

A Simple Matter of Configuration

Roger Orr

OR/2 Limited

How can we tame the complex world of
configuration?

– ACCU 2010 –

A Simple Matter of Configuration

Roger Orr

OR/2 Limited

How can we tame the complex world of
configuration?

– ACCU 2010 –

Death by PowerpointDeath by Powerpoint

A Simple Matter of Configuration

Roger Orr

OR/2 Limited

How can we tame the complex world of
configuration?

– ACCU 2010 –

Death Death toto Powerpoint Powerpoint

A Simple Matter of Configuration?

● You've probably heard of SMOP (A simple
matter of programming)

● “It's easy to enhance a FORTRAN compiler
to compile COBOL as well; it's just a
SMOP.”

A Simple Matter of Configuration?

● You've probably heard of SMOP (A simple
matter of programming)

● “It's easy to enhance a FORTRAN compiler
to compile COBOL as well; it's just a
SMOP.”

● We have the same problem here.
● “It's easy to change your program to use

Oracle rather than MSSQL, it's just a
SMOC.”

A Simple Matter of Configuration ?

 This is a SMOC(K)

What is the reality?

● Configuration is often complex

What is the reality?

● Configuration is often complex
● Sometimes over-complex!

What is the reality?

● Configuration is often complex
● Sometimes over-complex!
● There is no one-size-fits-all solution

● This PC has 730 ini/cfg/config files on it!

What is the reality?

● Configuration is often complex
● Sometimes over-complex!
● There is no one-size-fits-all solution
● As Albert Einstein famously said:

“Make everything as simple as possible,
but not simpler.”

The Complex Reality of
Configuration

This is a CROC(K)

What is configuration?

● I found it hard to define the word: is it
– Data?
– Meta data?

● It seemed clearer to focus on intent:
– “Setting up for a particular purpose”
– "Configuration is then seen as a structured

process which transforms the generic
package into a system individualised for
the organisation-specific context."
http://is.tm.tue.nl/staff/wvdaalst/publications/p356.pdf

http://is.tm.tue.nl/staff/wvdaalst/publications/p356.pdf

What is configuration?

● I found it hard to define the word: is it
– Data?
– Meta data?

● It seemed clearer to focus on intent:
– “Setting up for a particular purpose”

● This is the root of the complexity – the
purpose and the setup can vary widely

What is not configuration?

● Searching for “patterns for configuration of
software” finds solutions to a different
problem

● Sadly “software configuration management”
has very little to do with the management of
the configuration of software

● SCM focuses on the process of reliably
producing software artifacts that meet their
requirements: version control, change
management, etc.

An example
● Let's take a simple program and see how it

might be configured
● Doing this will help us identify some of the

forces involved in configuration

Hello World
#include <iostream>

int main()

{

 std::cout << "Hello world" << std::endl;

}

Hello World #2
● Setup at compile time

#include <iostream>

int main()

{

 std::cout << "Hello Roger" << std::endl;

}

● “Magic numbers & literals are a configuration aspect of the code
chosen to be implemented at compile-time.”- Jason McGuiness

Hello World #2
● Setup at compile time

#include <iostream>

#define _STR(X) #X

#define STR(X) _STR(X)

int main()

{

 std::cout << "Hello STR(NAME)" << std::endl;

}

cl /DNAME=Bill hello.cpp

Hello World #3
● Auto-setup from the environment

#include <iostream>

#include <cstdlib>

int main()

{

 char const * who = std::getenv("USERNAME");

 std::cout << "Hello " << who << std::endl;

}

Hello World #4
● Setup from the command line

#include <iostream>

int main(int argc, char **argv)

{

 char const * who = argc > 1 ? argv[1] : "world";

 std::cout << "Hello " << who << std::endl;

}

Hello World #5
● Setup from the user(s)

#include <iostream>

#include <string>

int main()

{

 while (std::cin)

 {

 std::cout << “Who are you?”;

 std::string who;

 std::cin >> who;

 std::cout << "Hello " << who << std::endl;

 }

}

Other directions
● These examples only focused on the name.
● Depending on the purpose other things might

need to be setup
– Language
– Output destination
– Presentation (font, size, colour)

Other directions
● These examples only focused on the name.
● Depending on the purpose other things might

need to be setup
– Language
– Output destination
– Presentation (font, size, colour)

● And that's just for “hello world”!

What have we learned?
● Configuration can be applied at many stages of

the program, from during coding to at run time.
● Values can come from multiple sources
● Values may change
● Many technical solutions are possible

What needs configuring?
● A key step in deciding how to configure is to

identify what value types need configuring.
– What may change/what won't?
– Who (or what) knows the required values?
– When are they known?
– Are they static or dynamic?
– Mandatory or optional?

What may change?
● Processing configuration is costly

– Code to read it
– People to maintain it
– Time to fix bad configuration

● Decide what should be configurable and what
decisions you can/will make up-front

What may change?
● You've heard of

– YAGNI (“You Ain't Gonna Need It”)
– TAGRI (“They Ain't Gonna Read It”)

I think configuration needs
– NIGMI (“Nobody Is Gonna Modify It”)

● Don't need to make everything configurable

What may change?

Who knows the required values?
● Configuration values can come from many

places, including:
– “Extrinsic” data (e.g. support URL)
– Installation data (e.g. OS version)
– Runtime data (e.g. username)
– Other systems (e.g. database)
– The user

When are they known?
● During development

– Can choose to code in or soft configure
● At installation

– For example the “./configure” command
● At program start

– The data may be provided by many sources,
including command line arguments, property
files and database queries

Are they static or dynamic?
● Can configuration values change during the

execution of the program?
● If so, the program is more flexible but also more

complicated:
– How and when to detect changes
– How to apply consistently
– How to handle dependent/cached values
– Do changed values need persisting?

● Testing ?

Mandatory or optional?
● Some configuration parameters must be

supplied or the program cannot run
● Other values may be optional

– a sensible default value exists
– or less functionality is not available

Other issues
● Security
● Audit
● Upgrades
● Discoverability
● Supportability
● Manual or tool-assisted changes

Security
● Configuration data has security implications

– Passwords (most of us expect this one!)
– Directories
– Paths
– Script names
– Database fields (SQL injection)

Security
● If it isn't configurable it is harder to hack
● Can conflict with supportability

– (eg usually don't log the password)

Audit
● Many businesses require software audit of all

changes to production systems
● How do you audit configuration changes?

– Source code control system
● (May want a separate repository)

– Database
– Manual procedures
– Versioned file systems

● Much easier to design in than bolt on later

Upgrades
● Typically the configuration data required by a

program changes during the program's lifetime
● How will you handle:

– New items
– Updated items
– Deleted items?

Upgrades
● New items

– May be able to provide a default / automatically
– How to ensure consistency?

● Changed items
– If old value no longer valid can cause hard to

diagnose faults.
● Deleted items

– User may expect a value has effect
– How do you tell which data is actually in use?

Upgrades
● Rollback

– If the upgrade is rolled back will the
configuration get restored correctly?

● Sequential upgrades
– Can you skip an upgrade?

● Decouple config change from software change

Discoverability
● What can I configure?
● What are the possible values I can use?
● How can I tell if I get it wrong?

Supportability
● If you allow configuration it will go wrong
● How will the program report this?
● Who will know?
● How can it be fixed?

Supportability
● How easily can you find what the current active

configuration of your program really is?
● Can you test just the configuration?

Manual or tool-assisted editing?
● What mechanism is there for changing values?
● Manual editing (eg text editor, registry values)
● GUI setup page
● If both, how do you correlate them?

CROC
● In practice it's complicated

– Mix of type of configuration items
– Mix of static and dynamic items
– Mix of granularity or scope (user, machine, etc)

● Unlikely that “one size fits all”

Configuration as indirection
● “All problems in computer science can be

solved by another level of indirection”
 (David Wheeler)

Configuration as indirection
● “All problems in computer science can be

solved by another level of indirection”
std::string CONFIG(argc > 1 ? argv[1] : “CONFIG”);
...
if (getenv(“CONFIG”)) CONFIG = getenv(“CONFIG”);
...
sprintf(buff, “select VALUE from %s where key='CONFIG'”,
CONFIG);
…
CONFIG = select_string_value(buff);

--- environment
set CONFIG=CONFIG

--- database : table CONFIG:
Key Value
CONFIG CONFIG

Configuration as indirection
● “All problems in computer science can be

solved by another level of indirection”
● … “except for the problem of too many layers of

indirection” (Kevlin Henney)

Some basic patterns
● There are many patterns for configuration
● I'll look at a few and identify some of the forces

and trade-offs
● Generally need to use more than one pattern

Source code
● Context

– Value known up-front
● Benefits

– Can be cross referenced and typed
– Automatically audited with source code

● Liabilities
– Produces multiple build artifacts
– Not changed after compilation (if any...)

Source code
● Examples

– Debug and release build
– External programs
– Size limits

● Factory automation example
– Misconfiguration too expensive, so ship one file

Command line argument
● Context

– Value known when program invoked
● Benefits

– Easy to change manually
– Easy to discover (on most operating systems)

● Liabilities
– Can be hard to manage multiple items
– 'Special characters' can be problematic
– Hard to change programmatically
– Audit

Command line argument
● Examples

– Command line tools
– Windows svchost.exe
– Java system properties
– Drag and drop support

Environment variables
● Context

– Value known when program invoked
● Benefits

– Can be set once for multiple programs
– Easy to change

● Liabilities
– Hard to audit and control
– Name clashes
– May be hard limits on sizes

Environment variables
● Examples

– HOME
– CLASSPATH
– USERNAME
– CL

● Interaction with command line adds complexity

Windows Registry
● Context

– Windows (!)
– Value known at program start

● Benefits
– Standard support, e.g. by installers
– Per user and per machine sections
– Permissions

● Liabilities
– Single “big ball of mud”
– Permissions

Windows Registry
● Examples

– COM registration
– Installed programs
– Policies
– Image File Execution Options

● I'm sure we all have war stories....

Properties file (Name/Value)
● Context

– Value available locally
● Benefits

– Separation of concerns
– May be able to re-write file
– Can add comments

● Liabilites
– Management of many small files
– Audit
– Restrictive syntax

Properties file
● Examples

– Windows ini files
– Unix rc files
– Java properties

XML configuration file
● Context

– Hierarchical configuration data
● Benefits

– Flexible
– Validated
– Multiple tools

● Liabilities
– Verbose
– Not human readable
– Different features supported (eg ENTITY)

XML configuration file
● Examples

– app.config
– Windows manifest files
– Log4j configuration file
– Spring configuration

● Pop quiz
– which ones validate?
– Which ones support entities?

Other file types/usages
● Unix shells sourcing files on startup
● Binary file formats used for persistence
● 'Template' pattern (using simple substitution)
● External validators

Database
● Context

– Already use a database
● Benefits

– Centralisable control and access controls
– Range of standard data types

● Liabilities
– Need to configure database connection details
– Need tools to discover user's configuration

Database
● Examples

– Relation databases often hold their own config
– Mail servers
– DNS lookup
– Most programs I've worked on in recent years

External service
● Context

– Complex or volatile configuration
● Benefits

– Potentially more flexible than a file or database
● Liabilities

– Need to configure the client details
– More points of failure
– Can be hard to test

Dynamic configuration
● Polling or event driven notification?

– Management interface
● Notifying the affected parts of the program

– On-use
– Callbacks
– In-place editing

● Persisting the changed data for next time

What to do?
● Plan early for configuration
● Identify the types of configuration you need
● Eliminate unnecessary configuration
● Use smallest number of mechanisms you can

What to do?
● Support

– Common failure modes
– Verification

● Security
– How can you break it?
– What information is leaked?

Conclusion
● Configuration is often complex
● Keep the 'big picture' in mind
● Consistent project-wide configuration pays off

Conclusion

● It's not a SMOC, it's a CROC

