
© Software Acumen Limited 2007-08, http://www.software-acumen.com/

When Good Architecture
Goes Bad

Mark Dalgarno
Software Acumen

Blog: The Variation Point
(http://blog.software-acumen.com/)

Email: mark@software-acumen.com

http://www.software-acumen.com/
http://www.software-acumen.com/
http://blog.software-acumen.com/
http://blog.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

(Approximate) Agenda

 Introduction
Architectural smells
The cost of decay
Causes of decay
Preventing decay
The value of architectural integrity
Close

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Introduction - Software architectural decay

 Architecture as-is diverges from
architecture as-intended.

 Results in a decrease in the ability of a
system’s software architecture to meet
its stakeholder requirements.

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Introduction - Example of architectural decay

 Researchers compared two versions of ANT
– System built in three layers taskdefs, ant, utils.

 V1.4.1 (11 October 2001)
– Layers well-separated.
– ant layer monolithic but small.

 V1.6.1 (12 February 2004)
– ant layer dependent on taskdefs (upward

dependencies).
– ant layer now very large but still monolithic.

See http://www.stsc.hill.af.mil/crosstalk/2005/11/0511SangalWaldman.html for more information
on

The study and http://codefeed.com/blog/?p=98 for a brief early Ant project history. Accessed
19/1/08

http://www.software-acumen.com/
http://www.stsc.hill.af.mil/crosstalk/2005/11/0511SangalWaldman.html

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Architectural Smells - Structural Smells

 Code in the wrong place
 Problems in class, package, sub-system

and layer relationships
 Insufficient decomposition
 Too much decomposition
 Obsolescence
 Overgeneralization

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Architectural Smells - Whiffs (or subtle smells)

 No one on the team can tell you (or agree on)
what the as-intended architecture is.

 The time, effort and risk in implementing
further changes increases – productivity and
quality decrease.

 It becomes harder to predict the effect of
further changes on cost, schedule and quality.

 Further changes typically cause the as-is
architecture to deviate further from the as-
intended architecture – the situation becomes
worse.

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Architectural Smells - Exercise 1

 In groups, identify one or more
examples of architectural decay from
your own experience.

 Were any smells (or whiffs) associated
with these examples?

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

The cost of architectural decay – an experiment

 STSC conducted a study with two variants of a
mature software system (50k LOC).

 Variant 1 – existing system with structural defects.
 Variant 2 – system with architecture restructured to

remove defects.
 Both teams given same maintenance task (adding

approx. 3k of code).
 Team 1 needed over twice as long as team 2 to

complete the task. Team 1’s results contained more
than 8 times the number of errors than the work
submitted by team 2.

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

The cost of architectural decay

 Lowering quality lengthens development
time – but is business aware of this?
– Do they care or will they worry about

getting out of ‘debt’ later?
 Beat competitor to market.
 Grab market share.
 Win contract on the cheap & charge more later.

– Can be hard to communicate state of
architecture to business
 Hard to understand architectural issues.
 Blame culture – how did it get that bad?

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

The cost of architectural decay – Exercise 2

 Read Case Study 1.

 In groups discuss whether it is credible
that architectural decay led to this
significant decrease in productivity?

 What do you think of the company's
proposed solution?

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Causes of decay

 Change brings decay
– Functional / non-functional changes.
– Environmental changes (inc. team, tools).
– Worse if architecture doesn’t support change.

 Ignorance, misunderstandings, mistakes
 Hard to visualize as-is architecture to see if it

matches the as-intended architecture
 Insufficient value placed on evolvability and

ongoing architectural integrity

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Causes of decay - Exercise 3

 Read case study 2.

 In groups, discuss whether the
architecture will decay when the system
is maintained.

 Justify your answer.

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Preventing decay – a skeleton process

 Start out with a sustainable architecture.
– Assess it using change scenarios.

 Visualize the architecture as the
software evolves.
– Compare as-is to as-intended

 Use metrics to highlight architectural
smells.

 Refactor to maintain integrity.

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Preventing decay - Exercise 4

 In groups, list things that could have
been done to slow or prevent
architectural decay in one of your own
examples from Exercise 1.

 Include anything you tried that did or
didn’t work at the time.

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Slowing decay – what other people said

 10 experienced architects / developers completed
a small survey for Software Acumen

 Most had not heard of tools to help visualize
software architecture

 Desired features of such tools were:
4. Visibility of software architecture as-is
5. Interrelationship comprehension

6. Ability to check and enforce architectural integrity

7. Advance visibility of the effects of refactorings

8. Identification of components to enable re-use

9. Identification of opportunities for refactoring

10. Elimination of cyclic dependencies to improve code quality

http://www.software-acumen.com/
http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

The value of integrity - the problem

 It’s hard to measure the (money, time,
organisational, personal) benefit of
architectural maintenance activities.

 Architectural integrity pays off over the
long term in many cases.

 You may get a quicker return if you
spend money elsewhere.

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

The value of architectural integrity –
Exercise 5

 Revisit one or more of your earlier examples
of architectural decay.

 What was the (money, time, organisational,
personal) cost of letting the architecture
decay?

 If you could go back in time what steps would
you take to reduce these costs? How effective
do you think these steps would be?

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Things to ponder…

 “The average developer is too stupid to use architectural
analysis techniques” – unnamed CTO, October 2006

 Who’s responsible for architectural integrity?
 When you specify an architecture do you spend enough

time considering how it would be affected by change?
 “It’s all about communication” – SPA 2008 participant
 Does it matter if architecture decays as long as the tests

pass?
 How bad should a software system’s architecture be

before you scrap it?
 Architectural decay is depreciation of the software

owner’s assets – should this be reflected on the owner’s
balance sheet?

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Recommended Reading

 Refactoring in Large Software Projects:
Performing Complex Restructurings
Successfully, Martin Lippert, Stephen
Roock, Wiley 2006

 Lehman’s laws of software evolution
M M Lehman, J F Ramil, P D Wernick, D E Perry, W M Turski, "Metrics and Laws of
Software Evolution – The Nineties View," metrics, p. 20, Fourth International Software
Metrics Symposium (METRICS'97), 1997

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Summary

 Any successful software system is likely to
evolve.

 Unless preventative work is undertaken the
architecture of the system will decay.

 As the architecture decays the cost and risk of
further development rises.

 There are lots of different things that can be
done to slow architectural decay – you (just)
need to work out what the best value
approach is.

http://www.software-acumen.com/

© Software Acumen Limited 2007-08, http://www.software-acumen.com/

Thanks go to…

 Rob Machin, UBS Investment Bank
 Thomas Eisenbarth, Axivion GmbH
 Klaus Marquardt, Drager Medical Systems

GmbH
 Paul Clements, SEI
 SPA 2008 workshop participants

 Email mark@software-acumen.com for these
slides. Visit http://blog.software-acumen.com/
for session write up.

http://www.software-acumen.com/
mailto:mark@software-acumen.com
http://blog.software-acumen.com/

