
C++ Refactoring and TDD
with Eclipse CDT and CUTE
http://ifs.hsr.ch/cdtrefactoring/updatesite/
http://ifs.hsr.ch/cute/updatesite/

Prof. Peter Sommerlad
HSR - Hochschule für Technik Rapperswil
Institute for Software
Oberseestraße 10, CH-8640 Rapperswil
peter.sommerlad@hsr.ch
http://ifs.hsr.ch
http://wiki.hsr.ch/PeterSommerlad

Better Software: Simpler Faster

http://ifs.hsr.ch/cdtrefactoring/updatesite/
http://ifs.hsr.ch/cdtrefactoring/updatesite/
http://ifs.hsr.ch/cute/updatesite
http://ifs.hsr.ch/cute/updatesite
mailto:peter.sommerlad@hsr.ch
mailto:peter.sommerlad@hsr.ch
http://ifs.hsr.ch
http://ifs.hsr.ch
http://wiki.hsr.ch/PeterSommerlad
http://wiki.hsr.ch/PeterSommerlad

ACCU 2008 - C++ TDD © Peter Sommerlad2

Peter Sommerlad
peter.sommerlad@hsr.ch

• Work Areas

o Refactoring Tools (C++, Ruby,
Python, Groovy, PHP,
JavaScript,...) for Eclipse

o Decremental Development
(make SW 10% its size!)

o Modern Software Engineering

o Patterns
 POSA 1 and Security Patterns

• Background

o Diplom-Informatiker
Univ. Frankfurt/M

o Siemens Corporate Research
Munich

o itopia corporate information
technology, Zurich (Partner)

o Professor for Software
HSR Rapperswil,
Head Institute for Software

 Credo:

• People create Software
o communication
o feedback
o courage

• Experience through Practice
o programming is a trade
o Patterns encapsulate practical

experience

• Pragmatic Programming
o test-driven development
o automated development
o Simplicity: fight complexity

mailto:peter.sommerlad@hsr.ch
mailto:peter.sommerlad@hsr.ch

ACCU 2008 - C++ TDD © Peter Sommerlad

Assumptions

•I assume you are familiar with object-oriented
concepts of class, constructor/destructor,
member functions.

•I assume some basic familiarity with Unit
Testing

•I assume you are familiar with standard C++
or intervene otherwise!
o if I use a C++ feature you do not know or

understand, please interrupt! I’ll take a detour.
o Many C++ programmers got stuck with C++ of

the 1990s, feel free to ask for an “upgrade” on
the go.

3

ACCU 2008 - C++ TDD © Peter Sommerlad

Goals

•You’ll learn about (some) TDD patterns and
TDD principles

•You’ll get a brief intro to Test Doubles and
Mock Objects

•You’ll participate in Test-driven Design in C++
using Eclipse CDT, CUTE and our C++
Refactoring plug-in (at least as an Observer)

•I want to show you what we’ve created to ease
C++ development with CDT.

4

ACCU 2008 - C++ TDD © Peter Sommerlad

Unit-Testing Principles
(already known?)

•Test anything that might break

•Test everything that does break

•New code is guilty until proven innocent

•Write at least as much test code as production
code

•Run local tests with each compile

•Run all tests before check-in to repository

5

ACCU 2008 - C++ TDD © Peter Sommerlad

Vicious Circle:
Testing - Stress

•Automate tests and run them often!

6

no Tests
more Stress

no Time for Tests
more Errors

STRESS Less Testing

ACCU 2008 - C++ TDD © Peter Sommerlad

How do I write good Unit
Tests?

•Ask yourself the following questions:
 (among others about your coding)

•If the code is correct, how would I know?

•How can I test this?

•What else could go wrong?

•Could a similar problem happen elsewhere?

7

ACCU 2008 - C++ TDD © Peter Sommerlad

Why even more on Test
Automation?

•Writing good automated tests is hard.

•Beginners are often satisfied with “happy-
path” tests
o error conditions and reactions aren’t defined by

the tests

•Code depending on external stuff (DB, IO, etc)
is hard to test. How can you test it?

•Will good tests provide better class design?

•How can tests be designed well?

8

ACCU 2008 - C++ TDD © Peter Sommerlad

Principle of Automated Tests
Triple-A (AAA)

1.Arrange

 initialize system(s) under test

2.Act

call functionality that you want to test

3.Assert

assert that results are as you expect

Remember: "Triple-A: arrange, act, assert"

9

ACCU 2008 - C++ TDD © Peter Sommerlad

Terminology
xunitpatterns.com
•SUT system under test

10

ACCU 2008 - C++ TDD © Peter Sommerlad

Test Case Structure:
Four Phase Test

•compare that to AAA ---> another similarity

•Source: xunitpatterns.com
11

Test-Driven Development

Exploiting Unit Tests...

12

ACCU 2008 - C++ TDD © Peter Sommerlad

Test-Driven Development
[Beck-TDD]
•There are several books on test-driven design

(or TDD)
o Kent Beck, Dave Astels, Gerard Meszaros

•TDD is not a testing technique, but a coding
and design technique
o nevertheless TDD patterns help you writing tests,

regardless if you follow TDD or not

•TDD relies heavily on Refactoring
o we (IFS) try hard to provide you with such

Refactoring automation for C++ as well as you
might be used to with Java or Ruby. (plus
Refactoring for Python (PyDev), Groovy, PHP,
JavaScript)

13

ACCU 2008 - C++ TDD © Peter Sommerlad

TDD
[Kevlin Henney]
•TDD has emerged from the many practices that

form Extreme Programming's core
o Focused on code-centric practices in the micro

process rather than driving the macro process

•TDD can be used in other
macro-process models
o TDD is not XP, and vice versa
o TDD is not just unit testing

•BDD (Behaviour Driven Design)
o Follow-up to TDD
o since TDD is not about Testing

14

ACCU 2008 - C++ TDD © Peter Sommerlad

TDD Practices and
Characteristics

15

Defined stable increments

Programmer testing responsibility

Active test writing

Automated tests Pair programming

Shared coding guidelines

Essential Test-Driven Development Practices

Build and Release Practices

Team-Related Practices

Continuous integration

Fine-grained versioning

Example-based test cases

Test-bounded design increments

Refactoring

provided by [Kevlin Henney]

ACCU 2008 - C++ TDD © Peter Sommerlad

TDD Patterns
Writing Tests & Habits
•Isolated Tests

o write tests that are independent of other tests

•Test List
o use a list of to-be-written tests as a reminder
o only implement one failing test at a time

•Test First
o write your tests before your production code

•Assert First
o start writing a test with the assertion
o only add the acting and arrangement code when

you know what you actually assert

16

ACCU 2008 - C++ TDD © Peter Sommerlad

Demo TDD V1
Generate Roman Numbers

•generate roman numbers as strings from an
integer representation
o start with the following list of tests
o create a new CUTE projects
o write test, implement function, refactor, repeat
o make up new tests as you go and see need

17

The List for Roman Numbers (V0)
1 ➙ I
0 ➙ empty String
2 ➙ II
...

ACCU 2008 - C++ TDD © Peter Sommerlad

“Red-bar” Patterns
Finding Tests to write
•One Step Test

o solve a development task test-by-test
 no backlog of test code, only on your test list
 select the simplest/easiest problem next

•Starter Test
o start small, e.g., test for an empty list
o refactor while growing your code

•Explanation Test
o discuss design through writing a test for it

•Learning Test
o understand existing code/APIs through writing

tests exercising it

18

ACCU 2008 - C++ TDD © Peter Sommerlad

Demo TDD V2
(3+4)*6 → 42
•Expression Evaluator for simple Arithmetic

•Test-First Development with CUTE

•Incremental Requirements Discovery

19

The List for Eval (V0)
"" ➔ error
"0" ➔ 0
"2" ➔ 2
"1+1" ➔ 2

ACCU 2008 - C++ TDD © Peter Sommerlad

“Red Bar” Patterns (2)

•Regression Test
o For every bug report write tests showing the bug

•Break
o Enough breaks are essential. When you are tired

you loose concentration and your judgement gets
worse. This results in more errors, more work,
and makes you more fatigue. (vicious circle!)

•Do Over
o If you recognize your design and tests lead

nowhere, DELETE your code! A fresh start earlier
is often better.

20

ACCU 2008 - C++ TDD © Peter Sommerlad

“Green Bar” - Patterns
Make your Tests succeed
•Fake It ('Til You Make It)

o It is OK to “hack” to make your test succeed.
o Refactor towards the real solution ASAP

•Triangulate
o How can you select a good abstraction?
o try to code two examples, and then refactor to

the “right” solution

•Obvious Implementation
o Nevertheless, when it’s easy, just do it.

•One to Many
o Implement functions with many elements first for

one element (or none) correctly

21

ACCU 2008 - C++ TDD © Peter Sommerlad

TDD Patterns
Habits
•Child Test

o If a test case gets too large, “remove” it, redo the
core, get “green-bar”, and then introduce the
“full” case again, get “green-bar”

•Broken Test
o If you have to stop programming or take a break,

leave a broken test to remind you where you left.
 but only do Clean Check-in!

•Clean Check-in
o Do only (and may be always) check-in your code

and tests when you have a green bar.

22

ACCU 2008 - C++ TDD © Peter Sommerlad

Test Double Pattern
xunitpatterns.com
•How can we verify logic independently when

code it depends on is unusable?

•How can we avoid Slow Tests?

23

ACCU 2008 - C++ TDD © Peter Sommerlad

Test Double Patterns
[Beck-TDD]
•Mock Object

o Decouple a class under test from its environment

•Self Shunt
o Use the test case class itself as a Mock Object

•Log String
o test temporal dependencies of calls by

concatenating call info in a string, e.g., using Self
Shunt

•Crash Test Dummy
o How do you tests exceptions that are hard to

force, but might occur during production?
o Use a dummy/Mock Object that throws an

exception instead of the real object.
24

ACCU 2008 - C++ TDD © Peter Sommerlad

Mock Object
xunitpatterns
•How do we implement Behavior Verification for

indirect outputs of the SUT?

•How can we verify logic independently when it
depends on indirect inputs from other software
components?

25

ACCU 2008 - C++ TDD © Peter Sommerlad

Difference Test-Stub and
Mock-Object

•xunitpatterns.com
26

ACCU 2008 - C++ TDD © Peter Sommerlad

Testing for Exceptions

•There is a standard Schema to test some code
if it raises a specific exception:

•CUTE encapsulates this to

27

void testAnException() {

 std::vector<int> v; // arrange

 try {

 v.at(0); // act

 FAILM("expected out_of_range exception"); // assert

 }

catch(std::out_of_range &) { }
}

void testAnException() {

 std::vector<int> v;

 ASSERT_THROWS(v.at(0),std::out_of_range);
}

ACCU 2008 - C++ TDD © Peter Sommerlad

Example Crash-Test
Dummy in C++
struct out_of_memory:std::exception{};

template <typename T>
struct failingallocator : std::allocator<T> {

 typedef typename std::allocator<T>::pointer pointer;

 typedef typename std::allocator<T>::size_type size_type;

 pointer allocate(size_type n, std::allocator<void>::const_pointer hint=0){

 //return std::allocator<T>::allocate(n,hint);

 throw out_of_memory();

 }
}; // “Crash-Test-Dummy” allocator

void testFailingAllocation(){

 std::vector<int,failingallocator<int> > v;

 ASSERT_THROWS(v.reserve(5),out_of_memory);
}
void testFailingAllocationCtor(){

 std::vector<int,failingallocator<int> > v(5); // will throw in ctor!
}
void runSuite(){

 cute::suite s;

 s.push_back(CUTE(testFailingAllocation));

 s.push_back(CUTE_EXPECT(CUTE(testFailingAllocationCtor),out_of_memory));
...

28

ACCU 2008 - C++ TDD © Peter Sommerlad

Why Test Doubles and
Mock Objects? [PragUnit]

•The real object has nondeterministic behavior (it
produces unpredictable results, like a stock-market
quote feed.)

•The real object is difficult to set up.
•The real object has behavior that is hard to
trigger (for example, a network error).

•The real object is slow.

•The real object has (or is) a user interface.

•The test needs to ask the real object about how it
was used (for example, a test might need to
confirm that a callback function was actually called).

•The real object does not yet exist (a common
problem when interfacing with other teams or new
hardware systems).

29

ACCU 2008 - C++ TDD © Peter Sommerlad

TDD Expression
Evaluator
•Thanks to Hubert Matthews for his last year

workshop where I tried TDD on this problem.

•Wanted:
o A volunteer keeping track of tests to write: The

List
o Your help in implementing and refactoring

 just call, ask, and answer
 I am your (sometimes intelligent) typing machine (and

guide)

•

30

How to write CUTE Tests?

optional slides...

31

ACCU 2008 - C++ TDD © Peter Sommerlad

Test Fixtures

•Often several test cases require identical
arrangements of testee objects

•Reasons
o "expensive" setup of objects
o no duplication of code (DRY principle)

•Mechanisms
o JUnit provides setup() and teardown() methods
o CPPUnitLite does not provide this

 other CPPUnit variants do as virtual functions

o CUTE employs constructor and destructor of a
testing class with per test object incarnation
 no need for inheritance and virtual member functions
 just employ C++ standard mechanisms

32

ACCU 2008 - C++ TDD © Peter Sommerlad

Test Fixture with CUTE

#include "cute.h"
#include "cute_equals.h"
struct ATest {

 CircularBuffer<int> buf;

 ATest():buf(4){}

 void testEmpty(){ ASSERT(buf.empty());}

 void testNotFull(){
 ASSERT(!buf.full());}

 void testSizeZero(){
 ASSERT_EQUAL(0,buf.size());}
};

#include "cute_testmember.h"
....

s.push_back(CUTE_SMEMFUN(ATest,testEmpty));
s.push_back(CUTE_SMEMFUN(ATest,testNotFull));
s.push_back(CUTE_SMEMFUN(ATest,testSizeZero));
...

33

ACCU 2008 - C++ TDD © Peter Sommerlad

Member Functions as
Tests in CUTE
• CUTE_SMEMFUN(TestClass,memfun)

o instantiates a new object of TestClass and calls memfun on it ("simple"
member function)

• CUTE_MEMFUN(testobject,TestClass,memfun)
o uses pre-instantiated testobject as target for memfun

 this is kept by reference, take care of its scoping/lifetime
 allows reuse of testobject for several tests and thus of a fixture

provided by it.

o allows for classes with complex constructor parameters

• CUTE_CONTEXT_MEMFUN(context,TestClass,memfun)
o keeps a copy of context object and passes it to TestClass' constructor

before calling memfun on it
 avoids scoping problems
 allows single-parameter constructors

34

Refactoring for Mocks in C++

Variations of Mock Objects classics

35

ACCU 2008 - C++ TDD © Peter Sommerlad

Principle of Mock objects

•A unit/system under test (SUT) depends on
another component (DOC) that we want to
separate out from our test.

•Reasons
o real DOC might not exist yet
o real DOC contains uncontrollable behavior
o want to test exceptional behavior by DOC that is

hard to trigger
o using the real DOC is too expensive or takes to

long
o need to locate problems within SUT not DOC
o want to test usage of DOC by SUT is correct

36

ACCU 2008 - C++ TDD © Peter Sommerlad

Why the need for Mock
Objects?

37

•Simpler Tests and Design
o especially for external dependencies
o promote interface-oriented design

•Independent Testing of single Units
o isolation of unit under testing
o or for not-yet-existing units

•Speed of Tests
o no external communication (e.g., DB, network)

•Check usage of third component
o is complex API used correctly

•Test exceptional behaviour
o especially when such behaviour is hard to trigger

ACCU 2008 - C++ TDD © Peter Sommerlad

Types of Mock Objects
[Dave Astels]
•There exist different categories of Mock

objects and different categorizers.

•Stubs
o substitutes for “expensive” or non-deterministic

classes with fixed, hard-coded return values

•Fakes
o substitutes for not yet implemented classes

•Mocks
o substitutes with additional functionality to record

function calls, and the potential to deliver
different values for different calls

38

ACCU 2008 - C++ TDD © Peter Sommerlad

Interface-oriented Mock

•classic inheritance based mocking
o extract interface for DOC -> IDOC
o make SUT use IDOC
o create MOCK implementing IDOC and use it in UT

 in C++ this means overhead for DOC (virtual functions)!

39

IDOC

SUT DOC

SUT

DOC

UT

MOCK

ACCU 2008 - C++ TDD © Peter Sommerlad

Demo/Exercise
Code in need for Mocking
•A very simple game, roll dice, check if you’ve

got 4 and you win, otherwise you loose.

•We want to test class Die first:

40

Game Die

#include <cstdlib>

struct Die
{

 int roll() { return rand()%6 + 1; }
};

ACCU 2008 - C++ TDD © Peter Sommerlad

How to test Game?

41

#include "Die.h"
class GameFourWins
{

 Die die;
public:

 GameFourWins();

 void play();
};

void GameFourWins::play(){

 if (die.roll() == 4) {

 cout << "You won!" << endl;

 } else {

 cout << "You lost!" << endl;

 }
}

ACCU 2008 - C++ TDD © Peter Sommerlad

Refactoring
Introduce Parameter

42

void GameFourWins::play(std::ostream &os){

 if (die.roll() == 4) {

 os << "You won!" << endl;

 } else {

 os << "You lost!" << endl;

 }
}

#include "Die.h"
#include <iostream>

class GameFourWins
{

 Die die;
public:

 GameFourWins();

 void play(std::ostream &os = std::cout);
};

ACCU 2008 - C++ TDD © Peter Sommerlad

Test with a Mock ostream

•We now can use a ostrstream to collect the
output of play() and check that against an
expected value:

•What is still wrong with that test?

43

void testGame() {

 GameFourWins game;

 std::ostringstream os;

 game.play(os);

 ASSERT_EQUAL("You lost!\n",os.str());
}

ACCU 2008 - C++ TDD © Peter Sommerlad

Simulation Mocks
Interface-oriented
•deliver predefined values

o we need that for our Die class

•Introduce an Interface

•now we need to adjust Game as well to use
DieInterface* instead of Die

44

struct DieInterface
{

 virtual ~DieInterface(){}

 virtual int roll() =0;
};

struct Die: DieInterface
{

 int roll() { return rand()%6+1; }
};

ACCU 2008 - C++ TDD © Peter Sommerlad

Simulation Mocks
preparing SUT
•Changing the interface, need to adapt call sites

•theDie must live longer than Game object

•now we can write our test using an alternative
implementation of DieInterface

•would using pointer instead of reference
improve situation? what’s different?

45

class GameFourWins
{

 DieInterface ¨
public:

 GameFourWins(DieInterface &theDie):die(theDie){}

 void play(std::ostream &os = std::cout);
};

ACCU 2008 - C++ TDD © Peter Sommerlad

Simulation Mock
Test it
•This way we can also thoroughly test the

winning case:

•

46

struct MockWinningDice:DieInterface{

 int roll(){return 4;}
};

void testWinningGame() {

 MockWinningDice d;

 GameFourWins game(d);

 std::ostringstream os;

 game.play(os);

 ASSERT_EQUAL("You won!\n",os.str());
}

ACCU 2008 - C++ TDD © Peter Sommerlad

A C++ alternative using
templates
•advantage: no virtual call overhead

•drawback: inline/export problem potential

47

template <typename Dice=Die>
class GameFourWinsT
{

 Dice die;
public:

 void play(std::ostream &os = std::cout){

 if (die.roll() == 4) {

 os << "You won!" << std::endl;

 } else {

 os << "You lost!" << std::endl;

 }

 }
};
typedef GameFourWinsT<Die> GameFourWins;

ACCU 2008 - C++ TDD © Peter Sommerlad

Mock via template
parameter
•The resulting test looks like this:

•should we also mock the ostream similarly?

48

struct MockWinningDice{

 int roll(){return 4;}
};
void testWinningGame() {

 GameFourWins<MockWinningDice> game;

 std::ostringstream os;

 game.play(os);

 ASSERT_EQUAL("You won!\n",os.str());
}

ACCU 2008 - C++ TDD © Peter Sommerlad

Call Tracing Mocks

•We want also to count how often our dice are
rolled. How to test this?

49

struct MockWinningDice:DieInterface{

 int rollcounter;

 MockWinningDice():rollcounter(0){}

 int roll(){++rollcounter; return 4;}
};
void testWinningGame() {

 MockWinningDice d;

 GameFourWins game(d);

 std::ostringstream os;

 game.play(os);

 ASSERT_EQUAL("You won!\n",os.str());

 ASSERT_EQUAL(1,d.rollcounter);

 game.play(os);

 ASSERT_EQUAL(2,d.rollcounter);
}

ACCU 2008 - C++ TDD © Peter Sommerlad

Using C++ template
Parameters for Mocking
•C++ template parameters can be used for

mocking without virtual member function
overhead and explicit interface extraction.
o no need to pass object in as additional parameter
o unfortunately no default template parameters for

template functions (yet)

•You can mock
o Member Variable Types
o Function Parameter Types

•Mocking without template inline/export need
is possible through explicit instantiations

50

ACCU 2008 - C++ TDD © Peter Sommerlad

Summary Mock Objects

•Mock Objects are important for isolating unit
tests
o or speeding them up

•They can lead to better, less-coupled design
o separation of concerns

•Overdoing mocking can be dangerous
o go for simplicity!

•C++ offers additional ways to introduce mock
objects through templates
o also through #define and typedef!

51

ACCU 2008 - C++ TDD © Peter Sommerlad

Outlook/Questions

•...

52

ACCU 2008 - C++ TDD © Peter Sommerlad

References

•[Beck-TDD]
o Kent Beck: Test-Driven Design

•[PragUnit]
o Andy Hunt, Dave Thomas: Pragmatic Unit Testing

•[Kevlin Henney]
o JUTLAND:

Java Unit Testing: Light, Adaptable 'n' Discreet

•[Dave Astels] - TDD
o Test Driven Development: A Practical Guide
o http://video.google.com/videoplay?docid=8135690990081075324 - on BDD

•[Dan North] - Behaviour Driven Development
o http://dannorth.net/introducing-bdd/
o http://behaviour-driven.org/

•[Gerard Meszaros] - xUnit Test Patterns
o http://xunitpatterns.com
o very good overview of the problems of and with test automation and their

solutions

53

http://video.google.com/videoplay?docid=8135690990081075324
http://video.google.com/videoplay?docid=8135690990081075324
http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/
http://behaviour-driven.org
http://behaviour-driven.org
http://xunitpatterns.com
http://xunitpatterns.com

