
Formatting floating-
point numbers

Victor Zverovich

About me
• 🔊 VIK-ter ZVE-roh-vich

• Work at Facebook on the Thrift
RPC & serialization framework

• Author of the {fmt} library and
C++20 std::format

• Expert in negative zero

• https://github.com/vitaut

• https://twitter.com/vzverovich

https://github.com/vitaut
https://twitter.com/vzverovich

https://github.com/fmtlib/fmt/issues/147

https://github.com/fmtlib/fmt/issues/147

"By the end of the talk you will be
able to convert binary floating-
point to decimal in your mind or
you will get your money back!"

A bit of history

The origin
• Floating point arithmetic

was "casually" introduced
in 1913 paper "Essays on
Automatics" by Leonardo
Torres y Quevedo, a
Spanish civil engineer and
mathematician

• Included in his 1914
electro-mechanical version
of Charles Babbage's
Analytical Engine

Portrait of Torres Quevedo by Eulogia Merle

(Fundación Española para la Ciencia y la Tecnología / CC BY-SA 4.0)

https://en.wikipedia.org/wiki/Leonardo_Torres_y_Quevedo#/media/File:Leonardo_Torres_Quevedo_(MUNCYT,_Eulogia_Merle).jpg
https://creativecommons.org/licenses/by-sa/4.0

In early computers
• 1938 Z1 by Konrad Zuse

used 24-bit binary
floating point

• 1941 relay-based Z3 had
+/- infinity and
exceptions (sort of)

• 1954 mass-produced
IBM 704 introduced
biased exponent Replica of the Z1 in the German Museum of Technology in Berlin

(BLueFiSH.as / CC BY-SA 3.0)

https://en.wikipedia.org/wiki/Z1_(computer)#/media/File:Zuse_Z1-2.jpg
http://creativecommons.org/licenses/by-sa/3.0/

Formatted I/O

FORTRAN had formatted
floating-point I/O in 1950s
(same time as comments were
invented!):

 WRITE OUTPUT TAPE 6, 601, IA, IB, IC, AREA

 601 FORMAT (4H A= ,I5,5H B= ,I5,5H C= ,I5,

 & 8H AREA= ,F10.2, 13H SQUARE UNITS)

Cover of The Fortran Automatic Coding System for the IBM 704 EDPM
(public domain)

https://commons.wikimedia.org/wiki/File:Fortran_acs_cover.jpeg

FP formatting in C
The C Programming Language, K&R (1978):

Still compiles in 2019: https://godbolt.org/z/KsOzjr

https://godbolt.org/z/KsOzjr

Solved problem?

• Floating point has been around for a while

• Programmers have been able to format and output FP
numbers since 1950s

• Solved problem

• We all go home now

Solved problem?

• Floating point has been around for a while

• Programmers have been able to format and output FP
numbers since 1950s

• Solved problem

• We all go home now

• Not so fast

Solved problem?

Solved problem?

Meanwhile in 2019

• Neither stdio/printf nor iostreams can give you the
shortest decimal representation with round-trip
guarantees

• Performance has much to be desired, esp. with iostreams

• Relying on global locale leads to subtle bugs, e.g. JSON-
related errors reported by French but not English users

Meanwhile in 2019

• Neither stdio/printf nor iostreams can give you the
shortest decimal representation with round-trip
guarantees

• Performance has much to be desired, esp. with iostreams

• Relying on global locale leads to subtle bugs, e.g. JSON-
related errors reported by French but not English users

😔

0.30000000000000004
• Floating-point math is not broken, but can be tricky

• Formatting defaults are broken or at least suboptimal in C
& C++ (loose precision):

 std::cout << (0.1 + 0.2) << " == " << 0.3 << " is "
 << std::boolalpha << (0.1 + 0.2 == 0.3) << "\n";

 prints "0.3 == 0.3 is false"

• The issue is not specific to C++ but some languages have
better defaults: https://0.30000000000000004.com/

https://0.30000000000000004.com/

Desired properties

Steele & White (1990):

1. No information loss

2. Shortest output

3. Correct rounding

4. Left to right generation - irrelevant with buffering

(public domain)

https://lists.nongnu.org/archive/html/gcl-devel/2012-10/pdfkieTlklRzN.pdf
https://en.wikipedia.org/wiki/Unicorn#/media/File:DomenichinounicornPalFarnese.jpg

double a = 1.0 / 3.0;

auto s = fmt::format("{}", a);
double b = atof(s.c_str());
assert(a == b);

// succeeds:
// a == 0.3333333333333333
// b == 0.3333333333333333

No information loss

double a = 1.0 / 3.0;
char buf[20];
sprintf(buf, "%g", a);
double b = atof(buf);
assert(a == b);

// fails:
// a == 0.3333333333333333
// b == 0.333333

Round trip guarantee: parsing the output gives the original value.

Most libraries/functions lack this property unless you explicitly
specify big enough precision: C stdio, C++ iostreams &
to_string, Python's str.format until version 3, etc.

How much is enough?
• "17 digits ought to be enough for anyone"

— some famous person (paraphrased)

• In-and-out conversions, 
David W. Matula (1968): 
 
Conversions from base B round-trip
through base v when Bn < vm-1, where n is
the number of base B digits, and m is the
number of base v digits.

⌈log10(253) + 1⌉ = 17
Photo of a random famous person

(public domain)

https://en.wikipedia.org/wiki/Bill_Gates#/media/File:Bill_Gates_mugshot.png

fmt::print("{}", 0.1);

prints "0.1"

Shortest output

sprintf("%.17g", 0.1);

prints "0.10000000000000001"

The number of digits in the output is as small as possible.

It is easy to satisfy the round-trip property by printing
unnecessary "garbage" digits (provided correct rounding):

Correct rounding
• The output is as close to the input as possible.

• Most implementations have this, but MSVC/CRT is buggy as
of 2015 (!) and possibly later (both from and to decimal):

• https://www.exploringbinary.com/incorrect-round-trip-
conversions-in-visual-c-plus-plus/

• https://www.exploringbinary.com/incorrectly-rounded-
conversions-in-visual-c-plus-plus/

• Had to disable some floating-point tests on MSVC due to
broken rounding in printf and iostreams

https://www.exploringbinary.com/incorrect-round-trip-conversions-in-visual-c-plus-plus/
https://www.exploringbinary.com/incorrect-round-trip-conversions-in-visual-c-plus-plus/
https://www.exploringbinary.com/incorrectly-rounded-conversions-in-visual-c-plus-plus/
https://www.exploringbinary.com/incorrectly-rounded-conversions-in-visual-c-plus-plus/

How does it work?

(⽼老老陳, CC BY-SA 4.0)

https://en.wikipedia.org/wiki/ATLAS_experiment#/media/File:Installing_the_ATLAS_Calorimeter.jpg
https://creativecommons.org/licenses/by-sa/4.0

IEEE 754
Binary floating point bit layout:

fractionexponentsign

 ⠀

(−1)sign1.fraction × 2(exponent−bias)

(−1)sign0.fraction × 2(1−bias)

(−1)signInfinity
NaN

if 0 < exponent < 1...12

if exponent = 0
if exponent = 1...12, fraction = 0
if exponent = 1...12, fraction ≠ 0

v =

IEEE 754
Double-precision binary floating point bit layout:

where bias = 1023

fraction

(52 bit)

exponent

(11 bit)sign

 ⠀

(−1)sign1.fraction × 2(exponent−bias)

(−1)sign0.fraction × 2(1−bias)

(−1)signInfinity
NaN

if 0 < exponent < 1...12

if exponent = 0
if exponent = 1...12, fraction = 0
if exponent = 1...12, fraction ≠ 0

v =

fraction

(52 bit)

exponent

(11 bit)sign

0100000000001001001000011111101101010100010001000010110100011000

Example

v = (−1)01.10010010000111111011010101000100010000101101000110002 × 2(100000000002−102310) =

π approximation as double (M_PI):

1.10010010000111111011010101000100010000101101000112 × 2 =

11.0010010000111111011010101000100010000101101000112

Floating point formatting is
...

Floating point formatting is
easy*

Floating point formatting is
easy*

*conceptually (terms and conditions apply)

v

Input

Input FP number v > 0

v+vv-

Predecessor: previous
representable value

Successor: next
representable value

Neighbors

v+vv-

Predecessor: previous
representable value

Successor: next
representable value

Neighbours

Values half way
between v and its

neighbors

Boundaries

v+M+M− vv-

Values half way
between v and its

neighbours

Boundaries

v+M+M− vv-

Numbers in (M−, M+)
round to v

Find power of 10

v+M+M− vv- Vk

Find largest k such that
Vk = round(v / 10k)10k is in [M−, M+]

Result

v+M+M− vv- Vk

Find largest k such that
Vk = round(v / 10k)10k is in [M−, M+]

result = format("{}e{}", round(v / 10k), k)
round(v / 10k) and k are ints

😊

Example
Input: v = 1.23e45

v- = 1229999999999999815358543982490949384520335360 =
0b11011100100111101101010010000011110111101000010100011 * 2**97

M- = 1229999999999999894586706496755286978064285696 =
0b110111001001111011010100100000111101111010000101000111 * 2**96

v = 1229999999999999973814869011019624571608236032 =
0b11011100100111101101010010000011110111101000010100100 * 2**97

M+ = 1230000000000000053043031525283962165152186368 =
0b110111001001111011010100100000111101111010000101001001 * 2**96

v+ = 1230000000000000132271194039548299758696136704 =
0b11011100100111101101010010000011110111101000010100101 * 2**97

v

Example

v=122999999999999997...

v+vv-

Predecessor:
122999999999999981...

Successor:
123000000000000013...

Neighbours

Boundaries

v+M+M− vv-

(v + v-) / 2 =
122999999999999989...

(v + v+) / 2 =
123000000000000005...

M+M− vV1=1e45

Find power of 10

122999999999999989...

123000000000000005...

v=122999999999999997...

M+M− vV2=12e44

Find power of 10

122999999999999989...

123000000000000005...

v=122999999999999997...

M+M− v

V3=123e43

Find power of 10

122999999999999989...

123000000000000005...

v=122999999999999997...

Computations should be exact or done with high precision
(image by Simon A. Eugster)

https://en.wikipedia.org/wiki/Calipers#/media/File:Caliper_detail_view.jpeg

Exponent
• Full exponent range for IEEE double: 10−324 - 10308

• In general requires multiple precision arithmetic

• glibc pulls in a GNU multiple precision library for printf:

Overhead Command Shared Object Symbol

 57.96% a.out libc-2.17.so [.] __printf_fp
 15.28% a.out libc-2.17.so [.] __mpn_mul_1
 15.19% a.out libc-2.17.so [.] __mpn_divrem
 5.79% a.out libc-2.17.so [.] hack_digit.13638
 5.79% a.out libc-2.17.so [.] vfprintf

Exponent
• Full exponent range for IEEE double: 10−324 - 10308

• In general requires multiple precision arithmetic

• glibc pulls in a GNU multiple precision library for printf:

Overhead Command Shared Object Symbol

 57.96% a.out libc-2.17.so [.] __printf_fp
 15.28% a.out libc-2.17.so [.] __mpn_mul_1
 15.19% a.out libc-2.17.so [.] __mpn_divrem
 5.79% a.out libc-2.17.so [.] hack_digit.13638
 5.79% a.out libc-2.17.so [.] vfprintf

Here be dragons: notable algorithms
(public domain)

https://en.wikipedia.org/wiki/Pogona#/media/File:Bearded_Dragon_showing_beard.jpg

• Family of algorithms developed in 70s-80s and published in the
paper "How to Print Floating-Point Numbers Accurately" by
Steele & White (1990)

• The idea of tracking boundaries was introduced by White in 70s

• Dragon2: uses floating-point arithmetic for scaling by powers of
10

• Dragon4: uses multiprecision arithmetic for scaling

• Proved that fixed precision integer arithmetic can be used for
some FP formats

Dragon

• Family of algorithms from the paper "Printing Floating-Point Numbers
Quickly and Accurately with Integers" by Florian Loitsch (2010)

• DIY floating point: emulates floating point with extra precision (e.g. 64-bit for
double giving 11 extra bits) using simple fixed-precision integer operations

• Precomputes powers of 10 and stores as DIY FP numbers

• Finds a power of 10 and multiplies the number by it to bring the exponent in
the desired range

• With 11 extra bits Grisu3 produces shortest result in 99.5% of cases and
tracks the uncertain region where it cannot guarantee shortness

• Relatively simple: can be implemented in 300 - 400 SLOC including some
optimizations

Grisù

Ryū

• An algorithm from the paper "Ryū: fast float-to-string
conversion" by Ulf Adams (2018)

• Uses higher precision integer arithmetic (128-bit for
double) and large precomputed tables for scaling

• Doesn't need fallback (good worst case)

http://delivery.acm.org/10.1145/3200000/3192369/pldi18main-p10-p.pdf?ip=76.102.229.208&id=3192369&acc=OA&key=4D4702B0C3E38B35.4D4702B0C3E38B35.4D4702B0C3E38B35.66AE2C137E5E05CA&__acm__=1572481309_ba053fccfd96ca3e2be61fe8a78901d6
http://delivery.acm.org/10.1145/3200000/3192369/pldi18main-p10-p.pdf?ip=76.102.229.208&id=3192369&acc=OA&key=4D4702B0C3E38B35.4D4702B0C3E38B35.4D4702B0C3E38B35.66AE2C137E5E05CA&__acm__=1572481309_ba053fccfd96ca3e2be61fe8a78901d6

What about C++?

<charconv>

• C++17 introduced <charconv>

• Low-level formatting and parsing primitives:
std::to_chars and std::from_chars

• Provides shortest decimal representation with round-trip
guarantees and correct rounding 🦄

• Locale-independent

std::to_chars
std::array<char, 20> buf; // What size?
std::to_chars_result result =
 std::to_chars(buf.data(), buf.data() + buf.size(), M_PI);
if (result.ec == std::errc()) {
 std::string_view sv(buf.data(), result.ptr - buf.data());
 // Use sv.
} else {
 // Handle error.
}

• to_chars is great but

• API is a bit too low-level

• Manual buffer management, doesn't say how much to allocate

• Error handling is cumbersome (slightly better with structured bindings)

• Cannot be easily & efficiently integrated into a higher-level facility

• Can't portably rely on it any time soon

C++20 std::format
• C++20 will have a higher-level formatting facility: std::format and

friends

• Implemented in the {fmt} library: https://github.com/fmtlib/fmt

• The default is the shortest decimal representation with round-trip
guarantees and correct rounding 🦄

• Control over locales: locale-independent by default

• Example:

 std::format("{} == {} is {}\n", 0.1 + 0.2, 0.3, 0.1 + 0.2 == 0.3)

 returns "0.30000000000000004 == 0.3 is false" (no data loss)

https://github.com/fmtlib/fmt

{fmt}
• The default is shortest decimal representation with round-trip

guarantees and correct rounding 🦄

• Rich formatting mini-language

• Supports iterators, size computation, buffer preallocation

• High performance

• Zero dynamic memory allocations possible

• Locale control

• Portability: requires only a subset of C++11

Round-trip
 #include <fmt/core.h>

 int main() {
 double a = 1.0 / 3.0;

 auto s = fmt::format("{}", a);
 double b = atof(s.c_str());
 assert(a == b);

 // succeeds:
 // a == 0.3333333333333333
 // b == 0.3333333333333333
 }

Locale

Locale-independent by default:

 fmt::print("{}", 4.2); // prints 4.2

Locale-specific formatting is available via a separate format
specifier:

 std::locale::global(
 std::locale("ru_RU.UTF-8"));
 fmt::print("{:n}", 4.2); // prints 4,2

Mini-language

fmt::print("{:*^10.2f}", 1.2345);

Mini-language

fmt::print("{:*^10.2f}", 1.2345);

fill

Mini-language

fmt::print("{:*^10.2f}", 1.2345);

fill

alignment

Mini-language

fmt::print("{:*^10.2f}", 1.2345);

fill

alignment

width

Mini-language

fmt::print("{:*^10.2f}", 1.2345);

fill

alignment

width

precision

Mini-language

fmt::print("{:*^10.2f}", 1.2345);

fill

alignment

width

precision

presentation

Mini-language

fmt::print("{:*^10.2f}", 1.2345);

fill

alignment

width

precision

presentation

Format 1.2345 in the fixed form rounded to 2 digits after the
decimal point and pad with * to 10 characters aligned to the center:
1.23

Zero allocations
• Dynamic memory allocations can be completely avoided & in

particular the default will never allocate.

• No allocation & no need to specify buffer size:

 fmt::memory_buffer buf;
 fmt::format_to(buf, "{}", 1.2345);
 // std::string_view(buf.data(), buf.size())
 // contains "1.2345"

• Single exact allocation & no extra copy (unlike to_chars):

 std::string s;
 fmt::format_to(std::back_inserter(s), "{}", 1.2345);

 vs 🍊

Roundtrip precision: https://github.com/fmtlib/dtoa-benchmark 
(based on miloyip/dtoa-benchmark)

https://github.com/fmtlib/dtoa-benchmark

 vs 🍊

Still a lot of optimization opportunities in fmt.

Function Time (ns) Speedup
ostringstream 1,356.700 1.00x
ostrstream 1,202.847 1.13x
sprintf 1,002.506 1.35x
doubleconv 97.071 13.98x
fmt 96.071 14.12x
null 1.324 1,025.06x

References 🧐
• David W. Matula. 1968. In-and-out conversions. Communications of the ACM. Volume

11 Issue 1, Jan. 1968, 47-50.

• Guy L. Steele Jr. and Jon L. White. 1990. How to Print Floating-Point Numbers
Accurately. In Proceedings of the ACM SIGPLAN 1990 Conference on Programming
Language Design and Implementation (PLDI ’90). ACM, New York, NY, USA, 112-126.

• Florian Loitsch. 2010. Printing Floating-Point Numbers Quickly and Accurately with
Integers. In Proceedings of the ACM SIGPLAN 2010 Conference on Programming
Language Design and Implementation, PLDI 2010. ACM, New York, NY, USA,
233-243.

• Ulf Adams. 2018. Ryū: fast float-to-string conversion. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2018. ACM, New York, NY, USA, 270-282.

• {fmt}: https://github.com/fmtlib/fmt

https://github.com/fmtlib/fmt

Questions?
'

