——— . HSR
@® INSTITUTE HOCHSCHULE FUR TECHNIK
: ® _©o . FOR RAPPERSWIL
: ® SOFTWARE . . INFORMATIK

Better Software: Simpler Faster

C++ Refactoring and TDD
with Eclipse CDT and CUTE

http://ifs.hsr.ch/cdtrefactoring/updatesite/
http://ifs.hsr.ch/cute/updatesite/

Prof. Peter Sommerlad

HSR - Hochschule fur Technik Rapperswil
Institute for Software

Oberseestral3e 10, CH-8640 Rapperswil
peter.sommerlad@hsr.ch
http://ifs.hsr.ch
http://wiki.hsr.ch/PeterSommerlad

http://ifs.hsr.ch/cdtrefactoring/updatesite/
http://ifs.hsr.ch/cdtrefactoring/updatesite/
http://ifs.hsr.ch/cute/updatesite
http://ifs.hsr.ch/cute/updatesite
mailto:peter.sommerlad@hsr.ch
mailto:peter.sommerlad@hsr.ch
http://ifs.hsr.ch
http://ifs.hsr.ch
http://wiki.hsr.ch/PeterSommerlad
http://wiki.hsr.ch/PeterSommerlad

Peter Sommeriad
peter.sommerlad@hsr.ch

i o e 5 "T\é

@® INSTITUTE
®
@ _@® . roRr
e
: ® SOFTWARE

® Work Areas

o Refactoring Tools (C++, Ruby,
Python, Groovy, PHP,
JavaScript,...) for Eclipse

o Decremental Development
(make SW 10% its size!)

o Modern Software Engineering

o Patterns
» POSA 1 and Security Patterns

e Background

o Diplom-Informatiker
Univ. Frankfurt/M

o Siemens Corporate Research
Munich

o itopia corporate information
technology, Zurich (Partner)

o Professor for Software
HSR Rapperswil,
Head Institute for Software

ACCU 2008 - C++ TDD

Credo:

e People create Software
0 communication
o feedback
O courage
e Experience through Practice
0 programming is a trade

o Patterns encapsulate practical
experience

e Pragmatic Programming
o test-driven development
0 automated development
o Simplicity: fight complexity

© Peter Sommerlad

mailto:peter.sommerlad@hsr.ch
mailto:peter.sommerlad@hsr.ch

@ INSTITUTE

Assumptions o o

@ SOFTW ARE

eI assume you are familiar with object-oriented
concepts of class, constructor/destructor,
member functions.

eI assume some basic familiarity with Unit
Testing

eI assume you are familiar with standard C++
or intervene otherwise!

o if I use a C++ feature you do not know or
understand, please interrupt! I'll take a detour.

o Many C++ programmers got stuck with C++ of
the 1990s, feel free to ask for an “"upgrade” on
the go.

INSTITUTE
Goals ® . ror

@ SOFTW ARE

eYou’'ll learn about (some) TDD patterns and
TDD principles

eYou’'ll get a brief intro to Test Doubles and
Mock Objects

e You'll participate in Test-driven Design in C++
using Eclipse CDT, CUTE and our C++

Refactoring plug-in (at least as an Observer)

eI want to show you what we’'ve created to ease
C++ development with CDT.

.« INSTITUTE
} @ .~ FOR
. @ . SOFTWARE

)) g
4 -

Unit-Testing Principles
(already known?)

e Test anything that might break
e Test everything that does break
e New code is guilty until proven innocent

e Write at least as much test code as production
code

¢ Run local tests with each compile
¢ Run all tests before check-in to repository

oA k¥ ;J}Miw.!i}ﬂkﬁ%

Vicious Circle: t:i
Testing - Stress

o

no Time for Tests
more Errors

no Tests
more Stress

o Automate tests and run them often!

ACCU 2008 - C++ TDD 6 © Peter Sommerlad

" INSTITUTE

How do I write good Unit |- ="
Taste? oo

e Ask yourself the following questions:
(among others about your coding)

e If the code is correct, how would I know?

e How can I test this?

e What else could go wrong?

e Could a similar problem happen elsewhere?

INSTITUTE

Why even more on Test i
Automation? l

e Writing good automated tests is hard.

e Beginners are often satisfied with "happy-
path” tests

0 error conditions and reactions aren’t defined by
the tests

e Code depending on external stuff (DB, 10, etc)
Is hard to test. How can you test it?

e Will good tests provide better class design?
e How can tests be desighed well?

© INSTITUTE

Principle of Automated Tests f‘.:g

¢ SOFTWARE

Triple-A (AAA) ’

1 sArrange

B initialize system(s) under test
2 .Act

B call functionality that you want to test
3.Assert

B assert that results are as you expect

Remember: "Triple-A: arrange, act, assert”

ACCU 2008 - C++ TDD 9 © Peter Sommerlad

Terminology

i R A S

@® INSTITUTE
eo_
| Q’Q . FOR
f ® SOFTWARE

xunitpatterns.com

o SUT system under test

Unit1
Test

Unit2
Test

Exerc

Comp1
Test

Exercise

Comp?2
Test

Exarcise ——

App
Test

ACCU 2008 - C++ TDD

Exarcise —fm

feT=

SUT

10 © Peter Sommerlad

R N

Test Case Structure: t:i
Four Phase Test

Initialize Indirect Outpot
SEtU p _ - S U T Observation Point) | DIOC
Direct Inpuls
(Contra! Points) Gel Something

[with ratum valus)

. Exar se N
Exe rCISE [wilh retum '.-'Hluﬂl_____.' |'l".ll.'-[lll"E'l.'-lI |'I"-',|T-'|.-'II
T (Contral Poini)
Diract Outpuls

(Obsarvation Poinls) Do Something

§ [valum
verlfy ino raturm va }._
Get State 2 indirect Cufput
- [Obsarvation Point)

Teardown

e compare that to AAA ---> another similarity
e Source: xunitpatterns.com

ACCU 2008 - C++ TDD 11 © Peter Sommerlad

Test-Driven Development

Exploiting Unit Tests...

@ INSTITUTE

Test-Driven Development |<is -
[Beck-TDD]

e There are several books on test-driven design
(or TDD)

0 Kent Beck, Dave Astels, Gerard Meszaros

e TDD is not a testing technique, but a coding
and design technique

0 nevertheless TDD patterns help you writing tests,
regardless if you follow TDD or not

e TDD relies heavily on Refactoring

o we (IFS) try hard to provide you with such
Refactoring automation for C++ as well as you
might be used to with Java or Ruby. (plus
Refactoring for Python (PyDev), Groovy, PHP,
JavaScript)

13

TDD 5
[Keviin Henney]

e TDD has emerged from the many practices that '
form Extreme Programming's core

0 Focused on code-centric practices in the micro
process rather than driving the macro process

e TDD can be used in other
macro-process models

o TDD is not XP, and vice versa
o TDD is not just unit testing
e BDD (Behaviour Driven Design)
o Follow-up to TDD
0 since TDD is not about Testing

14

e mx&m.tﬁﬂmji

TDD Practices and L
Characteristics

/ Build and Release Practices \

/ Essential Test-Driven Development Practices\ : : .
Fine-grained versioning I
Test-bounded design increments l

Programmer testing responsibility l """"
: . Defined stable increments I
Active test writing l

N /
Refactoring l . ™~

Team-Related Practices
Automated tests l Pair programming l
\ Example-based test cases /l

Continuous integration |

Shared coding guidelines |

. J

provided by [Kevlin Henney]

ACCU 2008 - C++ TDD 15 © Peter Sommerlad

TDD Patterns
Writing Tests & Habits

e Isolated Tests
o write tests that are independent of other tests
o Test List
0 use a list of to-be-written tests as a reminder
o only implement one failing test at a time
e Test First
0 write your tests before your production code
e Assert First
o start writing a test with the assertion

o only add the acting and arrangement code when
you know what you actually assert

16

Q INSTITUTE
® _ foRr

. . SOFTWARE
m

DEEPB &
éi.

Demo TDD V1
Generate Roman Numbers

Q
®
o

?’”

e generate roman numbers as strings from an
integer representation

o start with the following list of tests
0 create a new CUTE projects
0 write test, implement function, refactor, repeat
0 make up new tests as you go and see need
THE LIST FORR ROMAN NUMBERS (\V0)
|
0 = EMPTY STRING
2 = |l

ACCU 2008 - C++ TDD 17 © Peter Sommerlad

“Red-bar” Patterns
Finding Tests to write

e One Step Test

0 solve a development task test-by-test
» no backlog of test code, only on your test list
» select the simplest/easiest problem next

e Starter Test

o start small, e.qg., test for an empty list

o refactor while growing your code
e Explanation Test

0 discuss design through writing a test for it
e Learning Test

0 understand existing code/APIs through writing
tests exercising it

18

Demo TDD V2 sdimn
(3+4)*6 — 42 *

e Expression Evaluator for simple Arithmetic
® Test-First Development with CUTE
¢ Incremental Requirements Discovery

The List for Eval (VO)
" =3 error

IIOII é O
II2II % 2
"1+17 = 2

19

“Red Bar” Patterns (2)] B

® | SOFTWARE

® Regression Test
o For every bug report write tests showing the bug
e Break

0 Enough breaks are essential. When you are tired
you loose concentration and your judgement gets
worse. This results in more errors, more work,
and makes you more fatigue. (vicious circle!)

e Do Over

o If you recognize your design and tests lead
nowhere, DELETE your code! A fresh start earlier
is often better.

20

” . INSTITUTE

“Green Bar” - Patterns G
Make your Tests succeed

e Fake It ('Til You Make It)
o It is OK to “hack” to make your test succeed.
o Refactor towards the real solution ASAP

e Triangulate
o0 How can you select a good abstraction?

o try to code two examples, and then refactor to
the “right” solution

e Obvious Implementation
0 Nevertheless, when it's easy, just do it.
e One to Many

o Implement functions with many elements first for
one element (or none) correctly

21

TDD Patterns TE
Habits "

® Child Test

o If a test case gets too large, “remove” it, redo the
core, get “green-bar”, and then introduce the
“full” case again, get “green-bar”

o Broken Test

o If you have to stop programming or take a break,
leave a broken test to remind you where you left.
» but only do Clean Check-in!

® Clean Check-iIn

o Do only (and may be always) check-in your code
and tests when you have a green bar.

22

% MH M 3 k&%“w&ﬂkﬁ%

Test Double Pattern L
xunitpatterns.com

e How can we verify logic independently when
code it depends on is unusable?

e How can we avoid Slow Tests?

Fixture]l =~

Setup Test

Double
Exercise

. -

Verify ()
O
Teardown

ACCU 2008 - C++ TDD 23 © Peter Sommerlad

@ INSTITUTE

Test Double Patterns ¢ o
[Beck-TDD] -

e Mock Object

o Decouple a class under test from its environment
e Self Shunt

0 Use the test case class itself as a Mock Object
e Log String

o test temporal dependencies of calls by
concatenating call info in a string, e.g., using Self
Shunt

e Crash Test Dummy

0 How do you tests exceptions that are hard to
force, but might occur during production?

0 Use a dummy/Mock Object that throws an
exception instead of the real object.

24

b A N

Mock Object 232 e
xunitpatterns)

e How do we implement Behavior Verification for '
indirect outputs of the SUT?

e How can we verify logic independently when it
depends on indirect inputs from other software

components?
Craation I:lﬁ:l - i\hﬂ-ﬂk
Setup ﬁ Object
_| Installation Expectations
' = > Indirect v
EKEI’CISE —— S U T Cutput ._O
O,/ =
' O
V'E"fy Final Verification >O =
O

ACCU 2008 - C 25 ter Sommerlad

Difference Test-Stub and

Mock-Object

T “’”‘*“E

o INSTITUTE
0
0 " FOR
. 5]
Q @ SOFTWARE

| IndirectinputTest
(fesiMethod 1)

esivieuno

I
I
Installation

I
| _
Creation & " S U T
Configuration
Indiract
Inputs
= Test Stub
e Xunitpatterns.com

ACCU 2008 - C++ TDD

IndirectOutputTest
estiviethod
esiivielno

|
|
Installation

Creation &
Configuration - S U T
Indirect
Qutputs
—= Mock Object

26

© Peter Sommerlad

@ INSTITUTE

Testing for Exceptions o ror

@ SOFTW ARE

e There is a standard Schema to test some code
If It raises a specific exception:

volid testAnException() {
std: :vector<int> v; // arrange

try {
v.at(@); // act

FAILM("expected out_of_range exception"); // assert

}
catch(std: :out_of_range &) { }

¥

e CUTE encapsulates this to

volid testAnException() {
std: :vector<int> v;
ASSERT_THROWS(v.at(0),std: :out_of_range);

¥

27

 _@® INSTITUTE

Example Crash-Test Bk
Dummy in C++]

struct out_of_memory:std: :exception{};

template <typename T>
struct failingallocator : std::allocator<T> {
typedef typename std::allocator<T>::pointer pointer;
typedef typename std::allocator<T>::size_type size_type;
pointer allocate(size_type n, std::allocator<void>::const_pointer hint=0){

//return std::allocator<T>::allocate(n,hint);
throw out_of_memory();

¥
Y, // “Crash-Test-Dummy” allocator

void testFailingAllocation(){

std: :vector<int,failingallocator<int> > v;
ASSERT_THROWS(v.reserve(5),out_of_memory);

¥
volid testFailingAllocationCtor(){

std: :vector<int,failingallocator<int> > v(5); // will throw in ctor!

}

void runSuite(){
cute::suite s;
s.push_back(CUTE(testFailingAllocation));
s.push_back(CUTE_EXPECT(CUTE(testFailingAllocationCtor),out_of_memory));

28

Why Test Doubles and f i
Mock Objects? [Pragunit] *

e The real object has nondeterministic behavior (it
produces unpredictable results, like a stock-market
quote feed.)

e The real object is difficult to set up.

e The real object has behavior that is hard to
trigger (for example, a network error).

e The real object is slow.
e The real object has (or is) a user interface.

® The test needs to ask the real object about how it
was used (for example, a test might need to
confirm that a callback function was actually called).

e The real object does not yet exist (a common
problem when interfacing with other teams or new
hardware systems).

29

" _ @ ¢ INSTITUTE

TDD Expression oS
Evaluator

e Thanks to Hubert Matthews for his last year
workshop where I tried TDD on this problem.

e Wanted:

0 A volunteer keeping track of tests to write: The
List
o Your help in implementing and refactoring

» just call, ask, and answer

» I am your (sometimes intelligent) typing machine (and
guide)

30

How to write CUTE Tests?

@ INSTITUTE

Test Fixtures ® . o

@ SOFTW ARE

e Often several test cases require identical
arrangements of testee objects

e Reasons
0 "expensive" setup of objects
0 no duplication of code (DRY principle)
e Mechanisms
o JUnit provides setup() and teardown() methods

0 CPPUnitLite does not provide this
» other CPPUnit variants do as virtual functions

o CUTE employs constructor and destructor of a
testing class with per test object incarnation
» no need for inheritance and virtual member functions

» just employ C++ standard mechanisms
32

Test Fixture with CUTE

INSTITUTE

FOR

. SOFTWARE

#1include "cute.h"
#include "cute_equals.h"
struct ATest {
CircularBuffer<int> buf;
ATest():buf(4){}
testEmpty(){
testNotFull(){

vo1ld
Vvo1ld

VvOo1ld

s

ASSERT(buf .empty());}

testSizeZero(){

ASSERT(!buf.full());}
ASSERT_EQUAL(Q,buf.s1ze());}

#1include "cute_testmember.h"

S.push_
S.push_

s.push

DAC
DdC

DAC

K(CU
K(CU

'E_SMEM
'E_SMEM

K(CUT

'E_SMEM

FUNCA
FUNCA

‘est,testEmpty));
‘est,testNotFull));

FUNCAT

‘est,testSizeZero));

88

.32
INSTITUTE
% FOR

D . SOFTWARE
)

MW
xv

Member Functions as
Tests in CUTE

g...*’

gl
TR

f,w

el il

e CUTE_SMEMFUN(TestClass,memfun)

0 instantiates a new object of TestClass and calls memfun on it ("simple"
member function)

e CUTE_MEMFUN(testobject,TestClass,memfun)

0 uses pre-instantiated testobject as target for memfun
» this is kept by reference, take care of its scoping/lifetime

» allows reuse of testobject for several tests and thus of a fixture
provided by it.

o allows for classes with complex constructor parameters
® CUTE_CONTEXT_MEMFUN(context,TestClass,memfun)

0 keeps a copy of context object and passes it to TestClass' constructor
before calling memfun on it

» avoids scoping problems
» allows single-parameter constructors

ACCU 2008 - C++ TDD 34 © Peter Sommerlad

Refactoring for Mocks in C++

Variations of Mock Objects classics

@ INSTITUTE

Principle of Mock objects e o

@ SOFTW ARE

e A unit/system under test (SUT) depends on
another component (DOC) that we want to
separate out from our test.

® Reasons
o real DOC might not exist yet
o0 real DOC contains uncontrollable behavior

o want to test exceptional behavior by DOC that is
hard to trigger

0 using the real DOC is too expensive or takes to
long

0 need to locate problems within SUT not DOC
o want to test usage of DOC by SUT is correct

36

Why the need for Mock f i
Objects?

e Simpler Tests and Design
0 especially for external dependencies
o0 promote interface-oriented design
e Independent Testing of single Units
o isolation of unit under testing
0 or for not-yet-existing units
e Speed of Tests
0 ho external communication (e.g., DB, network)
e Check usage of third component
0 is complex API used correctly
e Test exceptional behaviour

0 especially when such behaviour is hard to trigger

37

" _ @ ¢ INSTITUTE

TYPES OF ack Uhgects olg o
[Dave ASteIS] L2,

e There exist different categories of Mock
objects and different categorizers.

o Stubs

0 substitutes for “expensive” or non-deterministic
classes with fixed, hard-coded return values

e Fakes
0 substitutes for not yet implemented classes
e Mocks

0 substitutes with additional functionality to record
function calls, and the potential to deliver
different values for different calls

38

l INSTITUTE

Interface-oriented Mock ! o

¢ SOFTWARE

e classic inheritance based mocking
0 extract interface for DOC -> IDOC
0 make SUT use IDOC

o create MOCK implementing IDOC and use it in UT
SUT - DOC

UT—suT IDOC
\\ A
- - .IMOCK

» in C++ this means overhead for DOC (virtual functions)!

ACCU 2008 - C++ TDD 39 © Peter Sommerlad

¢ INSTITUTE
.~ FOR

. SOFTWARE
m’g

DEE Rl o
¥
=
Q‘E

Demo/Exercise
Code in need for Mocking

;ocbog
&

Q
®
TN

.

e A very simple game, roll dice, check if you've
got 4 and you win, otherwise you loose.

Game > Die
o We want to test class Die first:

#1include <cstdlib>

struct Die

{
int roll() { return rand()%6 + 1; }
i
ACCU 2008 - C++ TDD 40 © Peter Sommerlad

PRI, 3 Sl R #

How to test Game? L

#1include "Die.h"
class GameFourWins

{
Die die;

public:
GameFourWins();
void play();

i

vold GameFourWins: :play(){
1f (die.roll() == 4) {
cout << "You won!" << endl;
} else {
cout << "You lost!" << endl;
ks
ks

ACCU 2008 - C++ TDD 41 © Peter Sommerlad

PN Y *“’“‘”ME

Refactoring 232
Introduce Parameter

#1include "Die.h"
#include <iostream>

class GameFourWins

1
Die die;
public:
GameFourWins();
vold play(std::ostream &os = std::cout);

s

volid GameFourWins::play(std: :ostream &os){
1f (die.roll() == 4) {
0S << "You won!" << endl;
} else {

0S << "You lost!" << endl;

¥
¥

ACCU 2008 - C++ TDD 42 © Peter Sommerlad

INSTITUTE

Test with a Mock ostream |-:: -

¢ SOFTWARE

o We now can use a ostrstream to collect the

output of play() and check that against an
expected value:

vold testGame() {
GameFourWins game;
std: :ostringstream os;

game.play(os);
ASSERT_EQUAL("You lost!\n",os.str());

¥

e What is still wrong with that test?

43

Simulation Mocks B
Interface-oriented

e deliver predefined values
0 we need that for our Die class
e Introduce an Interface

struct Dielnterface

{
virtual ~Dielnterface(){}
virtual int roll() =0;

e

struct Die: Dielnterface

{
int roll() { return rand()%6+1; }

s

e how we need to adjust Game as well to use
DieInterface* instead of Die

44

Simulation Mocks TR
preparing SUT

e Changing the interface, need to adapt call sites '

e theDie must live longer than Game object
class GameFourWins

{

Dielnterface ¨
public:

GameFourWins(DieInterface &theDie):die(theDie){}

void play(std::ostream &os = std::cout);
¥

e how we can write our test using an alternative
implementation of Dielnterface

e would using pointer instead of reference
improve situation? what's different?

45

 _@® INSTITUTE

Simulation Mock olg o
Test it L 2.

e This way we can also thoroughly test the
winning case:

struct MockWinningDice:DieInterface{
int rollQ){return 4;}

o

void testWinningGame() {
MockWinningDice d;
GameFourWins game(d);
std: :ostringstream os;

game.play(os);
ASSERT_EQUAL("You won!\n",os.str());

46

A C++ alternative using el
templates

e advantage: no virtual call overhead

e drawback: inline/export problem potential

template <typename Dice=Die>
class GameFourWinsT
{
Dice die;
public:

vold play(std::ostream &os = std::cout){
1f (die.roll() == 4) {
0S << "You won!" << std::endl;
} else {

0S << "You lost!" << std::endl;

}
}
s

typedef GameFourWinsT<Die> GameFourWins;

47

Mock via template
parameter

PIRUA 50 T0e 0L T L Al L T

B AN CToR "
1 . 3
5 o 0 l >
2 N .
£ SO TN S g

INSTITUTE
FOR
SOFTWARE

e The resulting test looks like this:

struct MockWinningDice{
int roll(){return 4;}

¥

vold testWinningGame() {
GameFourWins<MockWinningDice> game;
std: :ostringstream os;

game.play(os);
ASSERT_EQUAL("You won!\n",os.str());

¥

e should we also mock the ostream similarly?

48

@ INSTITUTE

Call Tracing Mocks ¢ ron

@ SOFTW ARE

o We want also to count how often our dice are
rolled. How to test this?

struct MockWinningDice:Dielnterface{
int rollcounter;
MockWinningDice():rollcounter(@){}
int roll(){++rollcounter; return 4;}

s

void testWinningGame() {
MockWinningDice d;
GameFourWins game(d);
std: :ostringstream os;
game.play(os);
ASSERT_EQUAL("You won!\n",o0s.str());
ASSERT_EQUAL(1,d.rollcounter);

game.play(os);
ASSERT_EQUAL(Z2,d.rollcounter);

49

_® INSTITUTE

Using C++ template 5
Parameters for Mocking

e C++ template parameters can be used for
mocking without virtual member function
overhead and explicit interface extraction.

0 N0 need to pass object in as additional parameter

o unfortunately no default template parameters for
template functions (yet)

e You can mock
o Member Variable Types
0 Function Parameter Types

e Mocking without template inline/export need
Is possible through explicit instantiations

50

INSTITUTE
FOR
@ SOFTW ARE

Summary Mock Objects

e Mock Objects are important for isolating unit
tests

0 or speeding them up

e They can lead to better, less-coupled design
0 separation of concerns

e Overdoing mocking can be dangerous
0 go for simplicity!

e C++ offers additional ways to introduce mock
objects through templates

0 also through #define and typedef!

51

R e]

@® INSTITUTE
o_
| Q’Q . FOR
f ® SOFTWARE

Outlook/Questions

ACCU 2008 - C++ TDD 52 © Peter Sommerlad

&

INSTITUTE
FOR
SOFTWARE

MW?
; ® :
100

References

%
XX}

® [Beck-TDD]

0 Kent Beck: Test-Driven Design
® [PragUnit]

o Andy Hunt, Dave Thomas: Pragmatic Unit Testing
® [Kevlin Henney]

o JUTLAND:
Java Unit Testing: Light, Adaptable 'n' Discreet

® [Dave Astels] - TDD

o Test Driven Development: A Practical Guide

o http://video.google.com/videoplay?docid=8135690990081075324 - on BDD
® [Dan North] - Behaviour Driven Development

o http://dannorth.net/introducing-bdd/

o http://behaviour-driven.org/
e [Gerard Meszaros] - xUnit Test Patterns

o http://xunitpatterns.com

0 very good overview of the problems of and with test automation and their
solutions

ACCU 2008 - C++ TDD 53 © Peter Sommerlad

http://video.google.com/videoplay?docid=8135690990081075324
http://video.google.com/videoplay?docid=8135690990081075324
http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/
http://behaviour-driven.org
http://behaviour-driven.org
http://xunitpatterns.com
http://xunitpatterns.com

