
ol

S
O
e’
)
&

&
O

Z

Groundhog Day

“‘Without retrospectives you will
find that the team keeps
making the same mistakes
over and over again.”

Henrik Kniberg

Structure Flow of Conversation

ECCI_I

=0 1 o Lightning Talks

Jason McGuiness — Anti-Parallelism
Paul Black — Malware Research Protocol
James Bach — The “Also” Heuristic of Test Oracles
Rachel Davies — Learn From Experience With Retrospectives
Chris Oldwood — Recycle Bin 101
Tom Gilb — A Real Revolutionary Agile Manifesto
Jim Hague — Are You Getting Enough
Dietmar Kihl — Law of The Big Three (Revised)
Phil Nash — What Will | Be Missing Out On If | Don't Develop
For The iPhone or iPad

Recycle Bin 101

3/ Products That Have Erroneously
Achieved Immortality

Chris Oldwood

gort@cix.co.uk

Visual SourceSafe

» 10 Analyze.exe —F, 20 GOTO 10
» More chatty than Alan Carr
» Working Folder randomiser

Visual C++ 6

» Visual Studio 1998 (10'is the new 6)
» #if _MSC_VER < 1300
» It's Visual C++

Internet Explorer 6

» [he Corporate Standard
» MDI is so 90's
» jQuery Is fanning the flames

Recycle Bin 101

Chris Oldwood

gort@cix.co.uk

ECCI_I

=0 1 o Lightning Talks

Jason McGuiness — Anti-Parallelism
Paul Black — Malware Research Protocol
James Bach — The “Also” Heuristic of Test Oracles
Rachel Davies — Learn From Experience With Retrospectives
Chris Oldwood — Recycle Bin 101
Tom Gilb — A Real Revolutionary Agile Manifesto
Jim Hague — Are You Getting Enough
Dietmar Kihl — Law of The Big Three (Revised)
Phil Nash — What Will | Be Missing Out On If | Don't Develop
For The iPhone or iPad

Agility is the Tool, Not the Master:
Gilb’s
Ten Key Agile Principles
to deliver stakeholder value,
avoid bureaucracy
and give creative freedom

Tom@Gilb.com
www.Gilb.com (slides will be here)
http://www.gilb.com/tiki-download_file.php?fileld=389
Unicom Keynote 27% April 2010 London
Paper: To appear agilerecord.com Summer 2010.

http://homepage.mac.com/tomgilb/filechute/Agile%20Principles%20and
%20Values%20for%20Agile%20Record%202010%20Gilb.doc

April 27, 2010 © www.Gilb.com

Summary

Introduction
What is Stakeholder Value?

How does stakeholder value relate to business
benefits?

How does IT System Quality relate to stakeholder
values?

What does Scrum do about this? why is Scrum
inadequate?

What new front end do we need for Scrum — or any
Agile variant?

10 Principles for Agile Value Delivery

Introduction

What is Stakeholder Value?

e Critical Stakeholders

e Can determine system success or failure

e Stakeholder value

— any things that stakeholders want, need, value
* Independently of ‘your’ system

* Independently of the cost to someone of delivering those
values

* For example (stakeholder values)
— Save time
— Easier to learn
— More secure
— Easier to get things changed

How does stakeholder value relate to
business benefits?

Stakeholder values

* will to some degree directly drive business
benefits

* To some degree stakeholder values are
necessary to satisfy in order to avoid
constraining delivery of business benefits

 To some degree are irrelevant to business
benefits

How does IT System Quality relate to
stakeholder value?

If stakeholder value is ‘save my time’
then we can satisfy their needs in many ways
For example: (IT system design, requirements
* Higher availability of the system
 More usability
e Better performance (throughput, response)
 More integration with other subsystems
* Better automatic error detection and correction

What does Scrum do about this?

Scrum is focussed on implementing designs, functions,
features, use cases

— As interpreted by a product owner

It does not explicitly deal with business requirements,
stakeholder values, product qualities.

You need to add explicit ‘front ends’ to Scrum in order to
deal with values

You can think of this as an extension of what the Product
Owner needs to be taught to do.
http://www.gilb.com/tiki-download file.php?fileld=353

— |s a free set of slides designed to teach Product Owners how to
do this

— Developed with Gabrielle Benefield (Scum Alliance) Oct 2009

What new ‘front end’ do we need for
Scrum — or any Agile variant?

The ‘Business End’ to Scrum (and other Agile variants) needs to:

e Explicitly, quantitatively, define business objectives, and constraints
— Example: Increase Business Orders and sales
* |dentify stakeholder values, quantitatively, that are directly related to the business
values
— Example: Help potential customers (Stakeholder) find what they want to more quickly
* |dentify and define quantitatively the IT system quality and performance
requirements needed to satisfy the prioritised stakeholder values

— Example: Usability requirement: reduce time needed to correctly identify the correct
transportation service to average under 50 seconds.

* |dentify and define the technical designs needed to satisfy the product qualities
and performance requirements
— Design 1: Radical improved User Interface
— Design 2: train website content providers to write clearer and more product-distinctive texts
 Tiethese 4 levels together logically using 3 levels of Impact Estimation Tables, 4
level hierarchy

Value Management

Management Cycle (about 1-3 weeks)

—€

K Development Cycle (about 1-3 weeks)

Profit Usability
Value Value ;
st G Decis st G Decs
New Customers ions Performance Vel'ify Verify
Past G
T ; - Stakeholder

- Product
Stakeholder Vision Prioritization ~ Product Vision Prioritization ~ Scrum Development Framework Vision Vision

Value Management
Developers
Management

http://www.gilb.com/tiki-download_file.php?fileld=277
slides May 09 Posten
Copyright: Kai@Gilb.com 9

Scrum Value Management

Developers

Value Decision Tables

IBBusiness Goals |Stakeholder Value | | Stakeholder Value 2
|BusinessVaIue I -10% 40%
|BusinessVaIue 2 50% 10%
|Resources 20% 10%

|Stakeholder Val.| ProductValue | Product Value 2
Btakeholder Value | -10% 50 %
|Stakeho|derVa|ue 2 10 % 10%
|Resources 2 % 5 %
|Product Values Solution | Solution 2
Product Value | -10% 40%
Product Value 2 50% 80 %
|Resources | % 2 %

Prioritized List

We measure

10
Copyright: Kai@Gilb.com

|. Solution 2
2. Solution 9
3. Solution 7 %

Scrum Develops

Sprint Backlo

improvements
Learn and Repeat

So, what are Agile methods missing?

Stakeholder Focus

— Real projects have dozens of stakeholders
* Not just a customer in the next room

Results Focus
— It is not about writing code, it is about delivering value to stakeholders
— It is not about programming, it is about making systems work for real
people
Systems Focus

— Itis not about coding - again

— It is about reuse, data, hardware, training, motivation, sub-contracting,
Outsourcing, help lines, user documentation, user interfaces, security

— So, a systems engineering scope is necessary to deliver results.

— Systems Engineering needs quantified performance and quality objectives,
* to synchronize all necessary disciplines so that they deliver the results.

Gilb’s Ten Key Agile Principles

to avoid bureaucracy and give creative freedom (summary)

1. Control projects by quantified critical-few results. 1 Page total !
(not stories, functions, features, use cases, objects, ..)
2. Make sure those results are business results, not technical

3. Align your project with your financial sponsor’s interests!

4. Give developers freedom, to find out how to deliver those results

5. Estimate the impacts of your designs, on your quantified goals

6. Select designs with the best impacts for their costs, do them first.6. Decompose the workflow, into

weekly (or 2% of budget) time boxes
7. Change designs, based on quantified experience of implementation
8. Change requirements, based in quantified experience, new inputs
9. Involve the stakeholders, every week, in setting quantified goals

10. Involve the stakeholders, every week, in actually using increments

) Copyright 2004-8 Gilb, may be used citing source
April 27, 2010 © www.Gilb.com 12

1. Control projects by quantified critical-few results.

1 Page total !

(not stories, functions, features, use cases,

objects, ..)

April 27, 2010 © www.Gilb.com

13

Few Clear Top Goals

sInstead of directing business according to
detailed...strategic plan,
» [Jack] Welch [General Electric CEO]

*believed in setting on Iy a f ew
clear, overarching
goals.

~ CONTROL YOUR
"/ DESTINY OR
SOMEONE ELSE WILL

Fly revised, adlth e

~ N SRS Dy The Rho

48

' NOEL M TICHY
!

*Then, on an ad hoc basis, pist e M
‘ READ BY 1IKATFORD SHERUAD @

- his people were free to seize any "
opportunities

» they saw

to further those goals. —

* Noel Tichy and Stratford Sherman,
“Control Your Own Destiny or
1 Someone Else Will”

Summary of Top ‘8" Project Objectives

Defined Scales of
Measure:

— Demands
comparative
thinking.

— Leads to
requirements that

are unambiguously
clear

— Helps Team be
Aligned with the
Business

| : S

= o)

quart gallon

ounce pound

NOT ‘clear’

Real Example of Lack of Clarity

1. Central to The Corporations business strategy is to be the world’s premier
integrated_<domain> service provider.

2. Will provide a much more efficient user experience
3. Dramatically scale back the time frequently needed after the last data is
acquired to time align, depth correct, splice, merge, recompute and/or do

whatever else is needed to generate the desired products

4. Make the system much easier to understand and use than has been the case
for previous system.

5. A primary goal is to provide a much more productive system development
environment than was previously the case.

6. Will provide a richer set of functionality for supporting next-generation logging
tools and applications.

7. Robustness is an essential system requirement (see rewrite in example below)

8. Major improvements in data quality over current practices

This lack of clarity cost them $100,000, 000 to $160 mill.

You need to be there.

WHY are we doing this? y//

Part of Platform Rationalisation i
Initiative, with below Main Objectives. A

¢ Rationalize into a smaller number of core processing platforms. This cuts
technology spend on duplicate platforms, and creates the opportunity for
operational saves. Expected 60%-80% reduction in processing cost to Fixed

Income Business levies.

¢ International Securities on one platform, Fixed Income and Equities
(Institutional and PB).

¢ Global Processing consistency with single Operations In-Tray and associated
workflow.

¢ Consistent financial processing on one Accounting engine, feeding a single sub-
ledger across products.

e First step towards evolution of “Big Ideas” for Securities.

e Improved development environment, leading to increased capacity to enhance
functionality in future.

e Removes duplicative spend on two back office platforms in support of
mandatory message changes, etc.

How can we improve such bad
i] o specification? (‘Planguage’)

Development Capacity:
Version: 3 Sept 2009 16:26

Type: Main <Complex/Elementary> Objective for a project.

Ambition Level: radically increase the capacity for developers to do defined tasks. <- Tsg
Scale: the Calendar Time for defined [Developers] to Successfully carry out defined [Tasks].
Owner: Tim Fxxx

Calendar Time: defined as: full working days within the start to delivery time frame.

Past [2009, {Bxx, Lxx, Gxx}, If QA Approved Processes used, Developer = Architect, Task = Draft
Architecture] 15 days +4 ?? <- Rob

Goal[2011, { Bxx, Lxx, Gxx }, If QA Approved Processes used, Developer = Architect, Task = Draft
Architecture] 1.5days + 0.4 ?? <- Rob

Justification: Really good architects are very scarce so we need to optimize their use.

Risks: we use effort that should be directed to really high volume or even more critical areas
(|N|Qe| MQMOObjeCﬁVE). www.Gilb.com 17

2. Make sure those results are business results, not technical,

What /evel are these objectives?

Business, User stakeholder, IT Technical?

1. Central to The Corporations business strategy is to be the world’s premier integrated_<domain>
service provider.

2. Will provide a much more efficient user experience

3. Dramatically scale back the time frequently needed after the last data is acquired to time align,
depth correct, splice, merge, recompute and/or do whatever else is needed to generate the desired
products

4. Make the system much easier to understand and use than has been the case for previous system.

5. A primary goal is to provide a much more productive system development environment than was
previously the case.

6. Will provide a richer set of functionality for supporting next-generation logging tools and
applications.

7. Robustness is an essential system requirement (see rewrite in example below)

8. Major improvements in data quality over current practices

April 27, 2010 © www.Gilb.com 18

3. Align your project
with your financial sponsor’s interests!

 The Golden Rule:
— He who has the gold, rules

* Find out and document exactly what the
project financial sponsors are expecting for
their budget for your project

— They are a key stakeholder

— They will expect you to satisfy several other
stakeholders

April 27, 2010 © www.Gilb.com

19

Business Result Alignment: BRA:

Ambition: Maximize delivery speed, and satisfaction
level, of the Change the Bank Book of Work to
achieve ‘key business goals’

Scale: % of Planned Value actually Delivered to the
Business by defined [Time].

Past [Corp., Time = Deadline, 2007]: X% (guess
X <30%7?7?) <- tg

Goal [Corp., Time = Deadline, 2009]: < 50%, maybe
much more?

Issue: can The Tool be exploited to track Value?

Avoid Duplication:

 Ambition: eliminate corporate efforts
that duplicate other corporate efforts.

* Scale: % of project investment that is
Duplicated

e Past [2007]: > 30%?? Wild guess
* Goal[2010] <5% hope

Exploiting Existing Tools:

Ambition: make use of existing tools, avoid
reinventing the wheel.

Scale: % by Total Investment Value that
Arguably could be avoided by Profitably
making use of Existing Tools

Past: 30%%30% ?? wild initial guess to start
discussion tg

Goal [20127, Corp. Wide]: ~ 100%

Results MIS:

Ambition: deliver high-significance real-time
metrics, on critical aspects, of project results
and resources.

Scale: % of defined [Key Project Data] available
to management in real time.

Key Project Data: default: {% of Goal Delivered

to date, Stakeholder Satisfaction level, Value for
Money}

Past [Corp., 2007]: 0%
Goal [Corp., 2010]: > 90%

4. Give developers freedom,

to find out how to deliver those results

. Do not allow customers and salespeople to dictate to developers the technical

solutions, such as screen layouts
. They are ‘amateurs’ at design, and will ruin the design for themselves and others

. They have no overview of the many requirements and constraints that a designer must
consider simultaneously

. What you need to do is to establish the RESULTS valued by user stakeholders, and allow
the developers (architects, user interface engineers, programmers as designers) to find

and measure solutions that give the results desired

— Such as: speed, correctness, input error detection and correction capability, ease of learning, leveraging other

systems data.

. One of our clients (Confirmit/Firm, see Case gilb.com)calls this ‘Empowered Creativity”

April 27, 2010 © www.Gilb.com 24

Quantified top level product objectives

4 product areas were attacked in all: 25 Qualities concurrently, one quarter of a
year. Total development staff = 13

Impact Estimation Table: Reportal codename "Hyggen

s Improvements Reportal - E-SAT features s Improvements Survey Engine NET
Status Status
Units Units % Past [Tolerable [Goal Units Units % Past [Tolerable [Goal
Usability.Intuitivhess (%) Backwards.Compatibility (%:)
75.0 25.0 62.5[=0 75 |ER 83.0 48.0 80.0(<0 as [os
Usability.Consistency.Visual (Elements) . 0.0 67.0 100.0|s7 IO IO
. 14.0 14.0 100.0 o] 11] 14 Generate.WLTime (small/medium/large seconds)
Usability.Consistency.Interaction (Components 4.0 59.0 100.0|sz=2 8 4
15.0 15.0(107.1 o] 11] 14 10.0 397.0| 100.0[<07 100 10
Usability.Productivity (minutes) 94 0| 2290.0 103.9|2284 500 180
5.0 75.0 96.2|s0 = |2 Testability (%)
5.0 450 95.7|s0 s |1 10.0 10.0 13.3[o [100 [100
Usability.Flexibility.OfflineReport.ExportFormats Usability.Speed (seconds/user rating 1-10)
3.0 2.0 66.7[1 [z [« # 51.7[1281 | 300
Usability.Robustness (errors) 60.0|2]E- 7
1.0 22.0 95.7|7 [[o Runtime.ResourceUsage.Memory
Usability.Replacability (nr of features) . 0.0 B B
4.0 5.0 100.0|s 5 Runtime.ResourceUsage.CPU
Usability.ResponseTime.ExportRe (min 3 35 97.2|z28 13 12
1.0 12.0 150.0[12 [13 S Runtime.ResourceUsage.Memoryleak
i Usability.ResponseTime.ViewRepc, _'se 100.0[s00 lo lo
1.0 140 100.0 15] 1 Runtime.Concurrency (number of users)
| Development resources \ ‘ 146.7|1s0 500 1000
203.0 0 Development resources
0 24
ST Improvements
Status
3 Units Units % Past [Tolerable [Goal Improvements XML Web Services
Usability.Replacability (fea‘ture count)
1.0 1.0 50.0[12 [1= [12 Units % Past [Tolerable [Goal
Usability.Productivity (mir:utes) TransferDefinition.Usability.Efficiency
20.0 45 0| 112.5(ss |ES |2s 7.0 9.0 81.8[18 |10 |s
Usability.ClientAcceptance (features count) 7.0 3.0 53.3|2s |15 |1D
4.4 4.4 36.7|o |« [12 TransferDefinition.Usability.Response
Development resources 943.0| -186.0| #FHFFF (170 [eo [z0
101.0 0 A [2s TransferDefinition.Usability.Intuitiveness
5.0 10.0 95.2[1s [7.5 [2.5
http://www.gilb.com/tiki-download_file.php?fileld#32 | =g
p://WWW.dIlID.COM/UKI-aownioa He.pnp flielast

Paper on case.

Confirmit Release 8.5

Trond Johansen

5 Estimate the impacts of your designs,

on your quantified goals

The only justification for a design is that it helps us reach our goals, as expressed by our
requirement levels.

It is critical that we have a fairly clear expectation of how powerful or useful a design will be
for us.

It is not an efficient practice to just select a promising design, and then try it out.

You risk wasted energy. Better to face the bad news early — by estimating the power of the
design, before you decide which design to try out.

One problem is that the best solutions might also have bad side effects too tight security

might destroy user friendliness.

Another problem is that the costs of the design need to be estimated, and need to be

compatible with overall resource budgets, and the resources needed for all the other designs!

If you think the above is just good common sense, then recognize that in IT and software it is
the exception. Designs are selected intuitively, and culturally — but there is no ‘engineering’
evaluation behind them. No wonder we fail so often!

April 27, 2010 © www.Gilb.com

26

Case of Estimating Impact of a Design

“Make it possible to recode variable on the fly from Reporta

Estimated effort: 4 days
Estimated’ Productivity’ improvement: 20 minutes (50% way to Goal)

actual result 38 minutes (95% progress towards Goal)

on a Required Goal Level
Impact Table for Market Research Web=product Project

Solution: ‘Recoding’ (Market Research data recoding)

IH

Trond JoH‘ansen

A B | % | D | E | F | G BX | BY | BZ | CA

:
= Current Step9

3 Improvements Goals Recoding
— Status - - -

4 Estimated impact Actual impact

5 Units Units % Past [Tolerable |Goal Units % Units %

6 Usability.Replacability (feature count)

7 1.00 1.0 50.0 2| 1| 0

8 Usability.Speed.NewFeaturesimpact (%))

g 5,00 5.0 100.0 0 15| 5

10 10.00 10.0 66.7 0 15 5

11 0.00 0.0 0.0 0 30 0

12 Usability.Intuitiveness (%) 1

13 0.00 0.0 0.0 0 60 80

14 N - ~ | Usability.Productivity (minutes

15 20,00 450 112.5 65 35 25 20,00 50,00 38,00 95,0
20] Development resources

21 101.0 91.8 0 110 4,00 3,64 4,00 3,64

confirmity,

6. Select designs with the best impacts for their costs,
do them first.

* Designs should be chosen
— Based on their contribution to our
requirements Goal levels.
— And on their contribution to the entire set of
critical objectives (top ten)
— And on their total value for total costs

. Both short-term and long-term costs, and resources

April 27, 2010 © www.Gilb.com 28

Value Decision Tables

|Product Values

Solution |

Solution 2

|Product Value |

|Product Value 2

|Resources

Copyright: Kai@Gilb.com

Value Decision Tables

Product Values

Product Value |

|Product Value 2

|Resources

30
Copyright: Kai@Gilb.com

Value Decision Tables

Product Values

Product Value |

|Product Value 2

|Resources

31
Copyright: Kai@Gilb.com

Value Decision Tables

Product Values

Product Value |

|Product Value 2

|Resources

32
Copyright: Kai@Gilb.com

Value Decision Tables

IProduct Values

Taste

Resources

33
Copyright: Kai@Gilb.com

Value Decision Tables

IProduct Values

Taste

Nutrition

|Resources

34
Copyright: Kai@Gilb.com

Value Decision Tables

Product Values

Taste

Nutrition

Bhelf Life

|Resources

35
Copyright: Kai@Gilb.com

Value Decision Tables

IProduct Values

Taste

Nutrition

Bhelf Life

Sum Goodies

Resources

36
Copyright: Kai@Gilb.com

Value Decision Tables

[Product Values 20 % 50 % 90 %
Taste 30% 70 % 90 %
|Nutrition 80 % 30 % -10 %
Khelf Life 130 % 150 % 170 %
Sum Goodie 40 % 60 % 80 %
|Resources
B Goodies

B Resources

B Goodies for Resources

37
Copyright: Kai@Gilb.com

Value Decision Tables

IProduct Values

Taste 20 % 50 % 90 %
[Nutrition 30 % 70 % 90 %
Bhelf Life 80 % 30 % 10 %

Sum Goodieg 130 % 150 % 170 %
Resources 40 % 60 % 80 %

B Goodies
B Resources

B Goodies for Resources

38
Copyright: Kai@Gilb.com

April 27, 2010

Real Case of
Impacts for different designs

R time update of ri: R time update of ri R time update of ris 3
PS+ to supp: view view - Add PNL to Real time update of risk |view - Add PNL to Trade
Position view view - Trade View View

'
[ay
o =
Uy N

o &
8

© www.Gilb.com

39

7. Decompose the workflow, into
weekly (or 2% of budget) time boxes

* Objectives of Decomposition
— Early delivery of some value
— Build credibility with stakeholders
— Test out your development process
— Reduce risk of loss to 2%’
— Create value for money (ROI control)

* How to decompose?
— By value

— 1.1.1.1.1.1 method

» 1 stakeholder, 1 value, 1% progress, 1 strategy, 1 week, 1 function
— Use common sense and domain, technical knowledge

7. Decompose the workflow, into weekly time boxes
A Real Example of A Planned Step in Planguage (2010)

R ile Project X P&L F las.Vanilla C 1
Type: Evo Value Delivery Step
[Potentially Reusable for various positions and books]
Stakeholders: Dinesh, Developers who use it (Dan X), Neil?,
Step Owner: Michal X
Step Manager: Tom?
Status: first rough draft to see if we can define an Evo step at all
Approval: NOT YET

: Will
Version: April 9 2010 14:53

Summary: Identify and Reconcile Project X P&L Formulas for a Single Vanilla Position.

Detailed Step:

For

1 Position in 1 Simple (Vanilla Govt Bonds) Instrument,

1 Book,

1 Region

2 days in a row

intra-month, with no deals in progress

Do

1. Identify and consolidate info about P&L formulas in Project X
2. Put those formulas in Excel

3. Reconcile Excel with live Project X books

Part of Strategy Called:

P&L Documentation

1 Obiecti lled:

Primary: Increase The Transparency

% (to Goal) 1-3% ?? (very rough guess, not strictly on the I T T scale MG)
Issue: are we in fact missing some objectives? (MG thinks we are).
Secondary:

Negative:

Indirect Impacts Above:

P&L Consistency

Deliverables:

A spreadsheet (that increases our transparency)

Esti { Time:

1 weekt? ?

April 27, 2010

Necessary Resources:

Development

Time from Michal or equivalent

Neil X on holiday until Wednesday 14 April)

Ben?

From Krishna’s group

Dinesh?

UAT 1 Environment

Assumption: generally available every day

Assumption: we do not need the downstream systems, at this stage

‘I'd like it to be a copy of production” <-MG

I do not need a live system. <- MG

Dependencies:

D1:

Assumptions:

Al: we are just doing front to front.

Issues:

11: does anyc;ne know if the Project X methodology is the same across regions <- Eric (nobody was
sure

Resolution: Chris and ...

12: will any stakeholder really care? <- Eric

Risks:

R1: you might have to repeat this 3 times in order to get real value delivered <- Atul X

I might have to do it for every region, | am not sure there is any way to avoid it.

Future Step Variations: “not this week’!

Trades not yet settled

Forward starting trades

New issues

Fails

Cross end of month

Weekends, holidays

Late Trades/As Of

© www.Gilb.com 41

8. Change designs, based on quantified experience of

implementation

Nobody can accurately predict the multiple effects of a design, which is added to a

mix of other designs in a real world setting.

. It is too complicated, and we have too little knowledge to do so.

. In fact, like cooking, it is easier to taste the effect incrementally, to be sure.
. So, we are going to get some surprises

. And our only recourse is to learn quickly, and adjust quickly.

- We don’t want too much
o And we don’t want too little of the effects
— Just right is fine.

. The reward for learning and for adjusting quickly is that we will reach more of

our critical objectives, for less resource — or within our budgets and deadlines

April 27, 2010 © www.Gilb.com 42

Value Management Process
Learn - - Stakeholders

\

;.
P

Measure
Values

- Value Management
Process

gcrum

Deliver & Solutions
? :> ll/f'iil 30 days

Working i

Product Backlog Sprint Backlog Sprint

Develop ‘ iecompose

Copyright: Kai@Gilb.com 43

NOTICE IN THE 9™ WEEK OF 12 THE % IMPROVEMENT IS FAR MORE THAN 75%

Quantified top level product objectives

THIS IS ACHIEVED BY RAPID DYNAMIC FEEDBACK LEARNING AND REDEPLOYMENT

pact Estimation Table: Re

ortal codename ""H

Csl‘:ra';i';t Improv Reportal - E-SAT features Csl.:rar:'l;t Impro Survey Engine NET
Units Units hst |Tolerable [Goal Units Units Past |Tolerable [Goal
sability.Intuitivhness (%) Backwards.Compatibility (%:)
75.0 25.0 [7s [0 83.0 48.0 40 as [es
Sability.Consistency.Visual (Elements) 0.0 67.0 87 0 IO
14.0 14.0 Ol 11 l 14 Generate.WIL.Time (small/medium/large seconds)
Eability.Consistency.Interaction (Components 4.0 59, s3 8 4
15.0 15.0 o] 11] 14 10.0| 397. 407 100 10
Eability.Productivity (minutes) 94 0| 2290, 2384 500 180
5.0 75.0 = B Testability (%)
5.0 45.0 s [1 10.0 10. 0 [100 [100
sability.Flexibility.OfflineReport.ExportFormats Usability.Speed (seconds/user rating 1-10)
3.0 2.0 [= [« 774.0| 507. 1281 |so0 300
sability.Robustness (errors) 5.0 3. 2 |5 7
1.0 22.0 1]0 Runtime.ResourceUsage.Memory
L ability.Replacability (nr of features) 0.0 0. B B
4.0 5.0 5 [z Runtime.ResourceUsage.CPU
- ability.ResponseTime.ExportReport (minutes 3.0 35, ' B B B
1.0 12.0 [12 [s Runtime.ResourceUsage.MemorylLeak
Lability.ResponseTime.ViewReport (seconds) 0.0 soo0. 800 [o [o
1.0 14.0 1 E-l 3 1 Runtime.Concurrency (number of users)
Evelopment resources 1350.0(1100, 150 500 1000
203.0 [121 Development resources
64.0 0 84
LR Improvements Reportal - MR Features
Status
Units Units % Past |Tolerable [Goal CSurrent Improvements XML Web Services
Usability.Replacability (fea;ture count) e
1.0 1.0 50.0[12 1= [12 Units Units % Past [Tolerable [Goal
Usability.Productivity (mir‘iutes) TransferDefinition.Usability.Efficiency
20.0 45.0| 112.5[ss [2s [2s 7.0 9.0 81.8|18 [10 [s
Usability.ClientAcceptance (features count) . 17.0 3.0 53.3|2s [1s |10
4.4 4.4 36.7|o [« [12 TransferDefinition.Usability.Response
Development resources 943.0| -186.0| FHFHFF 170 |so |z0
101.0 o B [es TransferDefinition.Usability.Intuitiveness
5.0 10.0 15
Development re

http://www.qilb.com/tiki-download fi

Paper on case.
Confirmit Release 8.5

Trond Johansen

9. Involve the stakeholders, every week,

in setting quantified goals

* When stakeholders experience that you really
can deliver what they want

April 27, 2010

Then they will be more willing to spend time with
you determining their real and immediate values.

Their values may have been changed by external
events, since you last determined what they want

Resetting requirement levels, is bringing the
requirements in line with current reality

Not locked into past misconceptions

© www.Gilb.com 45

10 . Involve the stakeholders, every week,
in actually using increments

‘delivering working code to customers’ is not smart enough

You need to deliver value increments to real stakeholder,
like a clear time saving

You need to spread from trial stakeholders towards all of
them

You need to measure reasonably well,

— But not perfectly

— Sometimes ‘early indicators’ (like speed for trial users) are more
useful than the unrealistic dream of the final ‘lagging
indicators’ (like time saved and staff reduction)

You need to plan to capture other feedback in addition to
the primary measures of value delivery

April 27, 2010 © www.Gilb.com 46

ACTUAL RESULTS IN SECOND 12 WEEKS OF USING ‘Evo’
Evo’s impact on Confirmit 9.0 product qualities

Product quality

Intuitiveness

Productivity

Product quality
Productivity

Description

Probability that an inexperienced user can
intuitively figure out how to set up a defined
Simple Survey correctly.

Time in minutes for a defined advanced user,
with full knowledge of 9.0 functionality, to set
up a defined advanced survey correctly.

Description

Time (in minutes) to test a defined survey and
identify 4 inserted script errors, starting from
when the questionnaire is finished to the time
testing is complete and is ready for
production. (Defined Survey: Complex survey,
60 questions, comprehensive JScripting.)

Customer value

Probability increased
by 175%

Time reduced by

38%

Customer value
Time reduced by
83%

and error tracking
increased by 25%

MORE ACTUAL RESULTS IN SECOND 12 WEEKS OF USING ‘Evo’
Evo’s impact on Confirmit 9.0 product qualities

Product quality Description Customer value

Performance Max number of panelists that the system can | Number of panelists
support without exceeding a defined time for | increased by
the defined task, with all components of the
. P 1500%
panel system performing acceptable.

Scalability Ability to accomplish a bulk-update of X Number of panelists
panelists within a timeframe of Z sec. e b 700%
Performance Number of responses a database can contain | Number of responses

if thfe generation of a defined table should be R [1400%
run in 5 seconds.

My 10 Agile Values?

— 1. Focus on real stakeholder values
Communication
— 2. Communicate stakeholder values quantitatively
— 3. Estimate expected results and costs for weekly steps
Feedback
— 4. Generate results, weekly, for stakeholders, in their environment
— 5. Measure all critical aspects of the improved results cycle.
— 6. Analyze deviation from your initial estimates
Courage
— 7. Change plans to reflect weekly learning

— 8. Immediately implement valued stakeholder needs, next week
* Don’t wait, don’t study (analysis paralysis), don’t make excuses.
* Just Do It!

— 9. Tell stakeholders exactly what you will deliver next week

— 10. Use any design, strategy, method, process that works quantitatively well - to get your

results
* Be a systems engineer, not a just programmer (a ‘Softcrafter’).

* Do not be limited by your craft background, in serving your paymasters

] Copyright 2004-8 Gilb, may be used citing source
April 27, 2010 © www.Gilb.com

49

do them in a single keynote.

* | have also not detailed the corresponding points in the Paper
— Written for agilerecord.com

) Copyright 2004-8 Gilb, may be used citing source
April 27, 2010 © www.Gilb.com 50

April 27, 2010

Simplicity

© www.Gilb.com

51

1. Focus on real stakeholder values

April 27, 2010

Communication

© www.Gilb.com

53

2. Communicate stakeholder values quantitatively

3. Estimate expected results and costs for weekly steps

April 27, 2010

Feedback

© www.Gilb.com

56

4. Generate results, weekly, for stakeholders, in their environment

5. Measure all critical aspects of the improved results cycle.

6. Analyze deviation from your initial estimates

April 27, 2010

Courage

© www.Gilb.com

60

7. Change plans to reflect weekly learning

8. Immediately implement valued stakeholder needs, next week

* Don’t wait, don’t study (analysis paralysis), don’t make excuses.
e Just Do It!

9. Tell stakeholders exactly what you will deliver next week

10. Use any design, strategy, method, process that works quantitatively well
- to get your results

* Be a systems engineer, not a just programmer (a ‘Softcrafter’).
* Do not be limited by your craft background, in serving your paymasters

ECCI_I

=0 1 o Lightning Talks

Jason McGuiness — Anti-Parallelism
Paul Black — Malware Research Protocol
James Bach — The “Also” Heuristic of Test Oracles
Rachel Davies — Learn From Experience With Retrospectives
Chris Oldwood — Recycle Bin 101
Tom Gilb — A Real Revolutionary Agile Manifesto
Jim Hague — Are You Getting Enough
Dietmar Kihl — Law of The Big Three (Revised)
Phil Nash — What Will | Be Missing Out On If | Don't Develop
For The iPhone or iPad

Are you getting enough?

ACCU Oxford

accu-oxford@accu.org

http://lists.accu.org/mailman/listinfo/accu-oxford

mailto:accu-oxford@accu.org

http://www.oxfordfolkfestival.com/

http://www.oxfordfolkfestival.com/

111111111

(LT L]

TrIN
& STAN KRLIY.BOOTLE E

Stan KeIIyQBootIe
The Devil's DP Dictionary

Ambrose Bierce
The Devil's Dictionary

Man (n):
An animal so lost in rapturous contemplation
of what he thinks he is as to overlook what he
iIndubitably ought to be. His chief occupation
IS extermination of other animals and his own
species, which, however, multiplies with such

Insistent rapidity as to infest the whole
habitable earth and Canada.

Major premise:
Sixty men can do sixty times as much work as
one man.

Minor premise:
A man can dig a posthole In sixty seconds.

Conclusion:
Sixty men can dig a posthole in one second.

111111111

(LT L]

TrIN
& STAN KRLIY.BOOTLE E

Stan KeIIyQBootIe
The Devil's DP Dictionary

Infinite loop (n):
See: Loop, infinite

Loop, infinite (n):
See: Infinite loop

Recursion (n):.
See: Recursion

Computer Science (n):

A study akin to numerology and astrology, but
lacking the precision of the former and the
success of the latter.

lifeet av.a3 b=/, 0 10,871 0 Lo, fcy]

lifeet av.a3 b=/, 0 10,871 0 Lo, fcy]

There are three things a man must do
before his life is done;

Write two lines in APL,

And make the buggers run.

My program (n):
A gem of algorithmic precision, offering the
most sublime balance between compact,
efficient coding on the one hand, and fully
commented legiblility for posterity on the other.
Compare Your program.

Your program (n):
A maze of non-sequiturs littered with clever-
clever tricks and irrelevant comments.
Compare My program.

Flowchart (v):

To obfuscate a problem with esoteric
cartoons.

Implementation (n):

The fruitless struggle by the talented and
underpaid to fulfill promises made by the rich
and ignorant.

What makes programmers happy?

Algorasm (n):
[Origin: blend of algorithm + orgasm]
A sudden, short-lived moment of pleasure

enjoyed by the programmer (and, for all we

know, by the system) when the final Kludge
rings the bell.

Have you had your 5-a-day?

ECCI_I

=0 1 o Lightning Talks

Jason McGuiness — Anti-Parallelism
Paul Black — Malware Research Protocol
James Bach — The “Also” Heuristic of Test Oracles
Rachel Davies — Learn From Experience With Retrospectives
Chris Oldwood — Recycle Bin 101
Tom Gilb — A Real Revolutionary Agile Manifesto
Jim Hague — Are You Getting Enough
Dietmar Kuihl — Law of The Big Three (Revised)
Phil Nash — What Will | Be Missing Out On If | Don't Develop
For The iPhone or iPad

Law of the Big Three
(revised)

Dietmar Kuhl
dietmar.kuehl@gmail.com

Bloomberg L.P. (London)

mailto:dietmar.kuehl@gmail.com
mailto:dietmar.kuehl@gmail.com

Law of the Big Three

from Marshall Clines C++ FAQ

if one of the structors is need, so are the others:

- copy constructor
- copy assignment
- destructor

Friday, 16 April 2010

Motivation

struct big3
!
big3(int v): ptr_(new int(v)) {}
big3(big3 const& o):
ptr_(new int(o.ptr_->v_)) {}
~big3() { delete this->v_; }
big3& operator= (big3 const& o) {
*this->v_ = *ov_; return *this; }
int™ v_;

};

Example Type

struct example

!

std::vector<int> arrayl_;
std::vector<int> array2_;

};

@ copy constructor and destructor are OK

@ copy assignment is nof!

Friday, 16 April 2010

Idiomatic Assignment

T& T::operator= (T const& other)

{
T(other).swap(*this);

return *this;

@ of course, requires swap() being implemented

@ ... which is wanted anyway

Exception Specifications

@ BAD idea in ALL programming languages

@ deprecated in C++0x

Friday, 16 April 2010

ECCI_I

=0 1 o Lightning Talks

Jason McGuiness — Anti-Parallelism
Paul Black — Malware Research Protocol
James Bach — The “Also” Heuristic of Test Oracles
Rachel Davies — Learn From Experience With Retrospectives
Chris Oldwood — Recycle Bin 101

Tom Gilb — A Real Revolutionary Agile Manifesto

Jim Hague — Are You Getting Enough
Dietmar Kihl — Law of The Big Three (Revised)
Phil Nash — What Will | Be Missing Out On If | Don't Develop
For The iPhone or iPad

ECCI_I

=0 1 o Lightning Talks

Jason McGuiness — Anti-Parallelism
Paul Black — Malware Research Protocol
James Bach — The “Also” Heuristic of Test Oracles
Rachel Davies — Learn From Experience With Retrospectives
Chris Oldwood — Recycle Bin 101
Tom Gilb — A Real Revolutionary Agile Manifesto
Jim Hague — Are You Getting Enough
Dietmar Kihl — Law of The Big Three (Revised)
Phil Nash — What Will | Be Missing Out On If | Don't Develop
For The iPhone or iPad

Boundary Conditions
“The Birthday Problem”

John Lakos
Friday, April 16, 2010

Copyright Notice

© 2010 Bloomberg L.P. Permission is granted to copy, distribute, and
display this material, and to make derivative works and commercial use of
it. The information in this material is provided "AS IS", without warranty of
any kind. Neither Bloomberg nor any employee guarantees the correctness
or completeness of such information. Bloomberg, its employees, and its
affiliated entities and persons shall not be liable, directly or indirectly, in any
way, for any inaccuracies, errors or omissions in such information. Nothing
herein should be interpreted as stating the opinions, policies,
recommendations, or positions of Bloomberg.

Abstract

In our component-based development methodology, virtually all of the software we
design is rendered as components. When we say component in C++ we are referring to
a .h/.cpp pair (of files) satisfying certain well-established, objective physical
properties. Moreover, each of our developers is responsible for ensuring the
correctness of the software he or she creates. Hence, along with each component
developed, we require a standalone test driver to verify that all essential behavior
implemented within that component behaves as advertised, i.e., according to the
contract delineated in its component, class, and function-level documentation. In this
very practicable talk, we will review the various categories of common classes (e.g.,
utilities, mechanisms, and value-semantic types). We will also review the basic
principles of testing, various methods for systematically selecting test data, and the
(four) primary implementation techniques for writing test cases. We will then discuss the
organization of our self-contained (and delightfully light-weight) component-level test
drivers. The substantial remainder of the talk will address (1) the details of how effective
individual test cases are conceived, documented, and implemented, (2) how these test
cases can be profitably ordered to leverage already proven component functionality,
and (3) how similarities within the various class categories naturally lead to effective
reusable testing patterns.

2. Designing Component-Level (function) Tests

Test Data Selection Methods

How do we choose our test inputs (“test vectors™)?
* Ad hoc — whatever makes sense

* Boundary conditions — look at the edges of our
algorithms

* Area testing — try everything in an area or region

* Orthogonal dimensions — choosing a canonical value
and then varying each dimension independently

* Random/statistical — relying on chance to detect
unanticipated problems

* Depth-Ordered Enumeration — systematic testing around
the origin of a design space

* Category partitioning — systematic testing based on
equivalence classes

2. Designing Component-Level (function) Tests

Test Data Selection Methods

How do we choose our test inputs (“test vectors™)?
* Ad hoc — whatever makes sense

* Boundary conditions — look at the edges of our :

algorithms ;

* Area testing —try everythlng In an area or region

* Orthogonal dimensions — choosing a canonical value
and then varying each dimension independently

* Random/statistical — relying on chance to detect
unanticipated problems

* Depth-Ordered Enumeration — systematic testing around
the origin of a design space

* Category partitioning — systematic testing based on
equivalence classes

2. Designing Component-Level (function) Tests

Data Selection: Boundary Conditions

2. Designing Component-Level (function) Tests

Boundary Conditions

There are at least three kinds
of boundaries to consider:

Those...

2. Designing Component-Level (function) Tests

Boundary Conditions

There are at least three kinds
of boundaries to consider:

Those...

* Defined by the Interface

2. Designing Component-Level (function) Tests

Boundary Conditions

There are at least three kinds
of boundaries to consider:

Those...

* Defined by the Interface
* Created by the Implementation

2. Designing Component-Level (function) Tests

Boundary Conditions

There are at least three kinds
of boundaries to consider:

Those...

* Defined by the Interface
* Created by the Implementation
* Imposed by the Platform

2. Designing Component-Level (function) Tests

Boundary Conditions
Birthday Problem

11

2. Designing Component-Level (function) Tests

Boundary Conditions

Birthday Problem

* What is the minimum number of people we would
need in a room for the probability that “at least two
of them have the same birthday” is greater than
50%?

12

2. Designing Component-Level (function) Tests

Boundary Conditions

Birthday Problem

* What is the minimum number of people we would
need in a room for the probability that “at least two
of them have the same birthday” is greater than

50%?
* Simplifying Assumptions:
— Only the day of the year matters.
— All years have 365 days (no leap years)

— Birthdays are uniformly distributed over the days of the
year.

13

2. Designing Component-Level (function) Tests

Boundary Conditions

Birthday Problem

* What is the minimum number of people we would
need in a room for the probability that “at least two
of them have the same birthday” is greater than

50%°?
* Simplifying Assumptions:
— Only the day of the year matters.
— All years have 365 days (no leap years)

— Birthdays are uniformly distributed over the days of the
year.

* How does the probability vary with then number of
people in the room? 14

2. Designing Component-Level (function) Tests

Boundary Conditions

Birthday Function

* Let’s design a function that provides a probability
value in the range [0.0 .. 1.0] as a function of the
number of persons in a room.

* What is the interface?
— Function Name? Return Type? Parameter Name &

Type?
* What is the contract?
— What does it do? How wide should we make it?
— Essential Behavior? (What must happen on valid
input?)

— Undefined Behavior? (What input values are not 15

1~ \

2. Designing Component-Level (function) Tests

double

//
//
//
//
//
//
//

Boundary Conditions
sameBirthday

sameBirthday (int numPeople) ;

Return the probability that at least
two out of the specified (randomly-

chosen) 'numPeople' were born on the
same day of the same month. People

born on February 29th are excluded.

The behavior is undefined unless

'0 <= numPeople'.

16

2. Designing Component-Level (function) Tests

P(1)
P(2)
P(3)
P(4)
P(5)

P(363)
P(364)
P(365)
P(366)
P(367)

Boundary Conditions

sameBirthday
0
1/365
1/365 + 364/365 * 2/365
P(3) + (1 - P(3)) * 3/365
P(4) + (1 - P(4)) * 4/365

= P(362) + (1 - P(362)) * 362/365
= P(363) + (1 - P(363)) * 363/365
= P(364) + (1 - P(364)) * 364/365
= P(365) + (1 - P(365))

=1

17

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

double sameBirthday (int numPeople)
{

assert (0 <= numPeople) ;

if (numPeople > 365) {
return 1.0;

}

double probability = 0.0;

for (int i = 1; i1 < numPeople; ++i) {

probability += (1.0 - probability) * i / 365.0;
}

return probability;

18

2. Designing Component-Level (function) Tests

Boundary Conditions

sameBirthday
* What kinds of values should we test first?

19

2. Designing Component-Level (function) Tests

Boundary Conditions

sameBirthday

* What kinds of values should we test first?
»The values near the boundaries.

20

2. Designing Component-Level (function) Tests

Boundary Conditions

sameBirthday

* What kinds of values should we test first?
»The values near the boundaries.

* Why?

21

2. Designing Component-Level (function) Tests

Boundary Conditions

sameBirthday

* What kinds of values should we test first?
»The values near the boundaries.
* Why?

»Most likely to expose errors; easy to calculate by
hand.

22

2. Designing Component-Level (function) Tests

Boundary Conditions

sameBirthday

* What kinds of values should we test first?
»The values near the boundaries.
* Why?

»Most likely to expose errors; easy to calculate by
nand.

* What are the external interface boundary
values?

23

2. Designing Component-Level (function) Tests

Boundary Conditions

sameBirthday

* What kinds of values should we test first?
»The values near the boundaries.
* Why?

»Most likely to expose errors; easy to calculate by
nand.

* What are the external interface boundary
values?

>0 and INT_MAX

24

2. Designing Component-Level (function) Tests

Boundary Conditions

sameBirthday

What kinds of values should we test first?
»The values near the boundaries.
Why?

»Most likely to expose errors; easy to calculate by
nand.

What are the external interface boundary
values?
>0 and INT_MAX

What are the internal interface boundary values?

25

2. Designing Component-Level (function) Tests

Boundary Conditions

sameBirthday

What kinds of values should we test first?
»The values near the boundaries.
Why?

»Most likely to expose errors; easy to calculate by
nand.

What are the external interface boundary
values?
>0 and INT_MAX

What are the internal interface boundary values?
>1 &2 and 365 & 366 (367 may be animp. 2

2. Designing Component-Level (function) Tests

Boundary Conditions

sameBirthday
Probability #
I
1.00 + - - = = = = = = = = = = = = = = - - ke ke - - -
I * \
I \
I /
I /
: /
Singular Point Singular Point
/
|/
| / (not to scale)
|\
|\ * numPeople
0.00 #*——-¥ ' ce. mmmm————- e e - >

0 1 2 365 366 367

27

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

ASSERT (0.0 == sameBirthday(0)); // external interface boundary
ASSERT (0.0 == sameBirthday(l)); // internal singular point
ASSERT (0.0 < sameBirthday(2)); // internal interface boundary

o

ASSERT (1.0 > sameBirthday(365));// internal interface boundary

ASSERT (1.0 == sameBirthday(366));// internal singular point
ASSERT (1.0 == sameBirthday(367));// internal interface boundary
ASSERT (1.0 == sameBirthday (INT MAX) ;

// external interface boundary
// also platform boundary

28

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

ASSERT (0.0 == sameBirthday(0)); // external interface boundary
ASSERT (0.0 == sameBirthday(l)); // internal singular point
ASSERT (0.0 < sameBirthday(2)); // internal interface boundary

o

ASSERT (1.0 > sameBirthday(365));// internal interface boundary

ASSERT (1.0 == sameBirthday(366));// internal singular point
ASSERT (1.0 == sameBirthday(367));// internal interface boundary
ASSERT (1.0 == sameBirthday (INT MAX) ;

// external interface boundary
// also platform boundary

29

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

ASSERT (0.0 == sameBirthday(0)); // external interface boundary
ASSERT (0.0 == sameBirthday(l)); // internal singular point
ASSERT (0.0 < sameBirthday(2)); // internal interface boundary

o

ASSERT (1.0 > sameBirthday(365));// internal interface boundary
ASSERT (1. 2
ASSERT (1.

ASSERT (1
external interface boundary
// also platform boundary

30

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

ASSERT (0.0 == sameBirthday(0)); // external interface boundary
ASSERT (0.0 == sameBirthday(l)); // internal singular point
ASSERT (0.0 < sameBirthday(2)); // internal interface boundary

o

ASSERT (1.
ASSERT (1.
ASSERT (1.

sameBirthday (365)) ;// internal interface boundary

ASSERT (1

31

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

1.2

0.8

0.6

0.4

« 0.2
0

o | |
"M’QOOQLQQQQ

100 200 300 400

32

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

0 0 0.009
1 0 0.008 ¢
2 0.00274 0.007
3 0.008204 0.006
4 0.016356 0.005

0.004

0.003

0.002

0.001

0+

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

1.2

365 1 1
366 1 08
367 1 0.6

0.4

0.2

0
364.5 365 365.5 366 366.5 367 367.5

ASSERT (1.0 > sameBirthday(365)); // FAIL

34

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

1.2

365 1 1
366 1 08
367 1 0.6

0.4

0.2

0
364.5 365 365.5 366 366.5 367 367.5

ASSERT (1.0 > sameBirthday(364)); // FAIL

35

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

1.2

365 1 1
366 1 08
367 1 0.6

0.4

0.2

0
364.5 365 365.5 366 366.5 367 367.5

ASSERT (1.0 > sameBirthday(363)); // FAIL

36

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

90 0.99999%4
91 0.999995
92 0.999997
93 0.999997
94 0.999998
95 0.999999
96 0.999999
97 0.999999
98 0.999999
99 1
100
101
102
103
104
105

L = = S = S

1.000001

1

(0.999999

0.999998

0.999997

0.999996

0.999985

0.999994

0.999993

L 2
4

L 2

88

90 92 94 96 98 100 102 104 106

ASSERT (1.0 > sameBirthday(98)); // SUCCESS

37

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

90 0.99999%4
91 0.999995
92 0.999997
93 0.999997
94 0.999998
95 0.999999
96 0.999999
97 0.999999
98 0.999999
99 1
100
101
102
103
104
105

L = = S = S

1.000001

1

(0.999999

0.999998

0.999997

0.999996

0.999985

0.999994

0.999993

L 2
4

L 2

88

90 92 94 96 98 100 102 104 106

ASSERT (1.0 > sameBirthday(99)); // SUCCESS

38

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

90 0.99999%4
91 0.999995
92 0.999997
93 0.999997
94 0.999998
95 0.999999
96 0.999999
97 0.999999
98 0.999999
99 1
100
101
102
103
104
105

L = = S = S

1.000001

1

(0.999999

0.999998

0.999997

0.999996

0.999985

0.999994

0.999993

L 2
4

L 2

88

90 92 94 96 98 100 102 104 106

ASSERT (1.0 > sameBirthday(100)); // SUCCESS

39

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

90 0.99999%4
91 0.999995
92 0.999997
93 0.999997
94 0.999998
95 0.999999
96 0.999999
97 0.999999
98 0.999999
99 1
100
101
102
103
104
105

L = = S = S

1.000001

1

(0.999999

0.999998

0.999997

0.999996

0.999985

0.999994

0.999993

L 2
4

L 2

88

90 92 94 96 98 100 102 104 106

ASSERT (1.0 > sameBirthday(101)); // SUCCESS

40

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

90 0.99999%4
91 0.999995
92 0.999997
93 0.999997
94 0.999998
95 0.999999
96 0.999999
97 0.999999
98 0.999999
99 1
100
101
102
103
104
105

L = = S = S

1.000001

1

(0.999999

0.999998

0.999997

0.999996

0.999985

0.999994

0.999993

L 2
4

L 2

88

90 92 94 96 98 100 102 104 106

ASSERT (1.0 > sameBirthday(102)); // SUCCESS

41

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

90 0.99999%4
91 0.999995
92 0.999997
93 0.999997
94 0.999998
95 0.999999
96 0.999999
97 0.999999
98 0.999999
99 1
100
101
102
103
104
105

L = = S = S

1.000001

1

(0.999999

0.999998

0.999997

0.999996

0.999985

0.999994

0.999993

L 2
4

L 2

88

90 92 94 96 98 100 102 104 106

ASSERT (1.0 > sameBirthday(103)); // SUCCESS

42

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

90 0.99999%4
91 0.999995
92 0.999997
93 0.999997
94 0.999998
95 0.999999
96 0.999999
97 0.999999
98 0.999999
99 1
100
101
102
103
104
105

L = = S = S

1.000001

1

(0.999999

0.999998

0.999997

0.999996

0.999985

0.999994

0.999993

L 2
4

L 2

88

90 92 94 96 98 100 102 104 106

ASSERT (1.0 > sameBirthday(110)); // SUCCESS

43

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

90 0.99999%4
91 0.999995
92 0.999997
93 0.999997
94 0.999998
95 0.999999
96 0.999999
97 0.999999
98 0.999999
99 1
100
101
102
103
104
105

L = = S = S

1.000001

1

(0.999999

0.999998

0.999997

0.999996

0.999985

0.999994

0.999993

L 2
4

L 2

88

90 92 94 96 98 100 102 104 106

ASSERT (1.0 > sameBirthday(120)); // SUCCESS

44

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

90 0.99999%4
91 0.999995
92 0.999997
93 0.999997
94 0.999998
95 0.999999
96 0.999999
97 0.999999
98 0.999999
99 1
100
101
102
103
104
105

L = = S = S

1.000001

1

(0.999999

0.999998

0.999997

0.999996

0.999985

0.999994

0.999993

L 2
4

L 2

88

90 92 94 96 98 100 102 104 106

ASSERT (1.0 > sameBirthday(150)); // SUCCESS

45

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

90 0.99999%4
91 0.999995
92 0.999997
93 0.999997
94 0.999998
95 0.999999
96 0.999999
97 0.999999
98 0.999999
99 1
100
101
102
103
104
105

L = = S = S

1.000001

1

(0.999999

0.999998

0.999997

0.999996

0.999985

0.999994

0.999993

L 2
4

L 2

88

90 92 94 96 98 100 102 104 106

ASSERT (1.0 > sameBirthday (200)); // FAIL

46

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

90 0.99999%4
91 0.999995
92 0.999997
93 0.999997
94 0.999998
95 0.999999
96 0.999999
97 0.999999
98 0.999999
99 1
100
101
102
103
104
105

L = = S = S

1.000001

1

(0.999999

0.999998

0.999997

0.999996

0.999985

0.999994

0.999993

L 2
4

L 2

88

90 92 94 96 98 100 102 104 106

ASSERT (1.0 > sameBirthday(175)); // SUCCESS

47

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

90 0.99999%4
91 0.999995
92 0.999997
93 0.999997
94 0.999998
95 0.999999
96 0.999999
97 0.999999
98 0.999999
99 1
100
101
102
103
104
105

L = = S = S

1.000001

1

(0.999999

0.999998

0.999997

0.999996

0.999985

0.999994

0.999993

L 2
4

L 2

88

90 92 94 96 98 100 102 104 106

ASSERT (1.0 > sameBirthday(185)); // FAIL

48

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

90 0.99999%4
91 0.999995
92 0.999997
93 0.999997
94 0.999998
95 0.999999
96 0.999999
97 0.999999
98 0.999999
99 1
100
101
102
103
104
105

L = = S = S

1.000001

1

(0.999999

0.999998

0.999997

0.999996

0.999985

0.999994

0.999993

L 2
4

L 2

88

90 92 94 96 98 100 102 104 106

ASSERT (1.0 > sameBirthday(180)); // SUCCESS

49

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

90 0.99999%4
91 0.999995
92 0.999997
93 0.999997
94 0.999998
95 0.999999
96 0.999999
97 0.999999
98 0.999999
99 1
100
101
102
103
104
105

L = = S = S

1.000001

1

(0.999999

0.999998

0.999997

0.999996

0.999985

0.999994

0.999993

L 2
4

L 2

88

90 92 94 96 98 100 102 104 106

ASSERT (1.0 > sameBirthday(182)); // SUCCESS

50

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

90 0.99999%4
91 0.999995
92 0.999997
93 0.999997
94 0.999998
95 0.999999
96 0.999999
97 0.999999
98 0.999999
99 1
100
101
102
103
104
105

L = = S = S

1.000001

1

(0.999999

0.999998

0.999997

0.999996

0.999985

0.999994

0.999993

L 2
4

L 2

88

90 92 94 96 98 100 102 104 106

ASSERT (1.0 > sameBirthday(184)); // FAIL

51

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

90 0.99999%4
91 0.999995
92 0.999997
93 0.999997
94 0.999998
95 0.999999
96 0.999999
97 0.999999
98 0.999999
99 1
100
101
102
103
104
105

L = = S = S

1.000001

1

(0.999999

0.999998

0.999997

0.999996

0.999985

0.999994

0.999993

L 2
4

L 2

88

90 92 94 96 98 100 102 104 106

ASSERT (1.0 > sameBirthday(183)); // SUCCESS

52

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

So what’s wrong with our
implementation?

53

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

double sameBirthday (int numPeople)
{

assert (0 <= numPeople) ;

if (numPeople > 365) {
return 1.0;

}

double probability = 0.0;

for (int i = 1; i1 < numPeople; ++i) {

probability += (1.0 - probability) * i / 365.0;
}

return probability;

54

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

We have encountered a platform-
imposed boundary condition
between 183 and 184 people!

55

2. Designing Component-Level (function) Tests

Boundary Conditions

Using a double to represent “Almost One”

sign-bit 11-bit exponent 52-bit mantissa

/ / /
o 01111111110 171711771711711711711
+2~-1 * [1+ 1/2 + 1/4 + 1/8 + 1/16 + ...+ 1 * 22-51 + 1 * 2~-52

Almost One:(i = 2A-5£>= 0.9999 9999 9999 9999

0 01111111111 00
+ 220 * [1 + 0/2 + 0/4 + 0/8 + 0/16 + ... + 0 * 2~-51 + 0 * 2~-52

One: 1 = 1.0000 0000 0000 OOOO

56

2. Designing Component-Level (function) Tests

Boundary Conditions

Using a double to represent “Almost Zero”

sign-bit 11-bit exponent 52-bit mantissa
/ / /

0 00000000000 00OOOO0O0OOOOOO0O0OOOOOOOOOOOOOOOOOOOOOOOO0OOOO0O0O0O0O0ONO0O0O00L

+ 24-1022 * [0/2 t/0f4w+\9/8 + 0/16 + ... + 0 * 2A-51 + 1 * 2~-52]
A /

Almost Zero: 2~-1074 4.9406 5645 8412 466 * 10~-324

0 00000000000 0000O0O0O000OOO0O0O0OOOO0O0OOOOOO0OOOOOOOOOOOO0O0OOOO0O0O0O0O0ONOO0O0NO
+ 2~-1022 * [0/2 + 0O/4 + 0/8 + 0/16 + ... + 0 * 2~-51 + 0 * 2~-52]

Zero: 0 = zero exponent and zero mantissa (sign is irrelevant)

57

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday
* How do we fix our implementation for

sameBirthday?

58

2. Desighing Component-Level (function) Tests
Boundary Conditions
sameBirthday
* How do we fix our implementation for
sameBirthday?

»>We can’t: No viable implementation
exists!

59

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

* What should be do?

60

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

* What should be do?
»Rework our interface & contract.

61

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

»Rework our interface & contract.
* How??

62

2. Designing Component-Level (function) Tests

Boundary Conditions
sameBirthday

»Rework our interface & contract.

» Use what we’ve learned about non-uniformity
in the dvnamic rance of IFFF-754 d011bh 1 e

2. Designing Component-Level (function) Tests

Boundary Conditions
uniqueBirthday

64

2. Designing Component-Level (function) Tests

Boundary Conditions

uniqueBirthday
The probability P(N) that no two of N people have the same
birthday can be expressed as
P(N) = 365/365 * 364/365 * 363/365 * 362/365 * ... * (366 —
N)/365
=365!/[N! * 365~N]

65

2. Designing Component-Level (function) Tests

Boundary Conditions

uniqueBirthday

* The probability P(N) that no two of N people have the same
birthday can be expressed as
P(N) = 365/365 * 364/365 * 363/365 * 362/365 * ... * (366 —
N)/365
=365!/[N! * 365~N]

* P(365) = 365!/3657365 ~=e"-365 * sqrt(2 * pi * 365) Jrerfing s

approx.
~=1.45 * 107-157

>>4.9406 5645 8412 466 * 107-324

66

2. Designing Component-Level (function) Tests

Boundary Conditions

uniqueBirthday
* The probability P(N) that no two of N people have the same
birthday can be expressed as
P(N) = 365/365 * 364/365 * 363/365 * 362/365 * ... * (366 —
N)/365
=365!/[N! * 365~N]

* P(365) = 365!/3657365 ~=e"-365 * sqrt(2 * pi * 365) Jrerfing s

approx.
~=1.45 * 107-157

>>4.9406 5645 8412 466 * 107-324

* Withdouble uniqueBirthday (int numPeople), we can
at least represent the results for the entire range of valid inputs,

2. Designing Component-Level (function) Tests

double

//
//
//
//
//
//
//

Boundary Conditions
uniqueBirthday

uniqueBirthday (int numPeople) ;
Return the probability that no two
of the specified (randomly-chosen)
'numPeople' were born on the same
day of the same month. People born
on February 29th are excluded. The
behavior is undefined unless

'0 <= numPeople'.

68

2. Designing Component-Level (function) Tests

Boundary Conditions
uniqueBirthday

#include <assert.h>

double uniqueBirthday (int numPeople)
{

assert (0 <= numPeople) ;

if (numPeople > 365) {
return 0.0;

}

double probability =1.0;
int lastNumerator = 366 - numPeople;
for (int i = 364; i >= lastNumerator; --i) {

probability *= i/365.0;
}

69

2. Designing Component-Level (function) Tests

Boundary Conditions
uniqueBirthday

A

A

0.6

1.2

’,,0000000’

0.4

0.2

50 100 150 200 250 300

350

400

70

2. Designing Component-Level (function) Tests

Boundary Conditions
uniqueBirthday

2 0.99726

3 0.991796

71

2. Designing Component-Level (function) Tests

Boundary Conditions
uniqueBirthday

365 1.45E-157 g

0

| A 4 | \ 4 1
365 366 366.5 3 367.5

72

2. Designing Component-Level (function) Tests

Boundary Conditions
Observations

73

2. Designing Component-Level (function) Tests

Boundary Conditions

Observations
* We cannot expect to know everything a priori.

74

2. Designing Component-Level (function) Tests

Boundary Conditions
Observations

* The purpose of our initial testing here was to
verify certain basic assumptions.

75

2. Designing Component-Level (function) Tests

Boundary Conditions
Observations

* Creating just a few thoughtful tests at critical
interface boundaries helped us to discover
important platform boundaries, which, in turn,
led us to redesign our function's interface.

76

2. Designing Component-Level (function) Tests

Boundary Conditions
Observations

* Thorough testing does not necessarily tell us how
to solve a problem; it does, however, alert us to
when we haven't done it yet. 7

Conclusion

Be

Concerned!

Conclusion

The End

Conclusion

The End

Birthday Surprise

Kevlin Henney

kevlin@curbralan.com
@KevlinHenney

Is It possible to Implement
sameBirthday so that it satisfies
the contract as defined?

Yes. The first version satisfied
the contract as stated.

But it didn't pass the tests!

Indeed...

When a test fails, it may fall
because of a bug Iin our code...

And it may reveal mistaken
assumptions in the test case.

OK, so Is It possible to write
sameBirthday so that It also
passes the tests?

Yes.

double sameBirthday(int numPeople)

{
double probability;

1T(humPeople < 0)

{
errno = EDOM;
probability = NAN;
+
else 1f(numPeople > 365)
{
probability = 1;
+
else
{
probability = O;
for(int 1 = 1; 1 < numPeople; ++i1)
probability += (1 — probability) * 1 / 365.0;
iT(probability == 1)
—--*(unsigned long long *) &probability;
+

return probability;

if(probability == 1)
—-*(unsigned long long *) &probability;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	£20

