Pattern Connections

Putting Together the Pieces of the Design Jigsaw

Kevlin Henney
kevlin@curbralan.com

Agenda

e Intent

¢ Present a number of pattern concepts, going from
lone patterns to a more connected view of patterns
e Content

¢ Overview of Pattern Concepts
¢ Some Examples

¢ From a Pattern to a Language

ACCU Conference 2007 2

Shameless Plug

£

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

A Pattern language for
Distributed Computing

£

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

On Patterns and Pattern Languages

Kk Meriney

ACCU Conference 2007

3

Overview of Pattern Concepts

e Intent

* Present core pattern terminology and ideas

e Content

¢ Patterns and pattern quality

¢ Patterns of misunderstanding

+ Pattern communities

+ Pattern stories and sequences

¢ Pattern compounds
¢ Pattern languages

ACCU Conference 2007

4

Patterns

¢ A pattern documents a recurring problem-
solution pairing within a given context

¢ A pattern is more than either the problem or the
solution structure

¢ A pattern contributes to design vocabulary
e A problem is considered with respect to forces
and a solution that gives rise to consequences

¢ The full form in which a pattern is presented should
emphasise forces and consequences, also stating the
essential problem and solution clearly

ACCU Conference 2007 5

Kinds of Patterns

e There are many kinds of patterns, not just OO-
focused design patterns
¢+ Patterns for designing user interfaces
¢ Patterns for programmer testing
¢ Patterns for organisational structure and
development process
e However, the focus of this talk is on patterns
that relate to the design of code

¢ These focus on artefacts visible to the programmer

ACCU Conference 2007 6

Pattern Quality

e Contrary to popular belief, a pattern is not by
definition "good"
¢ There are also poor patterns — dysfunctional
designs recur, through either habit or fashion
¢ And there are also poor applications of good
patterns
e A poor pattern or pattern application can be
characterised as being out of balance

+ Its consequences and forces do not adequately
match up

ACCU Conference 2007 7

Patterns of Misunderstanding

e There are other misconceptions concerning the
pattern concept that are worth clearing up...

¢ Design Patterns is a limited subset of design patterns
and the pattern concept

¢ Patterns are not frameworks, components,
blueprints or parameter-based collaborations

¢ Patterns are more than just a sample class diagram
of the solution

¢ Only language-independent patterns are language
independent: patterns may be language specific

ACCU Conference 2007 8

Pattern Communities

e Patterns can be used in isolation with some
degree of success
+ Represent foci for discussion or point solutions
¢+ Offer localised design ideas
e However, patterns are, in truth, gregarious
¢ They're rather fond of the company of patterns

¢ To make practical sense as a design idea, patterns
inevitably enlist other patterns for expression and
variation, where they compete and cooperate

ACCU Conference 2007 9

Pattern Stories and Sequences

¢ A pattern story brings out the sequence of
patterns applied in a given design example

¢ They capture the conceptual narrative behind a
given piece of design, real or illustrative

¢ Forces and consequences are played out in order
e More generally, pattern sequences describe
specific ordered applications of patterns

* A pattern story is to a pattern sequence as a pattern
example is to an individual pattern

ACCU Conference 2007

10

Pattern Compounds

e Pattern compounds capture commonly
recurring subcommunities of patterns

¢ In truth, most patterns are compound, at one level
or another or from one point of view or other

¢ Also known as compound patterns or — originally
and confusingly — composite patterns
e We can see many pattern compounds as
named pattern subsequences

¢ They are commonly recurring design fragments that
can be further decomposed, if desired

ACCU Conference 2007 11

Pattern Languages

¢ A pattern language connects many patterns
together to capture a broader range of paths

¢ The intent of a language is to generate a particular
kind of system or subsystem

¢ A pattern language can describe vernacular design
style, with general patterns incorporated into a
language that is presented more specifically

e There may be many possible and practical
sequences through a pattern language
¢ In the limit, a sequence is a narrow language

ACCU Conference 2007 12

Some Examples

e Intent

¢ Illustrate some of the concepts discussed with
specific examples

e Content

¢ Lone patterns

¢ Complementary patterns

¢ Pattern compounds and sequences

¢ Pattern languages

ACCU Conference 2007

13

Something for Nothing

e Where a non-null reference is interpreted as an
option and a null as its absence...

¢ Code may be littered with guard if statements

e Polymorphism can replace the explicit decision

0.1
Service Log
write
————————— 4+ ---
ConsoleLog FileLog

write

write

Service

1

Refactor...

NullLog

write

ACCU Conference 2007

14

Null Object

e The Null Object pattern is a tactical design
based on substitution of pluggable parts

¢ It generalises beyond object orientation, although it
is often described in those terms

if
* An object reference may optionally be null and
« This reference must be checked before every use and
* The result of a null check is to do nothing or use a default value
then
* Provide a class subclasses from object reference's type and
« Implement all of its methods to do nothing or provide default results and
« Use an instance of this class when the object reference would have been null

ACCU Conference 2007

15

Modal Object Lifecycles

e Many objects can be characterised as having
groups of states (modes)

¢ Each mode defines a set of behaviour that is
significant and different to that of other modes

¢ Objects transition from mode to mode in response
to certain events

e There are many patterns that deal with the
expression of the modes and the transitions
¢ There is more to state than State

ACCU Conference 2007

16

Objects for States

e Reflect a hierarchical view of the state model in
a class hierarchy

+ A context object delegates to a behavioural object
whose class represents a mode of behaviour

C. M -
—T

—r

=)

ACCU Conference 2007 17

Implementing Objects for States

e There are many considerations, some of which
are language specific

¢+ In Java, inner classes can be used to simplify access
of the context object's fields

¢ In C++, the whole state-behaviour hierarchy can be
fully encapsulated using a Cheshire Cat

class context —3 struct context::representation
{

public: class mode;
... // public functions class first mode;

private: ... // other mode types
struct representation; mode *current;

representation *body; ... // other context state

1

ACCU Conference 2007 18

Methods for States

e Methods for States represents each state as a
table or record of method references
¢ Methods referenced are on the target object

Methods on the
a(...) { ...} context object
Current bVt ...}
Context state
object C — L }

Tables (e.g. struct) of
references to methods
(e.g. member function
pointers)

ACCU Conference 2007 19

Implementing Methods for States

e This pattern is only suitable for languages that
support simple manipulation of methods

¢ E.g. member function pointers in C++, delegates in
C# and use of send for Pluggable Selector in Ruby

class context —3 struct context::mode
{

void (context::*function)();

public:
... // other 'public' functions

void function();

... // other public functions
private:

... // private functions

struct mode;

static const mode first_mode;
... // other modes

1

const mode *behaviour;
... // other private data

}s

ACCU Conference 2007

20

Collections for States

e For objects managed collectively, objects can be
collected together according to state
* State is extrinsically represented by membership

Common operations on objects in the same state Collection representing state

Transition of objects
between states Managed object

ACCU Conference 2007

21

Implementing Collections for States

e There are different ways of organising the
collections, depending on the situation

+ For N modal states, at least N collections are
needed, e.g. a collection for each mode

¢ But more than N can class manager
sometimes be useful, .
: ... // public functions
e.g. a collection for all S
1 1 std::1ist<managed> all;
ob]ects plus a COHeCtIOIl std::set<managed *> first_mode;
for each mode ... // containers for other modes

b

ACCU Conference 2007

22

Encapsulated Iteration

e Traversal over object collection contents should
preserve the encapsulation of the collection
¢ But it should also reflect the environment of use of
the collection — design is sensitive to context
e There are a number of solutions that range
from distinct to constructively complementary

¢ E.g. Iterator, Enumeration Method, Batch Method,
Collecting Parameter, Combined Iterator, Batch Iterator

¢ The detail of realisation varies with environment

ACCU Conference 2007 23

Iterator and Batch Method

e [terator presents the common and conventional
design of iteration over an encapsulated target
¢ Separate the responsibility for iteration from that of
collection into separate
e Batch Method is an alternative that addresses
the needs of remote or otherwise costly access

¢ The repetition is provided in data structure rather
than in control flow

¢ The granularity of access is coarser, which reduces
one aspect of access overhead

ACCU Conference 2007 24

Batch Iterator as a Pattern Compound

e Batch Iterator is a compound resulting from
combining both Iterator and Batch Method

¢ Offers a compromise in granularity and control,
allowing a caller to step through a collection in
strides greater than one step but less than the whole

typedef sequence<any> many;
interface BatchIterator

boolean next n(in unsigned Tong how many, out many result);
boolean skip_n(in unsigned Tong how_many) ;

}s

ACCU Conference 2007 25

Batch Iterator as a Pattern Sequence

o Another take on Batch Iterator is that it is the
result of...
¢ First, introducing an Iterator
* Second, expressing its interface with a Batch Method
e In other words, a (very) short pattern sequence

¢ This can be named as a proper noun, e.g. Batch
Iterator or Chunky Iterator

¢+ Or labelled with respect to its parts and process, i.e.
(Iterator, Batch Method)

ACCU Conference 2007 26

Value-Based Programming

e Values express simple informational concepts,
such as quantities

¢ In programming, values are expressed as objects,
but their object identity is considered transparent,
with state governing behaviour and use
e A number of idiomatic practices go together to
support value-based programming in Java

¢ The Patterns of Value language is a work in progress
that aims to capture these

ACCU Conference 2007 27

(A Part of) Patterns of Value

..... 9
—
Whole :
Value H
- e, .y
Value ..o .
Object e, ».-7 " Override— >~
___________ Overload Method]
R .. Pair
ST S U VNS “";—'"
¢~ Immutable : /7 Copied " Bridge
~._ Value H .. Value Method
.---——:—--' Tt Sl -]
e ¥ i %
ol ~a ptay Sy H % ‘A-cT T - Top oA
/" Class Factory *, [Mutable H 5 .) N L PN
_ Method -/ ‘._Companion - | . _ Cloning /,‘ { Tygt‘?,;srlpfac(;ﬂc)
J WS S L TR,

" Conversion , ,~ Copy '
\.__Method _.-° ‘. Constructor .

ACCU Conference 2007 28

Generic Programming

e Generic programming is characterised by an
open, orthogonal and expressive style

¢ It is an approach to program composition that
emphasises algorithmic abstraction, loose coupling
and a strong separation of concerns

e The approach that underpins the STL

¢ More than just coding with templates in C++ — this
is a common misunderstanding: the principle of
generic programming is not actually about generics

¢+ Originated with Alex Stepanov and others

ACCU Conference 2007 29

STL Patterns

Algorithm-
Representation

/ Separation \
Encapsulated Container —_— s e
Algorithm /

Half-Open
Counted Iteration Range
Iteration Range /

Container-
Encapsulated
Algorithm

. Past-the-End
Function Val
Object alue

Iterator

P / &/ const
ointer Tterator
Protocol Ny

Categorised Adaptor

Smart Protocol
Pointer / ™~ Trait-Lookup / \
Templat
Tagged emplate Deduction
Category Pluggable Helper
/ RLARN
Nested Pluggable
Tagged Trait Object
Overload 4

Traits
Holder
Traits ‘e
Base Class

ACCU Conference 2007 30

From a Pattern to a Language

e Intent

¢ Present the Context Encapsulation pattern language,
starting from its root

e Content
¢ Encapsulated Context Object
¢ Decoupled Context Interface
* Role-Partitioned Context
¢ Role-Specific Context Object

P 3
E%

ACCU Conference 2007

31

0

e Consider the context of a loosely coupled and
extensible architecture

¢ The extensibility can be per runtime, per release or
per product configuration
e How can objects in different parts of this
system gain access to common facilities?

¢+ Keeping in mind the goal of loose coupling, which
supports extensibility, comprehensibility,
testability, etc.

ACCU Conference 2007

32

Encapsulated Context Object

e Pass execution context for a component —
whether a layer or a lone object — as an object

¢ Avoids tedium and instability of long argument
lists of individual configuration parameters

+ Avoids explicit or implicit global services, e.g.
Singletons, Monostates and other uses of static

e The context may include external configuration
information and services, such as logging
¢ But features should not be included arbitrarily

ACCU Conference 2007 33

(ECO)

public final class ExecutionContext

public void writeLog(String message) ...

public void writeConsole(String message) ...
public boolean containsVariable(String name) ...
public String valueOfVariable(String name) ...

}

public void configure(ExecutionContext context)

String serverName = context.valueOfVariable("server");

public void start(ExecutionContext context)

try ...
catch(RuntimeException caught)

context.writeLog("Failed to start: " + caught);
context.writeConsole("Error: " + caught);
throw caught;
}
}

ACCU Conference 2007 34

Decoupled Context Interface

e Reduce the coupling of a component to the
concrete type of the Encapsulated Context Object
¢+ Define its dependency in terms of an interface rather
than the underlying implementation class
e This allows substitution of alternative
implementations
* E.g. Null Objects and Mock Objects

¢ Also decouples context dependent from any
changes in a single implementing class

ACCU Conference 2007

35

(ECO, DCI)

public interface ExecutionContext

void writelLog(String message);

void writeConsole(String message);
boolean containsVariable(String name);
String valueOfVariable(String name);

}

public class EnvironmentalContext implements ExecutionContext

public void writelLog(String message) ...
public void writeConsole(String message) ...

}

public class MockContext implements ExecutionContext

public void writeLog(String message) ...
public void writeConsole(String message) ...

}

ACCU Conference 2007

36

Role-Partitioned Context

e Split uncohesive Encapsulated Context Objects
into smaller more cohesive context interfaces

¢ Itis all too easy to end up with a bucket of arbitrary
variables that have no genuine relation to one
another, either in concept or in use
e Base the partitioning on usage role, i.e. features
that are used together should stay together

¢ Each partitioned piece of context can be expressed
with a Decoupled Context Interface, or through a Role-
Specific Context Object, or both

ACCU Conference 2007 37

(ECO, DCI, RPC)

public interface Reporting

void writelLog(String message);
void writeConsole(String message);

}

public interface Configuration

boolean containsVariable(String name);
String valueOfVariable(String name);

}

public class EnvironmentalContext implements Reporting, Configuration

public void writelLog(String message) ...

public void writeConsole(String message) ...
public boolean containsVariable(String name) ...
public String valueOfVariable(String name) ...

ACCU Conference 2007 38

Role-Specific Context Object

e Multiple Role-Partitioned Contexts may be
expressed at runtime as a single object per role
+ This allows independent parts of a context to be
more loosely coupled and separately parameterized
e The Role-Partitioned Context may also be
expressed with Decoupled Context Interfaces

¢ Which also allows the context to be contained in a
single object, offering an additional degree of
parameterization freedom

ACCU Conference 2007 39

(ECO, DCI, RPC, RSCO)

public class NullReporting implements Reporting

}

public class FileBasedConfiguration implements Configuration

}

public void configure(Configuration config)

String serverName = config.valueOfVariable("server");

public void start(Reporting reporter)

try ...
catch(RuntimeException caught)

reporter.writeLog("Failed to start: " + caught);
reporter.writeConsole("Error: " + caught);
throw caught;

}

ACCU Conference 2007 40

Context Encapsulation

" {'Role-Partitioned
~.__Context _ ’

Se——ga -7

& o

s - Decoupled \\‘ ; oIe-Specifk; \\‘
\Qontext Interfacg/ \\Context Object/'

0

(ECO)

(ECO, DCI)

(ECO, DCI, RPC)

(ECO, DCI, RPC, RSCO)
(ECO, RPC, DCI)

(ECO, RPC, DCI, RSCO)
(ECO, RPC, RSCO)
(ECO, RPC, RSCO, DCI)

ACCU Conference 2007

41

In Conclusion

e A pattern captures recurrence, structure and

intention in design

¢ But beware: not all that recurs is necessarily good

e Patterns inevitably combine to address more
intricate problems than lone patterns can
¢ A pattern compound captures common groupings

* A pattern sequence represents a gradual process of
stable transformation from one design to another

¢ A pattern language describes connections between
patterns that can yield many different paths

ACCU Conference 2007

42

