
The University of Hertfordshire

The Challenges facing Libraries and
Imperative Languages from

Massively Parallel Architectures

Building Futures in Computer Science
empowering people through technology

Jason McGuiness
Computer Science
University of Hertfordshire
UK

Colin Egan
Computer Science
University of Hertfordshire
UK

• Parallel processing
– Pipeline processors, MII architectures, Multiprocessors

• Processing In Memory (PIM)
– Cellular Architectures: Cyclops/DIMES and picoChip

• Code-generation issues arising from massive parallelism
• Possible solutions to this issue:

– Use the compiler or some libraries
• An example implementation of a library, and the issues
• Questions?

– Ask as we go along, but we’ll also leave time for questions at
then end of this presentation

Presentation Structure

Parallel Processing

• How can parallel processing be achieved?
– By exploiting:

• Instruction Level Parallelism (ILP)
• Thread Level Parallelism (TLP)
• Multi-processing
• Data Level Parallelism (DLP)
• Simultaneous Multi-Processing (SMP)
• Concurrent processing
• etcetera

• Exploits ILP by overlapping instructions in different
stages of execution:
– ILP is the amount of operations in a computer program that

can be performed on at the same time (simultaneously)

• Improves overall program execution time by
increasing throughput:
– It does not improve individual instruction execution time

Pipelining

• A simple 5-stage pipeline

Pipelining

Instruction
Cache

Access;

Increment
Program
Counter;

Branch
Prediction

Instruction
Decode;

Register operand
set up

Data
Cache
Access

Write Back

Execution in ALU

• Pipelining introduces hazards which can severely
impact on processor performance:
– Data (RAW, WAW and WAR)
– Control (conditional branch instructions)
– Structural (hardware contention)

• To overcome such hazards complex hardware
(dynamic scheduling) or complex software (static
scheduling) or a combination of both is required

Pipelining hazards

• MII
– A processor that is capable of fetching and issuing

more than one instruction during each processor cycle
– A program is executed in parallel, but the processor

maintains the outward appearance of sequential
execution

– The program binary must therefore be regarded as a
specification of what was done, not how it was done

– Minimise program execution time by:
• by reducing instruction latencies
• by exploiting additional ILP

Multiple Instruction Issue

• Superscalar Processor:
– An MII processor where the number of instructions issued

in each clock cycle is determined dynamically by hardware
at run-time

• Instruction issue may be in-order or out-of-order (Tomasulo or
equivalent).

• VLIW Processor (Very Long Instruction Word):
– An MII processor where the number of operations

(instructions) issued in each clock cycle is fixed and where
the operations are selected statically by the compiler at
compile time

Multiple Instruction Issue

• To sustain multiple instruction fetch, MII
architectures require a complex memory hierarchy:
– Caches

• l1, l2, stream buffers, non-blocking caches
– Virtual Memory

• TLB

– Caches suffer from:
• Compulsory misses
• Capacity misses
• Collisions

Problems of MII

• Compulsory misses:
– The first time a processor address is requested it will not be

in cache memory and must be fetched from a slower level
of the memory hierarchy:

• Hopefully main (physical) memory
• If not from Virtual Memory
• If not from secondary storage

– This can result in long delay (latency) due to large access
time(s)

Memory Problems

• Capacity misses:
– There are more cache block requests than the size of the

cache
• Collisions:

– The processor makes a request to the same block but for
different instructions/data

• For both:
– Blocks therefore have to be replaced
– But a block that has been replaced might be referenced

again resulting in yet more replacements

Memory Problems

• A thread can be considered to be a ‘light weight
process’
– Where a thread consists of a short sequence of code, with

its own:
• registers, data, state and so on
• but shares process space

• TLP is exploited by simultaneously executing
different threads on different processors:
– TLP is therefore exploited by multiprocessors

Thread Level Parallelism

Multiprocessors

• Should be:
– Easily scalable
– Fault tolerant
– Achieve higher performance than a uni-processor

• But …
– How many processors can we connect?
– How do parallel processors share data?
– How are parallel processors co-ordinated?

Multiprocessors

• Shared Memory Processors (SMP)
– All processors share a single global memory address space

– Communication is through shared variables in memory

– Synchronisation is via locks (hardware) or semaphores
(software)

Multiprocessors

• Uniform Memory Access (UMA)
– All memory accesses take the same time
– Do not scale well

• Non-uniform Memory Access (NUMA)
– Each processor has a private (local) memory
– Global memory access time can vary from processor to

processor
– Present more programming challenges
– Are easier to scale

Multiprocessors

• NUMA
– Communication and synchronization are achieved

through message passing:
• Processors could then, for example, communicate over

an interconnection network
• Processors use send and receive primitives

Multiprocessors

• The difficulty is in writing effective parallel programs:
– Parallel programs are inherently harder to develop
– Programmers need to understand the underlying hardware
– Programs tend not to be portable
– Amdahl’s law; a very small part of a program that is inherently

sequential can severely limit the attainable speedup

• “It remains to be seen how many important applications
will run on multiprocessors via parallel processing.”

• “The difficulty has been that too few important
application programs have been written to complete tasks
sooner on multiprocessors.”

Multiprocessors

• Multiprocessors suffer the same memory problems as
uni-processors and in addition:
– The problem of maintaining memory coherence

between the processors

• A read operation must return the value of the
latest write operation

• But in multiprocessors each processor will
(probably) have its own private cache memory
– There is no guarantee of data consistency between

private (local) cache memory and shared (global)
memory

Cache Coherence

• The idea of PIM is to overcome the bottleneck
between the processor and main memory by
combining a processor and memory on a single chip

• The benefits of a PIM architecture are:
– Reduced memory latency
– Increases memory bandwidth
– Simplifies the memory hierarchy
– Provides multi-processor scaling capabilities:

• Cellular architectures

– Avoids the Von Neumann bottleneck

Processing in memory

• This means that:
– Much of the expensive memory hierarchy can be

dispensed with
– CPU cores can be replaced with simpler designs
– Less power is used by PIM
– Less silicon space is used by PIM

Processing in memory

• But …
– Processor speed is reduced
– The amount of available memory is reduced

• However, PIM is easily scaled:
– Multiple PIM chips connected together forming a

network of PIM cells

– Such scaled architectures are called Cellular
architectures

Processing in memory

• Cellular architectures consist of a high number of
cells (PIM units):
– With tens of thousands up to one million processors

– Each cell (PIM) is small enough to achieve extremely
large-scale parallel operations

– To minimise communication time between cells, each cell
is only connected to its neighbours

Cellular architectures

• Cellular architectures are fault tolerant:
– With so many cells, it is inevitable that some processors

will fail
– Cellular architecture simply re-route instructions and data

around failed cells

• Cellular architectures are ranked highly as today’s
Supercomputers:
– IBM BlueGene takes the top slots in the Top 500 list

Cellular architectures

• Cellular architectures are threaded:
– Each thread unit:

• Is independent of all other thread units
• Serves as a single in-order issue processor
• Shares computationally expensive hardware such as floating-point

units

– There can be a large number of thread units:
• 1,000s if not 100,000s of thousands
• Therefore they are massively parallel architectures

Cellular architectures

• Cellular architectures are NUMA
– Have irregular memory access:

• Some memory is very close to the thread units and is
extremely fast

• Some is off-chip and slow

• Cellular architectures, therefore, use caches
and have a memory hierarchy

Cellular architectures

• In Cellular architectures multiple thread units
perform memory accesses independently

• This means that the memory subsystem of
Cellular architectures do in fact require some
form of memory access model that permits
memory accesses to be effectively served

Cellular architectures

• Uses of Cellular architectures:
– Games machines (simple Cellular architecture)
– Bioinformatics (protein folding)
– Imaging

• Satellite
• Medical
• Etcetera

– Research
– Etcetera

Cellular architectures

• Examples:
– BlueGene Project:

• Cyclops (IBM) – next generation from BlueGene/P,
called BlueGene/C

– DIMES – a prototype implementation

– Gilgamesh (NASA)
– Shamrock (Notre Dame)
– picoChip (Bath, UK)

Cellular architectures

• Developed by IBM at the Tom Watson Research
Center

• Also called BlueGene/C in comparison with the
earlier version of BlueGene/L and BlueGene/P

IBM Cyclops or BlueGene/C

• The idea of Cyclops is to provide around one million
processors:

– Where each processor can perform a billion operations per
second

– Which means that Cyclops will be capable of one petaflop
of computations per second (a thousand trillion calculations
per second)

Cyclops

Cyclops
Processor

ChipBoard

Crossbar Network

TU TU TU…

SP SP SP

FPU SR

TU TU TU…

SP SP SP

FPU SR

TU TU TU…

SP SP SP

FPU SR

…
M

EM
O

R
Y

B
A

N
K

M
EM

O
R

Y
B

A
N

K

M
EM

O
R

Y
B

A
N

K

M
EM

O
R

Y
B

A
N

K

M
EM

O
R

Y
B

A
N

K

M
EM

O
R

Y
B

A
N

K

M
EM

O
R

Y
B

A
N

K

M
EM

O
R

Y
B

A
N

K

…

6 * 4 GB/sec

4 GB/sec

50 MB/sec

1 Gbits/sec

O
ff-

C
hi

p
M

em
or

y

Other
Chips via
3D mesh

O
ff-

C
hi

p
M

em
or

y
O

ff-
C

hi
p

M
em

or
y

O
ff-

C
hi

p
M

em
or

y

IDE
HDD

4 GB/sec

6 * 4 GB/sec

SP SP SP SP SP SP SP SP

• DIMES:
– Is the first hardware implementation of a Cellular

architecture
– Is a simplified ‘cut-down’ version of Cyclops
– Is hardware validation tool for Cellular architectures
– Emulates Cellular architectures, in particular Cyclops,

cycle-by-cycle
– Is implemented on at least one FPGA
– Has been evaluated by Jason

DIMES

• The DIMES implementation that Jason evaluated:
– Supports a P-thread programming model
– Is a dual processor where each processor has four thread

units
– Has 4K of scratch-pad (local) memory per thread unit
– Has two banks of 64K global shared memory
– Has different memory models:

• Scratch pad memory obeys the program consistency model for all
of the eight thread units

• Global memory obeys the sequential consistency model for all of
the eight thread units

– Is called DIMES/P2

DIMES

DIMES/P2

64K Global
Memory

Thread Unit 0

4K Scratch pad

Thread Unit 1

4K Scratch pad

Thread Unit 2

4K Scratch pad

Thread Unit 3

4K Scratch pad

Processor 0

64K Global
Memory

Thread Unit 0

4K Scratch pad

Thread Unit 1

4K Scratch pad

Thread Unit 2

4K Scratch pad

Thread Unit 3

4K Scratch pad

Network

Processor 1

• Jason’s concerns were:
– How to manage a potentially large number of

threads

– How to exploit parallelism from the input source
code in these threads

– How to manage memory consistency

DIMES

• Jason tested his concerns by using an “embarrassingly
parallel program which generated Mandelbrot sets”

• Jason’s approach was to distribute the work-load between
threads and he also implemented a work-stealing
algorithm to balance loads between threads:
– When a thread completed its ‘work-load’, rather than

remain idle that thread would ‘steal-work’ from another
‘busy’ thread

– This meant that he maximised parallelism and improved
thread performance and hence overall program execution
time

DIMES

DIMES
Shortly after program start Shortly before work stealing

Just after work stealing More work stealing

picoChip
• picoChip are based in Bath

– “… is dedicated to providing fast, flexible wireless
solutions for next generation telecommunications
systems.”

• picoArrayTM

– Is a tiled architecture
– 308 heterogeneous processors connected together,
– The interconnects consist of bus switches joined by

picoBusTM

– Each processor is connected to the picoBusTM

above and below it

picoChip

• picoArrayTM

–

picoChip and Parallelism

• The parallelism provided by picoChip is
synchronous
– This avoids many of the issues raised by the other

architectures that expose asynchronous parallelism

– But it is at the cost of the flexibility that
asynchronous parallelism provides

Abstraction of the Parallelism

• This may be done in various ways:
– For example within the compiler:

• Using trace scheduling, list-based scheduling or other
data-flow based means amongst others

– Using language features:
• HPF, UPC or the additions to C++ in the IBM Visual

Age compiler and Microsoft's additions
– Most commonly using libraries:

• For example: Posix threads, Win32 threads, OpenMP,
boost.thread, home-grown wrappers

Parallelism using Libraries

• Using libraries has a major advantage over
implementing parallelism within the language:
– It does not require the design of a new language,

nor learning a new language
– Novel languages are traditionally seen as a burden

and often hinder adoption of new systems due to
the volume of existing source-code

– But libraries are especially prone to mis-use and
are traditionally hard to use

Issues of Libraries: part I
• The model exposed is very diverse:

– Message passing, e.g. OpenMP
– Exposes loop-level parallelism (e.g. “forall ...”

constructs) exposes very limited parallelism in
general-purpose code

– Is very low-level, e.g. the primitives exposed in
Posix Threads are extremely basic: mutexes,
condition variables, and basic thread operations

• The libraries require experience to use well, or
even correctly

Part II: Non-composability of atomic
operations!

• The fact that atomic operations do not compose is a
major concern when using libraries!

• The composition of thread-safe data structures does
not guarantee thread-safety:
– At each combination of the data structures, more locks are

required to ensure correct operation!
– This implies more and more layers of locks, that are

slow...

Parallelism in the Compiler

• Given the concerns with regards to libraries,
what about parallelising compilers?

• The fact is that auto parallelising compilers
exist, e.g. list-based scheduling implemented
in the EARTH-C (circa 1999) has been proven
to be optimal for that architecture

• Data-flow compilers have existed for years
– Why aren't they used?

Industrial Parallelising Compilers

• Microsoft is introducing OpenMP-based
constructs into their compiler, e.g. “forall”

• IBM Visual Age has similar functionality
• Java has a thread library
• C++0x: much work has been done regarding

standardisation with respect to multiple threads

C++ as an example

• The uses of C++ makes it an interesting target
for parallelisation:
– Although imperative, so arguably flawed for

implementing parallelism
– It has great market penetration, therefore there is

much demand for using parallelism
– Commonly used in high-performance, multi-

threaded systems
– General-purpose nature and quality libraries are

increasing the appeal to super-computers

Parallelism support in C++
• Libraries exist beyond the usual C libraries:

– boost.thread – exists now, requires standards-
compliant compilers

– C++0x: details of the threading support are
becoming apparent that appear to include:
• Atomic operations (memory consistency), exceptions,

machine-model underpins approach
• Threading models: thread-as-a-class, lock objects
• Thread pools – coming later – probably
• More details on the web, or at the ACCU - in flux

Experience using C++
• Recall DIMES:

– Prototype of massively parallel hardware
– Posix-threads style library implementing threads
– C++ thread-as-a-class wrapper implemented

• Summary of experience:
– Hardly object-orientated: no separation in design of the

Mandlebrot application with the work-stealing algorithm
and thread pool

– The software insufficiently separated the details of the
hardware features from the design

Further experiences using C++

• From this work and other experiences, I
developed a more interesting thread library:
– Traits abstract underlying OS thread API from

wrapper library
– Therefore has hardware abstractions too
– Provision of higher-level threading models:

• Primarily based on futures and thread pools
– Use of thread pools and futures creates a singly

rooted-tree of threads:
• Trivially deadlock free – a holy grail!

C++0x threads now? No!
• Included in libjmmcg:

– Relies upon non-standard behaviour and broken optimisers! For
example:
• Problems with global code-motion moving apparently const-objects past

locks
• Exception stack is unique to a thread, not global to program and currently

unspecified
• Implementation of std::list

– DSEL has syntax limitations due to design of C++
– Doesn't use boost ...
– Has example code and test cases
– Isn't complete! (e.g. Posix & sequential specialisations

incomplete, some inefficiencies)
– But get it from libjmmcg.sourceforge.net, under LGPL

Trivial example usage
struct res_t { int i; };

struct work_type {

typedef res_t result_type;

void process(result_type &) {}

};

pool_type pool(2);

async_work work(creator_t::it(work_type(1)));

execution_context context(pool<<joinable()<<time_critical()<<work);

pool.erase(context);

context->i;

• The devil is in the omitted details: the typedefs for:
– pool_type, async_work, execution_context, joinable, time_critical
• The library requires that the work to be mutated has the

items in italics defined

Explanation of the example
• The concept is:

– that asynchronous work (async_work) that should be
mutated (process) to the specified output type (result_type)
is transferred into a thread pool (pool_type) of some kind

• This transfer (<<) may, optionally (joinable), return a
future (execution_context)
– Which can be used to communicate (->) the result of the

mutation, executed at kernel priority (time_critical), back
to the caller

• The future also allows exceptions to be propagated

More details regarding the example
• The thread pool (pool_type) has many traits:

– Master-slave or work-stealing
– The thread API (Win32, Posix or sequential)
– The thread API costs in very rough terms
– Implies a work schedule that is a fifo baker's ticket schedule,

implementation of GSS(k) is in progress
• The library effectively implements a software

simulation of data-flow
• Wrapping a function call, plus parameters, in a class

converts Kevlin's threading model to this one

Time for controversy....
What faces programmers...

• Large-scale parallelism is here, now:
– Blade frames at work:

• 4 cores x 4 CPUs x 20 frames per rack = 320 thread units, in a
NUMA architecture

• The hardware is expensive!
• But so is the software ...

– It must be programmed, economically
– The programs must be maintained ...

• Or it will be an expensive failure?

Talk summary
• In this talk we have looked at parallel processing and

justified the reasons for Processing In Memory (PIM) and
therefore cellular architectures

• We have briefly looked at two example architectures:

– Cyclops and picoChip

• Jason has worked on DIMES, the first implementation of a
(cut-down) version of a cellular architecture

• The issues of programming for these massively parallel
architectures has been described

• We focussed on the future of threading in C++

The University of Hertfordshire

The Challenges facing Libraries and
Imperative Languages from

Massively Parallel Architectures

Questions?
Building Futures in Computer Science
empowering people through technology

Jason McGuiness
Computer Science
University of Hertfordshire
UK

Colin Egan
Computer Science
University of Hertfordshire
UK

	The University of Hertfordshire
	Presentation Structure
	Parallel Processing
	Pipelining ��
	Pipelining ��
	Pipelining hazards�
	Multiple Instruction Issue ��
	Multiple Instruction Issue ��
	Problems of MII�
	Memory Problems
	Memory Problems
	Thread Level Parallelism
	Multiprocessors
	Multiprocessors
	Multiprocessors
	Multiprocessors
	Multiprocessors
	Multiprocessors
	Cache Coherence
	Processing in memory�
	Processing in memory�
	Processing in memory
	Cellular architectures�
	Cellular architectures�
	Cellular architectures�
	Cellular architectures
	Cellular architectures
	Cellular architectures�
	picoChip
	picoChip
	picoChip and Parallelism
	Abstraction of the Parallelism
	Parallelism using Libraries
	Issues of Libraries: part I
	Part II: Non-composability of atomic operations!
	Parallelism in the Compiler
	Industrial Parallelising Compilers
	C++ as an example
	Parallelism support in C++
	Experience using C++
	Further experiences using C++
	C++0x threads now? No!
	Trivial example usage
	Explanation of the example
	More details regarding the example
	Time for controversy....�What faces programmers...
	Talk summary
	The University of Hertfordshire

