- of Configuration

a er Orr
" OR/2 Limited

How can we tame the complex world of
configuration?

—ACCU 2010 -

ter of Configuration
Deafﬁ py. Powerpoint
ger Orr

 OR/2 Limited

How can we tame the complex world of
configuration?

—ACCU 2010 -

ter of Configuration
Deafﬁ. to Powerpoint
ger Orr

 OR/2 Limited

How can we tame the complex world of
configuration?

—ACCU 2010 -

tter of Configuration

ly heard of SMOP (A simple
amming)
s easy to enhance a FORTRAN compiler

| tocomplle COBOL as well; it's just a
SMOP.”

A Simple Matter of Configuration?

* You've probably heard of SMOP (A simple
matter of programming)

* “It's easy to enhance a FORTRAN compiler
to compile COBOL as well; it's just a
SMOP.”

* We have the same problem here.

* “It's easy to change your program to use
Oracle rather than MSSQL, it's just a
SMOC.”

mple Matter of Configuration ?

This is a SMOC(K)

reality?

n complex

reality?

en complex
mplex!

the reality?

often complex
complex!
_size-fits-all solution

* This PC has 730 ini/cfg/config files on it!

s the reality?

s often complex
ar-complex!

ere is no one-size-fits-all solution

* As Albert Einstein famously said:

“Make everything as simple as possible,
but not simpler.”

plex Reality of

What /s configuration?

* | found it hard to define the word: is it
- Data”?
- Meta data”?

e |t seemed clearer to focus on intent:

- “Setting up for a particular purpose”

- "Configuration is then seen as a structured
process which transforms the generic
package into a system individualised for
the organisation-specific context."”

http://is.tm.tue.nl/staff/wvdaalst/publications/p356.pdf

is configuration?

4 define the word: is it

-~ Meta data?
* |t seemed clearer to focus on intent:
- “Setting up for a particular purpose”

* This is the root of the complexity — the
purpose and the setup can vary widely

What is not configuration?

» Searching for “patterns for configuration of
software” finds solutions to a different
problem

» Sadly “software configuration management’
has very little to do with the management of
the configuration of software

« SCM focuses on the process of reliably
producing software artifacts that meet their
requirements: version control, change
management, etc.

1 example

. program and see how it

s identify some of the
cconfiguration

World #2

std::cout << "Hello Foger" << std::endl;

« “Magic numbers & literals are a configuration aspect of the code
chosen to be implemented at compile-time.”- Jason McGuiness

~ std::cout << "Hello STR(NANE)" << std:end!:
}

cl /DNAME=BIll hello.cpp

orld #3

nvironment

“ who = std::getenv("USERNAME")
~ std::cout << "Hello " << who << std::endl;

}

orld #4

and line

'world";

< who << std::endl:

orld #5

std::cout << “Who are you?”;

std::string who;
std::cin >> who;

std::cout << "Hello " << who << std::endl;

er directions

only focused on the name.
-purpose other things might

— Output destination
- Presentation (font, size, colour)

her directions

5 only focused on the name.
e purpose other things might

— Output destination
- Presentation (font, size, colour)

* And that's just for “hello world™!

,have we learned?

an be applied at many stages of
)m during coding to at run time.

es can come from multiple sources
~« Values may change
* Many technical solutions are possible

What needs configuring?

* A key step in deciding how to configure is to
identify what value types need configuring.

- What may change/what won't?
- Who (or what) knows the required values?

- When are they known?
- Are they static or dynamic?
- Mandatory or optional?

may change?

juration is costly
intain it
he to fix bad configuration

- Demde what should be configurable and what
decisions you can/will make up-front

may change?

Ain't Gonna Need It")
Gonna Read It")
\figuration needs
- NIGMI (“Nobody Is Gonna Modify It”)
* Don't need to make everything configurable

The Professor’s invention for peeling potatoes.

s the required values?
alues can come from many

1sic” data (e.g. support URL)
- Installation data (e.g. OS version)
- Runtime data (e.g. username)
- Other systems (e.g. database)
- The user

1 are they known?

ment
> to code in or soft configure

- For example the “. /configure” command

* At program start

- The data may be provided by many sources,
iIncluding command line arguments, property
files and database queries

Are they static or dynamic?

» Can configuration values change during the
execution of the program?

* If so, the program is more flexible but also more
complicated:

- How and when to detect changes
- How to apply consistently

- How to handle dependent/cached values
- Do changed values need persisting?

» Testing ?

tory or optional?

on parameters must be
ogram cannot run

be optional
) sensible default value exists
— or less functionality is not available

or issues

Supportability
* Manual or tool-assisted changes

CU ri ty

has security implications
t of us expect this one!)

- Database fields (SQL injection)

Audit

* Many businesses require software audit of all
changes to production systems

* How do you audit configuration changes?

- Source code control system
* (May want a separate repository)
- Database

- Manual procedures
- Versioned file systems

* Much easier to design in than bolt on later

rades

uration data required by a
luring the program’s lifetime

 _ Updated items
- Deleted items?

Upgrades

provide a default / automatically
hanged items

- If old value no longer valid can cause hard to
diagnose faults.

 Deleted items

— User may expect a value has effect
- How do you tell which data is actually in use?

Jpgrades

s rolled back will the
get restored correctly?

 _ Can you skip an upgrade?
» Decouple config change from software change

overability

e values | can use?
t wrong?

portability

find what the current active
r program really is?

> configuration?

ool-assisted editing?

IS there for changing values?
g text editor, registry values)

.how do you correlate them?

CROC

licated

figuration items

-_dynamic items

ty or scope (user, machine, etc)

nlikely that “one size fits all”

on as indirection

puter science can be
vel of indirection”
' (David Wheeler)

Configuration as indirection

» “All problems in computer science can be
solved by another level of indirection”

std::string CONFIG(argc > 1 ? argv[1] : “CONFIG”);
if (getenv(“CONFIG”)) CONFIG = getenv(“CONFIG");

sprintf(buff, “select VALUE from %s where key='CONFIG",
CONFIG);

ébNFIG = select_string_value(buff);

--- environment
set CONFIG=CONFIG

--- database : table CONFIG:
Key Value
CONFIG CONFIG

ation as indirection

omputer science can be
 level of indirection”

a roblem of too many layers of

(Kevlin Henney)

basic patterns

atterns for configuration
id identify some of the forces

‘need to use more than one pattern

yurce code

- Cross "ferenced and typed
p— Automatically audited with source code
 Liabilities
- Produces multiple build artifacts
- Not changed after compilation (if any...)

Jrce code
B b

story automation example
- Misconfiguration too expensive, so ship one file

Command line argument

» Context

- Value known when program invoked
* Benefits

- Easy to change manually

— Easy to discover (on most operating systems)
 Liabilities

- Can be hard to manage multiple items

- 'Special characters' can be problematic

- Hard to change programmatically
- Audit

line argument

m properties
- Drag and drop support

yment variables

hen program invoked

| 0 for multiple programs
- Easy to change

 Liabilities
- Hard to audit and control

- Name clashes
- May be hard limits on sizes

nent variables

- Interaction with command line adds complexity

'_ows Registry

program start

— Standard support, e.g. by installers
— Per user and per machine sections
- Permissions

 Liabllities
- Single “big ball of mud”
- Permissions

Registry

— '”i'le Execution Options
* I'm sure we all have war stories....

file (Name/Value)

le locally

‘Separation of concerns
- May be able to re-write file
- Can add comments
 Liabilites
- Management of many small files
- Audit
- Restrictive syntax

file

onfiguration file

nfiguration data

o et =
~ o
Al

- Validated
— Multiple tools
 Liabilities
- Verbose

- Not human readable
- Different features supported (eg ENTITY)

nfiguration file

" Spring configuration

* Pop quiz

— which ones validate?

— Which ones support entities?

types/usages

g files on startup

. used for persistence

atie using simple substitution)
xternal validators

atabase

.': atabase

— | and access controls
- Range of standard data types

 Liabilities
- Need to configure database connection details
- Need tools to discover user's configuration

atabase

often hold their own config

 programs I've worked on in recent years

rnal service

atile configuration

-~ Poter flexible than a file or database
~« Liabilities
— Need to configure the client details

- More points of failure
- Can be hard to test

nic configuration

'; riven notification?
Interface
he affected parts of the program
— Callbacks
- In-place editing
 Persisting the changed data for next time

hat to do?

guration
' configuration you need

sary configuration
allest number of mechanisms you can

/ can you break it?
— What information is leaked?

nclusion

n complex
' in mind
de configuration pays off

Conclusion

* |t's nota SMOC, it's a CROC

