
Pattern ConnectionsPattern Connections
Putting Together the Pieces of the Design JigsawPutting Together the Pieces of the Design Jigsaw

kevlin@curbralan.comkevlin@curbralan.com
Kevlin HenneyKevlin Henney

ACCU Conference 2007ACCU Conference 2007 22

AgendaAgenda

•• IntentIntent
Present a number of pattern concepts, going from Present a number of pattern concepts, going from 
lone patterns to a more connected view of patternslone patterns to a more connected view of patterns

•• ContentContent
Overview of Pattern ConceptsOverview of Pattern Concepts
Some ExamplesSome Examples
From a Pattern to a LanguageFrom a Pattern to a Language



ACCU Conference 2007ACCU Conference 2007 33

Shameless PlugShameless Plug

ACCU Conference 2007ACCU Conference 2007 44

Overview of Pattern ConceptsOverview of Pattern Concepts

•• IntentIntent
Present core pattern terminology and ideasPresent core pattern terminology and ideas

•• ContentContent
Patterns and pattern qualityPatterns and pattern quality
Patterns of misunderstandingPatterns of misunderstanding
Pattern communitiesPattern communities
Pattern stories and sequencesPattern stories and sequences
Pattern compoundsPattern compounds
Pattern languagesPattern languages

+

-



ACCU Conference 2007ACCU Conference 2007 55

PatternsPatterns

•• A pattern documents a recurring problemA pattern documents a recurring problem––
solution pairing within a given contextsolution pairing within a given context

A pattern is more than either the problem or the A pattern is more than either the problem or the 
solution structuresolution structure
A pattern contributes to design vocabularyA pattern contributes to design vocabulary

•• A problem is considered with respect to forces A problem is considered with respect to forces 
and a solution that gives rise to consequencesand a solution that gives rise to consequences

The full form in which a pattern is presented should The full form in which a pattern is presented should 
emphasise forces and consequences, also stating the emphasise forces and consequences, also stating the 
essential problem and solution clearlyessential problem and solution clearly

ACCU Conference 2007ACCU Conference 2007 66

Kinds of PatternsKinds of Patterns

•• There are many kinds of patterns, not just OOThere are many kinds of patterns, not just OO--
focused design patternsfocused design patterns

Patterns for designing user interfacesPatterns for designing user interfaces
Patterns for programmer testingPatterns for programmer testing
Patterns for organisational structure and Patterns for organisational structure and 
development processdevelopment process

•• However, the focus of this talk is on patterns However, the focus of this talk is on patterns 
that relate to the design of codethat relate to the design of code

These focus on artefacts visible to the programmerThese focus on artefacts visible to the programmer



ACCU Conference 2007ACCU Conference 2007 77

Pattern QualityPattern Quality

•• Contrary to popular belief, a pattern is not by Contrary to popular belief, a pattern is not by 
definition "good"definition "good"

There are also poor patterns There are also poor patterns —— dysfunctional dysfunctional 
designs recur, through either habit or fashiondesigns recur, through either habit or fashion
And there are also poor applications of good And there are also poor applications of good 
patternspatterns

•• A poor pattern or pattern application can be A poor pattern or pattern application can be 
characterised as being out of balancecharacterised as being out of balance

Its consequences and forces do not adequately Its consequences and forces do not adequately 
match upmatch up

ACCU Conference 2007ACCU Conference 2007 88

Patterns of MisunderstandingPatterns of Misunderstanding

•• There are other misconceptions concerning the There are other misconceptions concerning the 
pattern concept that are worth clearing up...pattern concept that are worth clearing up...

Design PatternsDesign Patterns is a limited subset of design patterns is a limited subset of design patterns 
and the pattern conceptand the pattern concept
Patterns are not frameworks, components, Patterns are not frameworks, components, 
blueprints or parameterblueprints or parameter--based collaborationsbased collaborations
Patterns are more than just a sample class diagram Patterns are more than just a sample class diagram 
of the solutionof the solution
Only languageOnly language--independent patterns are language independent patterns are language 
independent: patterns may be language specificindependent: patterns may be language specific



ACCU Conference 2007ACCU Conference 2007 99

Pattern CommunitiesPattern Communities

•• Patterns can be used in isolation with some Patterns can be used in isolation with some 
degree of successdegree of success

Represent foci for discussion or point solutionsRepresent foci for discussion or point solutions
Offer localised design ideasOffer localised design ideas

•• However, patterns are, in truth, gregariousHowever, patterns are, in truth, gregarious
They're rather fond of the company of patternsThey're rather fond of the company of patterns
To make practical sense as a design idea, patterns To make practical sense as a design idea, patterns 
inevitably enlist other patterns for expression and inevitably enlist other patterns for expression and 
variation, where they compete and cooperatevariation, where they compete and cooperate

ACCU Conference 2007ACCU Conference 2007 1010

Pattern Stories and SequencesPattern Stories and Sequences

•• A pattern story brings out the sequence of A pattern story brings out the sequence of 
patterns applied in a given design examplepatterns applied in a given design example

They capture the conceptual narrative behind a They capture the conceptual narrative behind a 
given piece of design, real or illustrativegiven piece of design, real or illustrative
Forces and consequences are played out in orderForces and consequences are played out in order

•• More generally, pattern sequences describe More generally, pattern sequences describe 
specific ordered applications of patternsspecific ordered applications of patterns

A pattern story is to a pattern sequence as a pattern A pattern story is to a pattern sequence as a pattern 
example is to an individual patternexample is to an individual pattern



ACCU Conference 2007ACCU Conference 2007 1111

Pattern CompoundsPattern Compounds

•• Pattern compounds capture commonly Pattern compounds capture commonly 
recurring recurring subcommunitiessubcommunities of patternsof patterns

In truth, most patterns are compound, at one level In truth, most patterns are compound, at one level 
or another or from one point of view or otheror another or from one point of view or other
Also known as Also known as compound patternscompound patterns or or —— originally originally 
and confusingly and confusingly —— composite patternscomposite patterns

•• We can see many pattern compounds as We can see many pattern compounds as 
named pattern named pattern subsequencessubsequences

They are commonly recurring design fragments that They are commonly recurring design fragments that 
can be further decomposed, if desiredcan be further decomposed, if desired

ACCU Conference 2007ACCU Conference 2007 1212

Pattern LanguagesPattern Languages

•• A pattern language connects many patterns A pattern language connects many patterns 
together to capture a broader range of pathstogether to capture a broader range of paths

The intent of a language is to generate a particular The intent of a language is to generate a particular 
kind of system or subsystemkind of system or subsystem
A pattern language can describe vernacular design A pattern language can describe vernacular design 
style, with general patterns incorporated into a style, with general patterns incorporated into a 
language that is presented more specificallylanguage that is presented more specifically

•• There may be many possible and practical There may be many possible and practical 
sequences through a pattern languagesequences through a pattern language

In the limit, a sequence is a narrow languageIn the limit, a sequence is a narrow language



ACCU Conference 2007ACCU Conference 2007 1313

Some ExamplesSome Examples

•• IntentIntent
Illustrate some of the concepts discussed with Illustrate some of the concepts discussed with 
specific examplesspecific examples

•• ContentContent
Lone patternsLone patterns
Complementary patternsComplementary patterns
Pattern compounds and sequencesPattern compounds and sequences
Pattern languagesPattern languages

ACCU Conference 2007ACCU Conference 2007 1414

Something for NothingSomething for Nothing

•• Where a nonWhere a non--null reference is interpreted as an null reference is interpreted as an 
option and a null as its absence...option and a null as its absence...

Code may be littered with guard Code may be littered with guard ifif statementsstatements
•• Polymorphism can replace the explicit decisionPolymorphism can replace the explicit decision

Log

write
Service

FileLog
write

ConsoleLog
write

0..1 Log

write
Service

NullLog
write

1

Refactor...



ACCU Conference 2007ACCU Conference 2007 1515

Null ObjectNull Object

•• The The Null ObjectNull Object pattern is a tactical design pattern is a tactical design 
based on substitution of pluggable partsbased on substitution of pluggable parts

It generalises beyond object orientation, although it It generalises beyond object orientation, although it 
is often described in those termsis often described in those terms

if
• An object reference may optionally be null and
• This reference must be checked before every use and
• The result of a null check is to do nothing or use a default value

then
• Provide a class subclasses from object reference's type and
• Implement all of its methods to do nothing or provide default results and
• Use an instance of this class when the object reference would have been null

ACCU Conference 2007ACCU Conference 2007 1616

Modal Object LifecyclesModal Object Lifecycles

•• Many objects can be characterised as having Many objects can be characterised as having 
groups of states (modes)groups of states (modes)

Each mode defines a set of behaviour that is Each mode defines a set of behaviour that is 
significant and different to that of other modessignificant and different to that of other modes
Objects transition from mode to mode in response Objects transition from mode to mode in response 
to certain eventsto certain events

•• There are many patterns that deal with the There are many patterns that deal with the 
expression of the modes and the transitionsexpression of the modes and the transitions

There is more to state than There is more to state than StateState



ACCU Conference 2007ACCU Conference 2007 1717

Objects for StatesObjects for States

•• Reflect a hierarchical view of the state model in Reflect a hierarchical view of the state model in 
a class hierarchya class hierarchy

A context object delegates to a behavioural object A context object delegates to a behavioural object 
whose class represents a mode of behaviourwhose class represents a mode of behaviour

ACCU Conference 2007ACCU Conference 2007 1818

Implementing Implementing Objects for StatesObjects for States

•• There are many considerations, some of which There are many considerations, some of which 
are language specificare language specific

In Java, inner classes can be used to simplify access In Java, inner classes can be used to simplify access 
of the context object's fieldsof the context object's fields
In C++, the whole stateIn C++, the whole state--behaviour hierarchy can be behaviour hierarchy can be 
fully encapsulated using a Cheshire Catfully encapsulated using a Cheshire Cat
class context
{
public:

... // public functions
private:

struct representation;
representation *body;

};

struct context::representation
{

class mode;
class first_mode;
... // other mode types

mode *current;
... // other context state

};



ACCU Conference 2007ACCU Conference 2007 1919

Methods for StatesMethods for States

•• Methods for States represents each state as a Methods for States represents each state as a 
table or record of method referencestable or record of method references

Methods referenced are on the target objectMethods referenced are on the target object

a(...) { ... }

b(...) { ... }

c(...) { ... }

d(...) { ... }

e(...) { ... }

Context Context 
objectobject

Tables (e.g. Tables (e.g. structstruct) of ) of 
references to methods references to methods 
(e.g. member function (e.g. member function 
pointers)pointers)

Current Current 
statestate

Methods on the Methods on the 
context objectcontext object

ACCU Conference 2007ACCU Conference 2007 2020

Implementing Implementing Methods for StatesMethods for States

•• This pattern is only suitable for languages that This pattern is only suitable for languages that 
support simple manipulation of methodssupport simple manipulation of methods

E.g. member function pointers in C++, delegates in E.g. member function pointers in C++, delegates in 
C# and use of C# and use of sendsend for for Pluggable SelectorPluggable Selector in Rubyin Ruby

class context
{
public:

void function();
... // other public functions

private:
... // private functions
struct mode;
const mode *behaviour;
... // other private data

};

struct context::mode
{

void (context::*function)();
... // other 'public' functions
static const mode first_mode;
... // other modes

};



ACCU Conference 2007ACCU Conference 2007 2121

Collections for StatesCollections for States

•• For objects managed collectively, objects can be For objects managed collectively, objects can be 
collected together according to statecollected together according to state

State is extrinsically represented by membershipState is extrinsically represented by membership

Common operations on objects in the same stateCommon operations on objects in the same state

Transition of objects Transition of objects 
between statesbetween states

Collection representing stateCollection representing state

Managed objectManaged object

ACCU Conference 2007ACCU Conference 2007 2222

Implementing Implementing Collections for StatesCollections for States

•• There are different ways of organising the There are different ways of organising the 
collections, depending on the situationcollections, depending on the situation

For For NN modal states, at least modal states, at least NN collections are collections are 
needed, e.g. a collection for each modeneeded, e.g. a collection for each mode
But more than But more than NN cancan
sometimes be useful,sometimes be useful,
e.g. a collection for alle.g. a collection for all
objects plus a collectionobjects plus a collection
for each modefor each mode

class manager
{
public:

... // public functions
private:

std::list<managed> all;
std::set<managed *> first_mode;
... // containers for other modes

};



ACCU Conference 2007ACCU Conference 2007 2323

Encapsulated IterationEncapsulated Iteration

•• Traversal over object collection contents should Traversal over object collection contents should 
preserve the encapsulation of the collectionpreserve the encapsulation of the collection

But it should also reflect the environment of use of But it should also reflect the environment of use of 
the collection the collection —— design is sensitive to contextdesign is sensitive to context

•• There are a number of solutions that range There are a number of solutions that range 
from distinct to constructively complementaryfrom distinct to constructively complementary

E.g. E.g. IteratorIterator, , Enumeration MethodEnumeration Method, , Batch MethodBatch Method, , 
Collecting ParameterCollecting Parameter, , Combined IteratorCombined Iterator, , Batch IteratorBatch Iterator
The detail of realisation varies with environmentThe detail of realisation varies with environment

ACCU Conference 2007ACCU Conference 2007 2424

IteratorIterator and and Batch MethodBatch Method

•• IteratorIterator presents the common and conventional presents the common and conventional 
design of iteration over an encapsulated targetdesign of iteration over an encapsulated target

Separate the responsibility for iteration from that of Separate the responsibility for iteration from that of 
collection into separatecollection into separate

•• Batch MethodBatch Method is an alternative that addresses is an alternative that addresses 
the needs of remote or otherwise costly accessthe needs of remote or otherwise costly access

The repetition is provided in data structure rather The repetition is provided in data structure rather 
than in control flowthan in control flow
The granularity of access is coarser, which reduces The granularity of access is coarser, which reduces 
one aspect of access overheadone aspect of access overhead



ACCU Conference 2007ACCU Conference 2007 2525

Batch IteratorBatch Iterator as a Pattern Compoundas a Pattern Compound

•• Batch IteratorBatch Iterator is a compound resulting from is a compound resulting from 
combining both combining both IteratorIterator and and Batch MethodBatch Method

Offers a compromise in granularity and control, Offers a compromise in granularity and control, 
allowing a caller to step through a collection in allowing a caller to step through a collection in 
strides greater than one step but less than the wholestrides greater than one step but less than the whole

typedef sequence<any> many;
interface BatchIterator
{

boolean next_n(in unsigned long how_many, out many result);
boolean skip_n(in unsigned long how_many);

};

ACCU Conference 2007ACCU Conference 2007 2626

Batch IteratorBatch Iterator as a Pattern Sequenceas a Pattern Sequence

•• Another take on Another take on Batch IteratorBatch Iterator is that it is the is that it is the 
result of...result of...

First, introducing an First, introducing an IteratorIterator
Second, expressing its interface with a Second, expressing its interface with a Batch MethodBatch Method

•• In other words, a (very) short pattern sequenceIn other words, a (very) short pattern sequence
This can be named as a proper noun, e.g. This can be named as a proper noun, e.g. Batch Batch 
IteratorIterator or or Chunky IteratorChunky Iterator
Or labelled with respect to its parts and process, i.e. Or labelled with respect to its parts and process, i.e. 
〈〈IteratorIterator, , Batch MethodBatch Method〉〉



ACCU Conference 2007ACCU Conference 2007 2727

ValueValue--Based ProgrammingBased Programming

•• Values express simple informational concepts, Values express simple informational concepts, 
such as quantitiessuch as quantities

In programming, values are expressed as objects, In programming, values are expressed as objects, 
but their object identity is considered transparent, but their object identity is considered transparent, 
with state governing behaviour and usewith state governing behaviour and use

•• A number of idiomatic practices go together to A number of idiomatic practices go together to 
support valuesupport value--based programming in Javabased programming in Java

The The Patterns of ValuePatterns of Value language is a work in progress language is a work in progress 
that aims to capture thesethat aims to capture these

ACCU Conference 2007ACCU Conference 2007 2828

(A Part of) (A Part of) Patterns of ValuePatterns of Value

Value
Object

Immutable
Value

Mutable
Companion

Whole
Value

Class Factory 
Method

Copied
Value

Cloning

Copy 
Constructor

Conversion 
Method

Override–
Overload Method 

Pair

Type-Specific 
Overload

Bridge 
Method



ACCU Conference 2007ACCU Conference 2007 2929

Generic ProgrammingGeneric Programming

•• Generic programming is characterised by an Generic programming is characterised by an 
open, orthogonal and expressive styleopen, orthogonal and expressive style

It is an approach to program composition that It is an approach to program composition that 
emphasises algorithmic abstraction, loose coupling emphasises algorithmic abstraction, loose coupling 
and a strong separation of concernsand a strong separation of concerns

•• The approach that underpins the STLThe approach that underpins the STL
More than just coding with templates in C++ More than just coding with templates in C++ —— this this 
is a common misunderstanding: the principle of is a common misunderstanding: the principle of 
generic programming is not actually about genericsgeneric programming is not actually about generics
Originated with Alex Originated with Alex StepanovStepanov and othersand others

ACCU Conference 2007ACCU Conference 2007 3030

STL PatternsSTL Patterns
AlgorithmAlgorithm––

Representation Representation 
SeparationSeparation

ContainerContainer
StreamStream

IteratorIterator

HalfHalf--Open Open 
Iteration RangeIteration RangeCounted Counted 

Iteration RangeIteration Range
PastPast--thethe--End End 

ValueValue

Pointer Pointer 
ProtocolProtocol

Smart Smart 
PointerPointer

Categorised Categorised 
ProtocolProtocol

Pluggable Pluggable 
TypeType

Pluggable Pluggable 
ObjectObject

Encapsulated Encapsulated 
AlgorithmAlgorithm

ContainerContainer--
Encapsulated Encapsulated 

AlgorithmAlgorithmCopied Copied 
ValueValue

constconst
IteratorIterator

AdaptorAdaptor

Deduction Deduction 
HelperHelper

Tagged Tagged 
CategoryCategory

Tagged Tagged 
OverloadOverload

Nested Nested 
TraitTrait

Traits Traits 
HolderHolder

TraitsTraits
Base ClassBase Class

TraitTrait--LookupLookup
TemplateTemplate

Function Function 
ObjectObject



ACCU Conference 2007ACCU Conference 2007 3131

From a Pattern to a LanguageFrom a Pattern to a Language

•• IntentIntent
Present the Present the Context EncapsulationContext Encapsulation pattern language, pattern language, 
starting from its rootstarting from its root

•• ContentContent
Encapsulated Context ObjectEncapsulated Context Object
Decoupled Context InterfaceDecoupled Context Interface
RoleRole--Partitioned ContextPartitioned Context
RoleRole--Specific Context ObjectSpecific Context Object

ACCU Conference 2007ACCU Conference 2007 3232

〈〉〈〉

•• Consider the context of a loosely coupled and Consider the context of a loosely coupled and 
extensible architectureextensible architecture

The extensibility can be per runtime, per release or The extensibility can be per runtime, per release or 
per product configurationper product configuration

•• How can objects in different parts of this How can objects in different parts of this 
system gain access to common facilities?system gain access to common facilities?

Keeping in mind the goal of loose coupling, which Keeping in mind the goal of loose coupling, which 
supports extensibility, comprehensibility, supports extensibility, comprehensibility, 
testability, etc.testability, etc.



ACCU Conference 2007ACCU Conference 2007 3333

Encapsulated Context ObjectEncapsulated Context Object

•• Pass execution context for a component Pass execution context for a component ——
whether a layer or a lone object whether a layer or a lone object —— as an objectas an object

Avoids tedium and instability of long argument Avoids tedium and instability of long argument 
lists of individual configuration parameterslists of individual configuration parameters
Avoids explicit or implicit global services, e.g. Avoids explicit or implicit global services, e.g. 
SingletonSingletons, s, MonostateMonostatess and other uses of and other uses of staticstatic

•• The context may include external configuration The context may include external configuration 
information and services, such as logginginformation and services, such as logging

But features should not be included arbitrarilyBut features should not be included arbitrarily

ACCU Conference 2007ACCU Conference 2007 3434

〈〈ECOECO〉〉
public final class ExecutionContext
{

public void writeLog(String message) ...
public void writeConsole(String message) ...
public boolean containsVariable(String name) ...
public String valueOfVariable(String name) ...
...

}

public void configure(ExecutionContext context)
{

String serverName = context.valueOfVariable("server");
...

}
public void start(ExecutionContext context)
{

try ...
catch(RuntimeException caught)
{

context.writeLog("Failed to start: " + caught);
context.writeConsole("Error: " + caught);
throw caught;

}
}



ACCU Conference 2007ACCU Conference 2007 3535

Decoupled Context InterfaceDecoupled Context Interface

•• Reduce the coupling of a component to the Reduce the coupling of a component to the 
concrete type of the concrete type of the Encapsulated Context ObjectEncapsulated Context Object

Define its dependency in terms of an Define its dependency in terms of an interfaceinterface rather rather 
than the underlying implementation classthan the underlying implementation class

•• This allows substitution of alternative This allows substitution of alternative 
implementationsimplementations

E.g. E.g. Null ObjectNull Objects and s and Mock ObjectMock Objectss
Also decouples context dependent from any Also decouples context dependent from any 
changes in a single implementing classchanges in a single implementing class

ACCU Conference 2007ACCU Conference 2007 3636

〈〈ECO, DCIECO, DCI〉〉
public interface ExecutionContext
{

void writeLog(String message);
void writeConsole(String message);
boolean containsVariable(String name);
String valueOfVariable(String name);
...

}

public class EnvironmentalContext implements ExecutionContext
{

public void writeLog(String message) ...
public void writeConsole(String message) ...
...

}

public class MockContext implements ExecutionContext
{

public void writeLog(String message) ...
public void writeConsole(String message) ...
...

}



ACCU Conference 2007ACCU Conference 2007 3737

RoleRole--Partitioned ContextPartitioned Context

•• Split Split uncohesiveuncohesive Encapsulated Context ObjectEncapsulated Context Objects s 
into smaller more cohesive context interfacesinto smaller more cohesive context interfaces

It is all too easy to end up with a bucket of arbitrary It is all too easy to end up with a bucket of arbitrary 
variables that have no genuine relation to one variables that have no genuine relation to one 
another, either in concept or in useanother, either in concept or in use

•• Base the partitioning on usage role, i.e. features Base the partitioning on usage role, i.e. features 
that are used together should stay togetherthat are used together should stay together

Each partitioned piece of context can be expressed Each partitioned piece of context can be expressed 
with a with a Decoupled Context InterfaceDecoupled Context Interface, or through a , or through a RoleRole--
Specific Context ObjectSpecific Context Object, or both, or both

ACCU Conference 2007ACCU Conference 2007 3838

〈〈ECO, DCI, RPCECO, DCI, RPC〉〉
public interface Reporting
{

void writeLog(String message);
void writeConsole(String message);
...

}

public interface Configuration
{

boolean containsVariable(String name);
String valueOfVariable(String name);
...

}

public class EnvironmentalContext implements Reporting, Configuration
{

public void writeLog(String message) ...
public void writeConsole(String message) ...
public boolean containsVariable(String name) ...
public String valueOfVariable(String name) ...
...

}



ACCU Conference 2007ACCU Conference 2007 3939

RoleRole--Specific Context ObjectSpecific Context Object

•• Multiple Multiple RoleRole--Partitioned ContextPartitioned Contexts may be s may be 
expressed at runtime as a single object per roleexpressed at runtime as a single object per role

This allows independent parts of a context to be This allows independent parts of a context to be 
more loosely coupled and separately parameterizedmore loosely coupled and separately parameterized

•• The The RoleRole--Partitioned ContextPartitioned Context may also be may also be 
expressed with expressed with Decoupled Context InterfaceDecoupled Context Interfacess

Which also allows the context to be contained in a Which also allows the context to be contained in a 
single object, offering an additional degree of single object, offering an additional degree of 
parameterization freedomparameterization freedom

ACCU Conference 2007ACCU Conference 2007 4040

〈〈ECO, DCI, RPC, RSCOECO, DCI, RPC, RSCO〉〉

public void configure(Configuration config)
{

String serverName = config.valueOfVariable("server");
...

}
public void start(Reporting reporter)
{

try ...
catch(RuntimeException caught)
{

reporter.writeLog("Failed to start: " + caught);
reporter.writeConsole("Error: " + caught);
throw caught;

}
}

public class NullReporting implements Reporting
{

...
}

public class FileBasedConfiguration implements Configuration
{

...
}



ACCU Conference 2007ACCU Conference 2007 4141

Context EncapsulationContext Encapsulation

Decoupled 
Context Interface

Role-Specific 
Context Object

Encapsulated 
Context Object

Role-Partitioned 
Context

〈〉〈〉

〈〈ECOECO〉〉

〈〈ECO, DCIECO, DCI〉〉

〈〈ECO, DCI, RPCECO, DCI, RPC〉〉

〈〈ECO, DCI, RPC, RSCOECO, DCI, RPC, RSCO〉〉

〈〈ECO, RPC, DCIECO, RPC, DCI〉〉

〈〈ECO, RPC, DCI, RSCOECO, RPC, DCI, RSCO〉〉

〈〈ECO, RPC, RSCOECO, RPC, RSCO〉〉

〈〈ECO, RPC, RSCO, DCIECO, RPC, RSCO, DCI〉〉

ACCU Conference 2007ACCU Conference 2007 4242

In ConclusionIn Conclusion

•• A pattern captures recurrence, structure and A pattern captures recurrence, structure and 
intention in designintention in design

But beware: not all that recurs is necessarily goodBut beware: not all that recurs is necessarily good
•• Patterns inevitably combine to address more Patterns inevitably combine to address more 

intricate problems than lone patterns canintricate problems than lone patterns can
A pattern compound captures common groupingsA pattern compound captures common groupings
A pattern sequence represents a gradual process of A pattern sequence represents a gradual process of 
stable transformation from one design to anotherstable transformation from one design to another
A pattern language describes connections between A pattern language describes connections between 
patterns that can yield many different pathspatterns that can yield many different paths


