Pattern Connections

Putting Together the Pieces of the Design Jigsaw

Kevlin Henney
kevlin@curbralan.com

Agenda

e Intent

¢ Present a number of pattern concepts, going from
lone patterns to a more connected view of patterns
e Content

¢ Overview of Pattern Concepts
¢ Some Examples

¢ From a Pattern to a Language
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Overview of Pattern Concepts

e Intent

* Present core pattern terminology and ideas

e Content

¢ Patterns and pattern quality

¢ Patterns of misunderstanding

+ Pattern communities

+ Pattern stories and sequences

¢ Pattern compounds
¢ Pattern languages
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Patterns

¢ A pattern documents a recurring problem-
solution pairing within a given context

¢ A pattern is more than either the problem or the
solution structure

¢ A pattern contributes to design vocabulary
e A problem is considered with respect to forces
and a solution that gives rise to consequences

¢ The full form in which a pattern is presented should
emphasise forces and consequences, also stating the
essential problem and solution clearly
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Kinds of Patterns

e There are many kinds of patterns, not just OO-
focused design patterns
¢+ Patterns for designing user interfaces
¢ Patterns for programmer testing
¢ Patterns for organisational structure and
development process
e However, the focus of this talk is on patterns
that relate to the design of code

¢ These focus on artefacts visible to the programmer
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Pattern Quality

e Contrary to popular belief, a pattern is not by
definition "good"
¢ There are also poor patterns — dysfunctional
designs recur, through either habit or fashion
¢ And there are also poor applications of good
patterns
e A poor pattern or pattern application can be
characterised as being out of balance

+ Its consequences and forces do not adequately
match up
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Patterns of Misunderstanding

e There are other misconceptions concerning the
pattern concept that are worth clearing up...

¢ Design Patterns is a limited subset of design patterns
and the pattern concept

¢ Patterns are not frameworks, components,
blueprints or parameter-based collaborations

¢ Patterns are more than just a sample class diagram
of the solution

¢ Only language-independent patterns are language
independent: patterns may be language specific
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Pattern Communities

e Patterns can be used in isolation with some
degree of success
+ Represent foci for discussion or point solutions
¢+ Offer localised design ideas
e However, patterns are, in truth, gregarious
¢ They're rather fond of the company of patterns

¢ To make practical sense as a design idea, patterns
inevitably enlist other patterns for expression and
variation, where they compete and cooperate
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Pattern Stories and Sequences

¢ A pattern story brings out the sequence of
patterns applied in a given design example

¢ They capture the conceptual narrative behind a
given piece of design, real or illustrative

¢ Forces and consequences are played out in order
e More generally, pattern sequences describe
specific ordered applications of patterns

* A pattern story is to a pattern sequence as a pattern
example is to an individual pattern
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Pattern Compounds

e Pattern compounds capture commonly
recurring subcommunities of patterns

¢ In truth, most patterns are compound, at one level
or another or from one point of view or other

¢ Also known as compound patterns or — originally
and confusingly — composite patterns
e We can see many pattern compounds as
named pattern subsequences

¢ They are commonly recurring design fragments that
can be further decomposed, if desired
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Pattern Languages

¢ A pattern language connects many patterns
together to capture a broader range of paths

¢ The intent of a language is to generate a particular
kind of system or subsystem

¢ A pattern language can describe vernacular design
style, with general patterns incorporated into a
language that is presented more specifically

e There may be many possible and practical
sequences through a pattern language
¢ In the limit, a sequence is a narrow language
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Some Examples

e Intent

¢ Illustrate some of the concepts discussed with
specific examples

e Content

¢ Lone patterns

¢ Complementary patterns

¢ Pattern compounds and sequences

¢ Pattern languages
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Something for Nothing

e Where a non-null reference is interpreted as an
option and a null as its absence...

¢ Code may be littered with guard if statements

e Polymorphism can replace the explicit decision

0.1
Service Log
write
————————— 4+ ---
ConsoleLog FileLog

write

write

Service

1

Refactor...

NullLog

write
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Null Object

e The Null Object pattern is a tactical design
based on substitution of pluggable parts

¢ It generalises beyond object orientation, although it
is often described in those terms

if
* An object reference may optionally be null and
« This reference must be checked before every use and
* The result of a null check is to do nothing or use a default value
then
* Provide a class subclasses from object reference's type and
« Implement all of its methods to do nothing or provide default results and
« Use an instance of this class when the object reference would have been null
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Modal Object Lifecycles

e Many objects can be characterised as having
groups of states (modes)

¢ Each mode defines a set of behaviour that is
significant and different to that of other modes

¢ Objects transition from mode to mode in response
to certain events

e There are many patterns that deal with the
expression of the modes and the transitions
¢ There is more to state than State
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Objects for States

e Reflect a hierarchical view of the state model in
a class hierarchy

+ A context object delegates to a behavioural object
whose class represents a mode of behaviour

C. M -
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Implementing Objects for States

e There are many considerations, some of which
are language specific

¢+ In Java, inner classes can be used to simplify access
of the context object's fields

¢ In C++, the whole state-behaviour hierarchy can be
fully encapsulated using a Cheshire Cat

class context —3 struct context::representation
{

public: class mode;
... // public functions class first mode;

private: ... // other mode types
struct representation; mode *current;

representation *body; ... // other context state

1
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Methods for States

e Methods for States represents each state as a
table or record of method references
¢ Methods referenced are on the target object

Methods on the
a(...) { ...} context object
Current bVt ...}
Context state
object C — L }

Tables (e.g. struct) of
references to methods
(e.g. member function
pointers)
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Implementing Methods for States

e This pattern is only suitable for languages that
support simple manipulation of methods

¢ E.g. member function pointers in C++, delegates in
C# and use of send for Pluggable Selector in Ruby

class context —3 struct context::mode
{

void (context::*function)();

public:
... // other 'public' functions

void function();

... // other public functions
private:

... // private functions

struct mode;

static const mode first_mode;
... // other modes

1

const mode *behaviour;
... // other private data

}s
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Collections for States

e For objects managed collectively, objects can be
collected together according to state
* State is extrinsically represented by membership

Common operations on objects in the same state Collection representing state

Transition of objects
between states Managed object
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Implementing Collections for States

e There are different ways of organising the
collections, depending on the situation

+ For N modal states, at least N collections are
needed, e.g. a collection for each mode

¢ But more than N can class manager
sometimes be useful, .
: ... // public functions
e.g. a collection for all S
1 1 std::1ist<managed> all;
ob]ects plus a COHeCtIOIl std::set<managed *> first_mode;
for each mode ... // containers for other modes

b
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Encapsulated Iteration

e Traversal over object collection contents should
preserve the encapsulation of the collection
¢ But it should also reflect the environment of use of
the collection — design is sensitive to context
e There are a number of solutions that range
from distinct to constructively complementary

¢ E.g. Iterator, Enumeration Method, Batch Method,
Collecting Parameter, Combined Iterator, Batch Iterator

¢ The detail of realisation varies with environment
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Iterator and Batch Method

e [terator presents the common and conventional
design of iteration over an encapsulated target
¢ Separate the responsibility for iteration from that of
collection into separate
e Batch Method is an alternative that addresses
the needs of remote or otherwise costly access

¢ The repetition is provided in data structure rather
than in control flow

¢ The granularity of access is coarser, which reduces
one aspect of access overhead
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Batch Iterator as a Pattern Compound

e Batch Iterator is a compound resulting from
combining both Iterator and Batch Method

¢ Offers a compromise in granularity and control,
allowing a caller to step through a collection in
strides greater than one step but less than the whole

typedef sequence<any> many;
interface BatchIterator

boolean next n(in unsigned Tong how many, out many result);
boolean skip_n(in unsigned Tong how_many) ;

}s
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Batch Iterator as a Pattern Sequence

o Another take on Batch Iterator is that it is the
result of...
¢ First, introducing an Iterator
* Second, expressing its interface with a Batch Method
e In other words, a (very) short pattern sequence

¢ This can be named as a proper noun, e.g. Batch
Iterator or Chunky Iterator

¢+ Or labelled with respect to its parts and process, i.e.
(Iterator, Batch Method)
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Value-Based Programming

e Values express simple informational concepts,
such as quantities

¢ In programming, values are expressed as objects,
but their object identity is considered transparent,
with state governing behaviour and use
e A number of idiomatic practices go together to
support value-based programming in Java

¢ The Patterns of Value language is a work in progress
that aims to capture these
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Generic Programming

e Generic programming is characterised by an
open, orthogonal and expressive style

¢ It is an approach to program composition that
emphasises algorithmic abstraction, loose coupling
and a strong separation of concerns

e The approach that underpins the STL

¢ More than just coding with templates in C++ — this
is a common misunderstanding: the principle of
generic programming is not actually about generics

¢+ Originated with Alex Stepanov and others
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From a Pattern to a Language

e Intent

¢ Present the Context Encapsulation pattern language,
starting from its root

e Content
¢ Encapsulated Context Object
¢ Decoupled Context Interface
* Role-Partitioned Context
¢ Role-Specific Context Object

P 3
E%
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e Consider the context of a loosely coupled and
extensible architecture

¢ The extensibility can be per runtime, per release or
per product configuration
e How can objects in different parts of this
system gain access to common facilities?

¢+ Keeping in mind the goal of loose coupling, which
supports extensibility, comprehensibility,
testability, etc.

ACCU Conference 2007

32




Encapsulated Context Object

e Pass execution context for a component —
whether a layer or a lone object — as an object

¢ Avoids tedium and instability of long argument
lists of individual configuration parameters

+ Avoids explicit or implicit global services, e.g.
Singletons, Monostates and other uses of static

e The context may include external configuration
information and services, such as logging
¢ But features should not be included arbitrarily
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(ECO)

public final class ExecutionContext

public void writeLog(String message) ...

public void writeConsole(String message) ...
public boolean containsVariable(String name) ...
public String valueOfVariable(String name) ...

}

public void configure(ExecutionContext context)

String serverName = context.valueOfVariable("server");

public void start(ExecutionContext context)

try ...
catch(RuntimeException caught)

context.writeLog("Failed to start: " + caught);
context.writeConsole("Error: " + caught);
throw caught;
}
}
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Decoupled Context Interface

e Reduce the coupling of a component to the
concrete type of the Encapsulated Context Object
¢+ Define its dependency in terms of an interface rather
than the underlying implementation class
e This allows substitution of alternative
implementations
* E.g. Null Objects and Mock Objects

¢ Also decouples context dependent from any
changes in a single implementing class
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(ECO, DCI)

public interface ExecutionContext

void writelLog(String message);

void writeConsole(String message);
boolean containsVariable(String name);
String valueOfVariable(String name);

}

public class EnvironmentalContext implements ExecutionContext

public void writelLog(String message) ...
public void writeConsole(String message) ...

}

public class MockContext implements ExecutionContext

public void writeLog(String message) ...
public void writeConsole(String message) ...

}

ACCU Conference 2007

36




Role-Partitioned Context

e Split uncohesive Encapsulated Context Objects
into smaller more cohesive context interfaces

¢ Itis all too easy to end up with a bucket of arbitrary
variables that have no genuine relation to one
another, either in concept or in use
e Base the partitioning on usage role, i.e. features
that are used together should stay together

¢ Each partitioned piece of context can be expressed
with a Decoupled Context Interface, or through a Role-
Specific Context Object, or both
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(ECO, DCI, RPC)

public interface Reporting

void writelLog(String message);
void writeConsole(String message);

}

public interface Configuration

boolean containsVariable(String name);
String valueOfVariable(String name);

}

public class EnvironmentalContext implements Reporting, Configuration

public void writelLog(String message) ...

public void writeConsole(String message) ...
public boolean containsVariable(String name) ...
public String valueOfVariable(String name) ...
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Role-Specific Context Object

e Multiple Role-Partitioned Contexts may be
expressed at runtime as a single object per role
+ This allows independent parts of a context to be
more loosely coupled and separately parameterized
e The Role-Partitioned Context may also be
expressed with Decoupled Context Interfaces

¢ Which also allows the context to be contained in a
single object, offering an additional degree of
parameterization freedom
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(ECO, DCI, RPC, RSCO)

public class NullReporting implements Reporting

}

public class FileBasedConfiguration implements Configuration

}

public void configure(Configuration config)

String serverName = config.valueOfVariable("server");

public void start(Reporting reporter)

try ...
catch(RuntimeException caught)

reporter.writeLog("Failed to start: " + caught);
reporter.writeConsole("Error: " + caught);
throw caught;

}
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Context Encapsulation
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In Conclusion

e A pattern captures recurrence, structure and

intention in design

¢ But beware: not all that recurs is necessarily good

e Patterns inevitably combine to address more
intricate problems than lone patterns can
¢ A pattern compound captures common groupings

* A pattern sequence represents a gradual process of
stable transformation from one design to another

¢ A pattern language describes connections between
patterns that can yield many different paths
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