
The Many Variants of
std::variant

Nevin “:-)” Liber
nliber@anl.gov

ACCU Autumn Conference 2019 Edition

1

mailto:nliber@anl.gov?subject=The%20Many%20Variants%20of%20std::variant

This presentation was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security
Administration) responsible for the planning and preparation of a capable exascale ecosystem, including
software, applications, hardware, advanced system engineering, and early testbed platforms, in support of
the nation’s exascale computing imperative. Additionally, this presentation used resources of the Argonne
Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract
DE-AC02-06CH11357.

2

What is a variant?
• Discriminated/tagged/typesafe union

• Union that knows what type it is holding

• Type theory algebraic types

• Product type (n-ary)

• struct/class

• Generic: tuple (C++11)

• Sum type (1 of n)

• union

• Generic: variant (C++17)

3

Three vocabulary sum types

• any

• variant

• optional

4

Three vocabulary sum types

• any

• variant

• optional

5

any
• Concrete type

• Discriminated type

• Open sum type

• The set of acceptable types is unbounded

• Type requirements

6

any
• Cpp17CopyConstructible requirement

• (Cpp17 requirements are syntactic, not semantic
requirements)

• Type erasure

• Generates (the equivalent of) a virtual function for
most operations

• virtual function for cloning the object

• Even if the object is never copied

7

any
class any {
 struct Concept {
 virtual ~Concept() = default;
 virtual Concept* clone() const = 0;
 //...
 };

 template<typename T>
 struct Model final : Concept {
 template<typename... Args>
 Model(Args&&... args) : data(std::forward<Args>(args)...) {}

 Model* clone() const override { return new Model(data); }
 //...
 std::decay_t<T> data;
 };

 std::unique_ptr<Concept> object; // holds a Model<T> pointer
public:
 any() noexcept = default;
 any(any const& that) : object(that.object ? that.object->clone() : nullptr) {}
 any(any&&) noexcept = default;
 //...
 template<typename T, typename... Args>
 std::decay_t<T>& emplace(Args&&... args) {
 object.reset();
 std::unique_ptr<Model<T>> modelT =
 std::make_unique<Model<T>>(std::forward<Args>(args)...);
 std::decay_t<T>& t = modelT->data;
 object = std::move(modelT);
 return t;
 }
};

8

any
class any {
 struct Concept {
 virtual ~Concept() = default;
 virtual Concept* clone() const = 0;
 //...
 };

 template<typename T>
 struct Model final : Concept {
 template<typename... Args>
 Model(Args&&... args) : data(std::forward<Args>(args)...) {}

 Model* clone() const override { return new Model(data); }
 //...
 std::decay_t<T> data;
 };

 std::unique_ptr<Concept> object; // holds a Model<T> pointer
public:
 any() noexcept = default;
 any(any const& that) : object(that.object ? that.object->clone() : nullptr) {}
 any(any&&) noexcept = default;
 //...
 template<typename T, typename... Args>
 std::decay_t<T>& emplace(Args&&... args) {
 object.reset();
 std::unique_ptr<Model<T>> modelT =
 std::make_unique<Model<T>>(std::forward<Args>(args)...);
 std::decay_t<T>& t = modelT->data;
 object = std::move(modelT);
 return t;
 }
};

9

any
class any {
 struct Concept {
 virtual ~Concept() = default;
 virtual Concept* clone() const = 0;
 //...
 };

 template<typename T>
 struct Model final : Concept {
 template<typename... Args>
 Model(Args&&... args) : data(std::forward<Args>(args)...) {}

 Model* clone() const override { return new Model(data); }
 //...
 std::decay_t<T> data;
 };

 std::unique_ptr<Concept> object; // holds a Model<T> pointer
public:
 any() noexcept = default;
 any(any const& that) : object(that.object ? that.object->clone() : nullptr) {}
 any(any&&) noexcept = default;
 //...
 template<typename T, typename... Args>
 std::decay_t<T>& emplace(Args&&... args) {
 object.reset();
 std::unique_ptr<Model<T>> modelT =
 std::make_unique<Model<T>>(std::forward<Args>(args)...);
 std::decay_t<T>& t = modelT->data;
 object = std::move(modelT);
 return t;
 }
};

• make_unique instantiates a Model<T>
• Code generated for every virtual function in Model<T>

• clone()
• Calls copy constructor for decay<T> on data
• Still generated even if any(any const&) didn’t exist

10

any
class any {
 struct Concept {
 virtual ~Concept() = default;
 virtual Concept* clone() const = 0;
 //...
 };

 template<typename T>
 struct Model final : Concept {
 template<typename... Args>
 Model(Args&&... args) : data(std::forward<Args>(args)...) {}

 Model* clone() const override { return new Model(data); }
 //...
 std::decay_t<T> data;
 };

 std::unique_ptr<Concept> object; // holds a Model<T> pointer
public:
 any() noexcept = default;
 any(any const& that) : object(that.object ? that.object->clone() : nullptr) {}
 any(any&&) noexcept = default;
 //...
 template<typename T, typename... Args>
 std::decay_t<T>& emplace(Args&&... args) {
 object.reset();
 std::unique_ptr<Model<T>> modelT =
 std::make_unique<Model<T>>(std::forward<Args>(args)...);
 std::decay_t<T>& t = modelT->data;
 object = std::move(modelT);
 return t;
 }
};

11

any
class any {
 struct Concept {
 virtual ~Concept() = default;
 virtual Concept* clone() const = 0;
 //...
 };

 template<typename T>
 struct Model final : Concept {
 template<typename... Args>
 Model(Args&&... args) : data(std::forward<Args>(args)...) {}

 Model* clone() const override { return new Model(data); }
 //...
 std::decay_t<T> data;
 };

 std::unique_ptr<Concept> object; // holds a Model<T> pointer
public:
 any() noexcept = default;
 any(any const& that) : object(that.object ? that.object->clone() : nullptr) {}
 any(any&&) noexcept = default;
 //...
 template<typename T, typename... Args>
 std::decay_t<T>& emplace(Args&&... args) {
 object.reset();
 std::unique_ptr<Model<T>> modelT =
 std::make_unique<Model<T>>(std::forward<Args>(args)...);
 std::decay_t<T>& t = modelT->data;
 object = std::move(modelT);
 return t;
 }
};

12

any
class any {
 struct Concept {
 virtual ~Concept() = default;
 virtual Concept* clone() const = 0;
 //...
 };

 template<typename T>
 struct Model final : Concept {
 template<typename... Args>
 Model(Args&&... args) : data(std::forward<Args>(args)...) {}

 Model* clone() const override { return new Model(data); }
 //...
 std::decay_t<T> data;
 };

 std::unique_ptr<Concept> object; // holds a Model<T> pointer
public:
 any() noexcept = default;
 any(any const& that) : object(that.object ? that.object->clone() : nullptr) {}
 any(any&&) noexcept = default;
 //...
 template<typename T, typename... Args>
 std::decay_t<T>& emplace(Args&&... args) {
 object.reset();
 std::unique_ptr<Model<T>> modelT =
 std::make_unique<Model<T>>(std::forward<Args>(args)...);
 std::decay_t<T>& t = modelT->data;
 object = std::move(modelT);
 return t;
 }
};

• Space and runtime efficiency concerns

• Held object may be allocated on the heap

• Object too big for small object optimization

• Embedded space inside any

• If the move constructor for T can throw

• Because any(any&&) is noexcept

• Will dive into why this is desirable

• No control over allocation

• Not known how to store a type erased allocator in a type erased class

13

any
class any {
 struct Concept {
 virtual ~Concept() = default;
 virtual Concept* clone() const = 0;
 //...
 };

 template<typename T>
 struct Model final : Concept {
 template<typename... Args>
 Model(Args&&... args) : data(std::forward<Args>(args)...) {}

 Model* clone() const override { return new Model(data); }
 //...
 std::decay_t<T> data;
 };

 std::unique_ptr<Concept> object; // holds a Model<T> pointer
public:
 any() noexcept = default;
 any(any const& that) : object(that.object ? that.object->clone() : nullptr) {}
 any(any&&) noexcept = default;
 //...
 template<typename T, typename... Args>
 std::decay_t<T>& emplace(Args&&... args) {
 object.reset();
 std::unique_ptr<Model<T>> modelT =
 std::make_unique<Model<T>>(std::forward<Args>(args)...);
 std::decay_t<T>& t = modelT->data;
 object = std::move(modelT);
 return t;
 }
};

14

any
• Runtime efficiency concerns

• O(n) to find the type it holds

• Cascading if statements

 std::any a = AnyFactory();
 if (int* i = std::any_cast<int>(&a))
 ProcessInt(*i);
 else if (std::string* s = std::any_cast<std::string>(&a))
 ProcessString(*s);
 // else if ...

•

15

Why is noexcept move
construction desirable?

• Exception safety guarantee (Dave Abrahams)

• Basic - invariants preserved, no resources
leaked

• Strong - operation either completed
successfully or threw an exception. If the latter,
the program state hasn’t been changed. May
be expensive or impossible to achieve

• No-throw - operation will not throw an exception

16

Why is noexcept move
construction desirable?

• Optimization when we need the strong guarantee

• E.g.: Growing the internal size of a vector

• Allocate new space

• Throwing move

• Copy elements

• If exception, destroy all elements in new space and release it

• Otherwise, destroy all elements in old space and release old
space

• Non-throwing move

• Move elements and release old space

17

Why is noexcept move
construction desirable?

• Optimization when we need the nothrow guarantee

• E.g. swap:

template<typename T>
constexpr void swap(T&l, T& r)
noexcept(is_nothrow_move_constructible_v<T> && is_nothrow_move_assignable_v<T>)
{
 T t(std::move(l));
 l = std::move(r);
 r = std::move(t);
}

• If T is noexcept move constructible/assignable,
swap is automatically also noexcept

18

Why is noexcept move
construction desirable?

• Throwing move constructors don’t play nicely
with variant

• Much, much more on that…

19

Three vocabulary sum types

• any

• variant

• optional

20

variant

• Templated type

• Discriminated type

• Closed sum type

• Holds 1 of n possible types

21

variant
• The set of types is specified

• Space efficiency

• We know the amount of space needed

• Space embedded in variant

• Runtime efficiency

• O(1) access to the object it holds

• Visitation

22

Three vocabulary sum types

• any

• variant

• optional

23

optional
• Templated type

• Closed sum type

• Holds at most one of the templated type

• Refinement of variant

• Easier interface

• Eg: *o (dereference) to access object

24

C++ Committee
25

C++ Committee
26

• Every committee member wants to make C++ better

• Even if no two of us can agree on what that is

• Consensus of countries

• One country, one vote

• “You can’t always get what you want, but if you try sometime,
you find, you get what you need.” - The Rolling Stones

• Fight for what you can live with

• Not necessarily your ideal design

C++ Committee

27

• The details matter

• Millions of developers will use these classes

• Millions of developers will model their types on
the way the committee designs its types

• It is very hard to fix things later

• High bar for backwards compatibility

C++ Committee

28

Designing variant
• Never-empty

• Assignment

• Comparisons

• Default construction

• Accessing its element

29

Tradeoffs

• Space efficiency

• Runtime efficiency

• Compile time efficiency

• Usability

30

Never-empty

• Ideally, variant has the never-empty guarantee

• Models exactly-1 of the bound types

• What if we relax it to modeling at-most-1?

• How does it affect the various tradeoffs?

31

Assignment
variant<A, B> v1 = A();
v1 = A();

• If A has an assignment operator, should we use it?

• Assumes assignment is an optimization over destroy-
then-construct

• If A doesn’t have an assignment operator, should we
destroy-then-construct?

• Should we always destroy-then-construct?

• Consistency

32

Assignment
variant<A, B> v1 = A();
v1 = B();

• emplace has similar issues

• User expects resultant v1 to hold a B object

• Destroy-then-construct

• What happens if B() throws?

• Most contentious question!
33

Comparisons
• Compare values

variant<short, int> vs3 = static_cast<short>(3);
variant<short, int> vi2 = static_cast<int>(2);
assert(vi2 < vs3);

• Compare alternative-then-values

variant<short, int> vs3 = static_cast<short>(3);
variant<short, int> vi2 = static_cast<int>(2);
assert(vs3 < vi2);

34

Comparisons
• Compare values

variant<short, int> vs3 = static_cast<short>(3);
variant<short, int> vi2 = static_cast<int>(2);
assert(vi2 < vs3);

• Result not surprising

• 2 < 3

35

Comparisons
• Compare values

variant<short, int> vs3 = static_cast<short>(3);
variant<short, int> vi2 = static_cast<int>(2);
assert(vi2 < vs3);

• Need entire matrix of comparisons (O(n^2))

• What happens with variant<int, string>?

• Not compile comparisons (SFINAE or hard error)

• Throw exception when comparing int with string

36

Comparisons
• Compare values of different types can break transitivity

 // Lexicographically compare ints and strings
 bool operator<(int i, string s) { return to_string(i) < s; }
 bool operator<(string s, int i) { return s < to_string(i); }

 //…

 using V = variant<int, string>;
 V vi = 200;
 V vs = "30";
 V vj = 5;
 assert(vi < vs); // 200 < “30” because “200” < “30”
 assert(vs < vj); // “30” < 5 because “30” < “5"
 assert(vi < vj); // fails because 200 > 5

• This is surprising!

37

Comparisons
• Compare values

variant<int, int> v0(in_place_index<0>, 5);
variant<int, int> v1(in_place_index<1>, 5);

assert(v0 == v1);

• This is surprising

• Are they really equal?

• Alternative is not a salient feature of value comparing variant

38

Comparisons
• Compare alternative-then-values

• “Representational” comparison

variant<short, int> vs3 = static_cast<short>(3);
variant<short, int> vi2 = static_cast<int>(2);
assert(vs3 < vi2);

• Result is surprising

• Types only need be self-comparable (O(n))

39

Default Construction

• Should it be default constructible?

• If it is default constructible, should it default
construct one of its bound types?

• Is this the same as the moved-from state?

40

Accessing its element

• Index by type?

• Index by alternative?

• Should we have a better than O(n) runtime
(ideally O(1)) way to access the element?

• Visitation

41

Let’s Brainstorm!

variant<A, B> v1 = A();
v1 = B();

• v1 holds an object of type A

• We want to store an object of type B

• Constructor for B throws

42

Boost.Variant
• Added to Boost in 1.31 (2004)

• Never-empty guarantee

• Assignment is… interesting

• Default constructible… sometimes

• Compares alternative-then-values

• Visitation
43

Boost.Variant Assignment

boost::variant<A, B> v1 = A();
v1 = A();

• Uses A::operator=

44

“Ideal” Solution: False Hopes
boost::variant<A, B> v1 = A();
v1 = B();

1. Provide “backup” and “temporary” storage

2. memcpy() v1 to backup storage

3. Attempt to move construct B into v1

3.1. If exception, memcpy() backup into v1 and done

4. memcpy() v1 to other shared “temporary” storage

5. memcpy() backup into v1. v1 now contains A

6. Destroy A in v1

7. memcpy() temporary into v1. V1 now contains B

45

“Ideal” Solution: False Hopes

A A

Bits of A

B

Bits of A

B

Bits of A

Bits of B

Bits of A

Bits of B

A

Bits of A

Bits of B

~A() B

Bits of A

Bits of B

boost::variant<A, B> v1 = A();
v1 = B();

46

“Ideal” Solution: False Hopes

A A

Bits of A

Throws

Bits of A Bits of A

A

boost::variant<A, B> v1 = A();
v1 = B();

47

“Ideal” Solution: False Hopes
boost::variant<A, B> v1 = A();
v1 = B();

• Fraught with peril!

• “That's a lot of code to read through, but if it's doing what I think
it's doing, it's undefined behavior.

• "Is the trick to move the bits for an existing object into a buffer so
we can tentatively construct a new object in that memory, and
later move the old bits back temporarily to destroy the old object?

• "The standard does not give license to do that: only one may
have a given address at a time…” - Dave Abrahams

48

Initial Solution: Double
Storage

boost::variant<A, B> v1 = A();
v1 = B();

• Construct-then-destroy

• Completely solves the problem

• Strong exception safety guarantee

• get<A>(v1) may give a different address depending on when it
is called

• But…

• Space overhead unacceptable for many users

49

Initial Solution: Double
Storage

boost::variant<A, B> v1 = A();
v1 = B();

• Construct-then-destroy

B B

A A ~A()

50

Initial Solution: Double
Storage

boost::variant<A, B> v1 = A();
v1 = B();

• Construct-then-destroy

A A A

51

Current Approach:
Temporary Heap Backup

boost::variant<A, B> v1 = A();
v1 = B();

1. Destroy-then-construct

2. If any type is noexcept default constructible, only single storage is used

3. Otherwise, heap backup

1. Copy construct v1 to heap backup

2. Destroy v1

3. Construct B into v1

1. If exception, use backup

2. Otherwise, destroy A in backup

52

Temporary Heap Backup
boost::variant<A, B> v1 = A();
v1 = B();

A A ~A() B B

A A A ~A()

53

Temporary Heap Backup
boost::variant<A, B> v1 = A();
v1 = B();

A A ~A()A

B B

54

Temporary Heap Backup
boost::variant<A, B> v1 = A();
v1 = B();

A A A A

55

Temporary Heap Backup
boost::variant<A, B> v1 = A();
v1 = B();

A A ~A()

A A A

A

A

A

~A()

56

Temporary Heap Backup
boost::variant<A, B> v1 = A();
v1 = B();

A A ~A()

A A A A A

57

Default Constructible
• If the first type is default constructible, then

boost::variant is default constructed with that
type

• If any type is noexcept default constructible and
an exception is thrown when changing the held
type, the variant is left holding an unspecified
noexcept default constructible type

• boost::blank is preferred

58

Nothrow Default
Constructible

boost::variant<A, B, boost::blank> v1 = A();
v1 = B();

A ~A() B

59

Nothrow Default
Constructible

boost::variant<A, B, boost::blank> v1 = A();
v1 = B();

A ~A()

60

Element access
• get

• Index by type

• Similar to any_cast for any

void printViaGet(variant<std::string, int>& v) {
 if (std::string* s = get<std::string>(&v))
 std::cout << "string: " << *s << '\n';
 else if (int* i = get<int>(&v))
 std::cout << "int: " << *i << '\n';
}

61

Element access
• Visitation

• Function object which knows how to process
every type

• apply_visitor(vis, var)

• Passes held object to corresponding function
call operator

• Can be O(1) over the number of types
62

Element access
• Visitation

struct printVis : boost::static_visitor<> {
 void operator()(std::string s) const
 { std::cout << "string: " << s << '\n'; }
 void operator()(int i) const
 { std::cout << "int: " << i << '\n'; }
};
void printViaVis(V& v)
{ apply_visitor(printVis(), v); }

• Inversion of control
63

Element access
• Get

void printViaGet(variant<std::string, int>& v) {
 if (std::string* s = get<std::string>(&v))
 std::cout << "string: " << *s << '\n';
 else if (int* i = get<int>(&v))
 std::cout << "int: " << *i << '\n';
}

• Visitation

struct printVis : boost::static_visitor<> {
 void operator()(std::string s) const
 { std::cout << "string: " << s << '\n'; }
 void operator()(int i) const
 { std::cout << "int: " << i << '\n'; }
};
void printViaVis(V& v)
{ apply_visitor(printVis(), v); }

64

dts::variant
• Developed by Godbolt & Liber

• Working at low latency trading firm

• Annoyances with Boost.Variant

• Never want double buffering

• Especially temporary heap backup

• Almost always add boost::blank to the types

• Visitors always have to handle boost::blank

• Want assignment to always be straightforward

65

dts::variant
• Developed by Matt Godbolt & Nevin “:-)” Liber

• Working at low latency trading firm

• Annoyances with Boost.Variant

• Never want double buffering

• Especially temporary heap backup

• Almost always add boost::blank to the types

• Visitors always have to handle boost::blank

• Want assignment to always be straightforward

66

dts::variant
• “Empty” state: models at-most-1

• Assignment

• Same type: operator=

• Change type: Destroy+construct

• If exception is thrown, empty state

• Comparisons: alternative-then-values

• Default constructible: empty state

• Element access: get<type> and visitation

67

dts::variant
dts::variant<A, B> v1 = A();
v1 = B();

A ~A() B

68

dts::variant
dts::variant<A, B> v1 = A();
v1 = B();

A ~A()

69

dts::variant
• Very familiar with the issues involved

• Thought about proposing it

• Open source (easy)

• Too many battle scars from failing to get optional into
C++14

• Constantly revisiting old arguments without new
information

• Comparison operators

70

std::variant v1
• First modern variant proposal

• Axel Naumann

• CERN

• N4218

• Urbana meeting (2014)

• Targeting Library
Fundamentals TS

71

std::variant v1
• Has an empty state

• Assignment: always destroy-then-construct

• Even homogeneous assignment

• Comparisons: values

• Default constructible: empty state

• Element access: only get<type>
72

std::variant v1
• LEWG had 17 people for this discussion

• Alternative to empty state

• Constraint types allowed in variant

• “I'm terrified of a world where everyone will invent their own
visitor.”

• No better alternative suggested

• Comparison of values

• Full matrix of comparisons (O(n^2) at compile time)

73

std::variant v1
• Visitation

• Bjarne Stroustrup

• Visitation is unpleasant

• Lots of requests for extension

• Should just use pattern matching

• Language feature

• Not proposed

• Not for Library Fundamentals TS

• Shouldn’t wait for pattern matching

• Axel agreed to trim visitation to the bare minimum for variant

74

std::variant v1
• However

• Paper proposed a solution without exploring the design space

• Asked Axel to do more work

• Tuple-like interface

• Constexpr

• Never-empty

• variant<int, int>, variant<int, const int>, etc.

• Visitation

75

std::variant v2

• N4450 - pre-Lenexa (2015)

• Assignment

• Uses operator= if the held type isn’t
changed

76

std::variant v2
• Alternatives to empty state

• Only types that are noexcept copy constructible

• Leaves out all types that do allocation

• vector, string, etc.

• Double buffering

• Construct-then-destroy

• Double the memory

77

std::variant v2

• Comparisons by alternative-then-values

• Axel agreed because otherwise transitivity
was broken

• Still hoping for a way to get it

78

std::variant v2
• N4450 - pre-Lenexa mailing (2015)

• And then the committee woke up…

• Hundreds of emails

• Many of which were mine

• Heated, contentious technical discussion

79

std::variant v2

• Comparison suggestions

• Because short is comparable with int,
variant<short, int> should not be comparable
with itself because of possibly surprising
results

• O(n^2) at compile time

80

std::variant v2
variant<A, B> v1 = A();
v1 = B();

• Assignment suggestions

• If noexcept move constructible

• Construct temporary copy of B

• If exception, v1 still has A

• Destroy A in v1

• Move construct temporary B into v1

• Destroy temporary B

81

std::variant v2

variant<A, B> v1 = A();
v1 = B();

• Suggestion: Really want never-empty

• Otherwise it isn’t quite a sum type

82

std::variant v2
variant<A, B> v1 = A();
v1 = B(); // throws

• Sean Parent

• Instead of empty state, how about a partially formed state when an
exception is thrown?

• Only assignment to and destruction allowed

• Assignment from not allowed

• Cannot even query this state

• Default construction is not this state

• Partially formed is still a sum type

83

std::variant v2
variant<A, B> v1 = A();
v1 = B(); // throws

• Sean Parent on Partially Formed State (cont.)

• By not requiring noexcept move operations, providing the basic
exception guarantee becomes complicated

• Basic exception guarantee requirement, moved-from state and
default constructible are all related

• Minimum we had to satisfy

• Fine with more functionality

• Didn’t object to empty state

84

std::variant v2

variant<A, B> v1 = A();
v1 = B(); // throws

• Suggestion: Terminate on exception

• User has no way to check ahead of time so as
to avoid termination

85

std::variant v2
variant<A, B> v1 = A();
v1 = B(); // throws

• Suggestion: limited to types that are noexcept move constructible

• Draconian

• Eliminates most legacy (pre-C++11) types and aggregates
of them

• Non-portable

• list(list&&) not required to be noexcept

• Types which aggregate list (use as member variable)

86

std::variant v2
variant<A, B> v1 = A();
v1 = B(); // throws

• Suggestion: limited to types that are noexcept move constructible

• Expert only to determine for implicitly declared move
constructors

struct Alpha {
 Bravo b;
 Charlie c;
 Delta d;
};

• No visual cues

87

std::variant v2

variant<A, B> v1 = A();
v1 = B(); // throws

• Suggestion: disallow throwing move
constructors in the language

• It had been tried before

• And failed…

88

std::variant v2

variant<A, B> v1 = A();
v1 = B(); // throws

• Suggestion: Make variant a built-in (as opposed
to library) type

• Nice for other reasons (more on that later), but
doesn’t address the problem

89

std::variant v2

variant<A, B> v1 = A();
v1 = B(); // throws

• Suggestion: Add a strong_assign() member
function to types which doesn’t throw

• People will still just use operator=

90

std::variant v2

variant<A, B> v1 = A();
v1 = B(); // throws

• Suggestion: Undefined behavior

• Bad as termination

• Users have no way to avoid it

91

std::variant v2

variant<A, B> v1 = A();
v1 = B(); // throws

• Suggestion: Multiple variant types standardized

• Only experts can choose between them

• Interoperability between them

92

std::variant v2
variant<A, B> v1 = A();
v1 = B(); // throws

• Summary of the top ideas:

• Double buffering

• Empty or partially formed state

• Restrict the types

• Terminate / undefined behavior

• About 1/3 of my email messages kept repeating this to keep the
discussion focused

93

Partially formed state

• Only destroy or assign to it

• Cannot query if variant is in this state

• Should a default constructed variant be that
state?

94

Partially formed state
• Alisdair Meredith

• Problematic: hidden unexpected pre-condition on
moving/copying

std::vector<variant<A>> vv(1);
vv.reserve(vv.capacity() + 1); //internally moves/copies

• Most types have no preconditions on moving/copying

95

Sidebar
• Containers are value initialized when default constructing elements

• Fundamental types are zero initialized

• Developers want a way to default initialize a container (especially contiguous containers string & vector)

• Default initialization for fundamental types is uninitialized memory

std::vector<float, default_init_allocator> vf(1);
vf.reserve(vf.capacity() + 1);

• Even assuming copying uninitialized floats is defined behavior

• What happens if the uninitialized memory happens to be the bit pattern for signaling_NaN?

• Hard to convince me to standardize this

• Hard to convince committee to standardize this

• Copying dangling pointers has the same issue

• Such as implementations of weak_ptr

96

Sidebar to the Sidebar
std::vector<float, default_init_allocator> vf(1);
vf.reserve(vf.capacity() + 1);

• What if we just allocate an array of default initialized values?

• Eliminates the accidental copying problem

std::make_unique_default_init<float[]>(2);

• In the C++20 CD (Committee Draft)

• As of last week, In C++20 hopefully…

• Name is contentious

• Should it be constrained to trivially default constructible types?

• One of two NB comments that didn’t get resolved

97

std::variant v2
• Discussed in Lenexa (2015)

• Invited all interested parties

• Unfortunately, the committee members who don’t
normally attend LEWG couldn’t make it (too much to do
at committee meetings)

• I strongly suggested an evening session, but to no
avail

• “There’s never enough time to do it right, but there's
always enough time to do it over.” - Jack Bergman

98

std::variant v2
• Goal: answer all open questions

• Small subgroup of LEWG (7 people) - not contentious

• Emptiness vs nonemptyness

• Assignment between heterogeneous variants

• Can types be repeated

• int vs. const int

• Allow references?

• Allow void?

• Binary relation operators between heterogeneous variants?

• Default construction: empty state or alternative zero type or not at all?

• How do we define or deduce the return type of visitor?

99

std::variant v2
• LEWG discussion (17 people) - not contentious

• Polls (round 1)

• Strongly favor - favor - neutral - against - strongly against

• Query empty state: 4-4-4-1-1

• Default constructor in empty state: 3-1-3-1-5

• Default constructor try alternative zero type:
5-3-1-2-2

100

std::variant v2
• More discussion after lunch

• Heterogeneous assignment

• Is variant<short, int> assignable from
variant<int, short>?

• Checking every assignment is an O(n^2)
problem at compile time

• What if we could sort types?
101

Sorting types
• I was 99% sure we cannot sort types

• No total ordering on types

• Dynamic libraries

• Decided to informally ask CWG (Core Working Group) about
this at breakfast the next day

• Asked them not to laugh

• So they cringed :-)

• Confirmed my suspicions

102

std::variant v2
• Polls (round 2)

• Remove heterogeneous (different variants) assignment:
9-5-3-0-1

• Conversions: 5-4-1-1-0

• variant<int, std::string> = “Hello”;

• Heterogeneous comparison: 0-2-5-3-3

• variant<int>(1) == 1

• variant<A, B, C> == variant<X, Y, Z>: 0-1-0-4-8

103

std::variant v2
• Polls (round 2)

• variant<int, int> allowed?

• Model disjoint union: 14

• Ordered sequence of types, identified by alternative

• For equal types, pick first: 3

• For equal types, pick neither by type (not polled)

• Non-disjoint union:

• Unordered sequence of types

• variant<int, const int>: 9-4-1-1-1

• variant<>: Valid type that cannot be constructed

104

std::variant v2

• Polls (round 2)

• Allow types to be reference types: 6-4-6-1-0

• Note: optional does not support reference
types

• Allow void: 6-9-2-0-0

105

std::variant v2
• Polls (round 2)

• Multi visitation: 0-7-7-1-0

• Binary visitation: 0-1-10-1-3

• Visitor return type

• common_type: 12

• Note: this is order-dependent

• Same return type: 13

• Return type of operator()() (empty state): 1

• Return variant<return types…>: 2

• Return variant<return types…> if distinct, otherwise single return type: 0

106

std::variant v2

• Polls (round 2)

• Pointer version of get(variant<…>*):
unanimous consent

• Similar to any_cast and dynamic_cast

107

std::variant v2

• Polls (round 2)

• Default construct into empty state: 2-0-2-1-6

• Default construct alternative 0 type: 6-3-0-1-1

• Default construct first default constructible
type: 0-1-2-5-3

108

std::variant v2
• Polls (round 2)

• index() return -1 on empty: 4-1-3-1-2

• visit/get has precondition that variant not empty:
4-8-2-0-0

• Type list and utilties: NO

• Separate proposal as it is needed more generally

• Access to underlying data buffer: NO

109

std::variant v3
• N4516 - written in Lenexa

• Empty state

• Only when assignment fails

• Assignment

• Same type: operator=

• Failure changing types: empty state

• Accidentally missing v = A(); (assignment from exact types if that type only appears once
in the type list)

• Comparison: alternative-then-values

• Only comparisons for variants of the same type

• Default construction: first alternative type

• Element access: get and visitor

110

std::variant v3
• LEWG Discussion Lenexa (Friday - 16 people)

• One person still wants to default construct initialize to empty
state. Nobody else wants that

• Separate way to query empty state: valid()

• Polls (round 3):

• If valid(), index() return magic value: 5-3-1-2-2

• index() has a precondition of valid(): 5-2-0-3-3

• Neither is consensus; paper need not change

111

std::variant v4

• N4542 - post-Lenexa mailing

• Empty state when assignment fails

• visit() has variadic signature (multiple
heterogeneous variants)

112

std::variant v4
• Assignment when switching types changed to minimize chances of entering

invalid state

• But not necessarily eliminate it!

• Copy right hand side contents to temporary

• Destroy left hand side contents

• Move constructs left hand side from temporary

• Copy-then-destroy-then-move-then-destroy

• Pessimization!

• Probabilistic argument

• Evidence?

113

Pessimization
• Generally speaking, one should not make claims about

optimization/pessimization without measuring

• Humans have a hard time reasoning performance when
doing different work

• However, in this case we are strictly doing more work

• Also, assumes move is always an optimization of copy

• variant<array<int, 1000>, array<double, 1000>>

• Still, one should measure…

114

std::variant v4
• And the committee was woken once again…

• At least 1,080 more email messages…

• Half of which showed up the week after the mailing

• Many by the people who could have but didn’t attend the
LEWG sessions and didn’t like the consensus

• Every single point brought up before was brought up again

• 2/3 of my emails contained “But this is not new information…”

• There were a few more ad-hoc suggestions…

115

More suggestions
• The group that evaluated it was too small

• Make is so the folks at C++Now like it

• Head of a National Body delegation: Don’t even think about putting
it into the standard before putting it into a TS

• Make it so the active type cannot be changed

• Use optional<variant<…>> if you want to change the active type

• Make variant move-only

• Transactional memory

116

std::variant v5

• P0080R0 pre-Kona

• valid() is a visible state for get/visit

• valid() no longer a precondition for copy/move
from a variant

117

Competing papers

• P0087R0 (also by Axel) - std::variant 2.1

• Default construction into the empty state

• Assignment: copy+destroy+move

• No comparisons

118

Competing papers
• P0080 - “Variant: Discriminated Union with Value Semantics” - Michael Park

• Indeterminate state

• Default construction

• Assignment failure

• Assignment: Destroy+Construct, unless noexcept move constructible,
then Copy/Move+Destroy+Construct

• type_switch instead of visit

• Precursor to pattern matching

• Never presented (logistical reasons getting to Kona)

119

Competing papers

• David Sankel

• P0092R0 - “Simply a basic variant”

• Basic exception guarantee

• Double buffering unless one of the types
is noexcept default constructible

120

Competing papers
• David Sankel

• P0093R0 - “Simply a strong variant”

• Strong exception safety guarantee

• Never-empty

• Double buffering

121

Competing papers
• David Sankel

• P0094R0 - “The Case for a Language Based Variant”

• Alternatives have names

enum union command {
 std::size_t set_score; // Set the score to the specified value
 std::monotype fire_missile; // Fire a missile
 unsigned fire_laser; // Fire a laser with the specified intensity
 double rotate; // Rotate the ship by the specified degrees.
};

• Pattern matching instead of visitation

switch(cmd) {
 case set_score value:
 stream << "Set the score to " << value << ".\n";
 case fire_missile m:
 stream << "Fire a missile.\n";
 case fire_laser intensity:
 stream << "Fire a laser with " << intensity << " intensity.\n";
 case rotate degrees:
 stream << "Rotate by " << degrees << " degrees.\n";
}

122

Kona 2015
• Evening session (paraphrasing): “If I hear repeated arguments, I'll

call it out and stop minuting.” - scribe

• They only had to do this once

• P0088R0 std::variant v5

• Exceptions on invalid state operations (valid() never a
precondition so no undefined behavior): 13-15-2-3-0

• That’s all that had to change…

• P0094R1 enum union and pattern matching

• Encourage the author to do more work

123

Undefined Behavior
• Precondition violation

• Undefined behavior

• No-false-positive sanitizers can detect bugs

• Optimizers can optimize assuming it never
happens

• vector::operator[](n) where n >= size()

Undefined Behavior
• Exceptions

• No undefined behavior

• All states are valid

• Cannot tell the difference between accidental
use (bug) and deliberate use (feature)

• vector::at()

Undefined Behavior
• Which is better?

• It depends

• Even defining reasonable behavior can be error prone

• unsigned arithmetic wraps

• No undefined behavior

• signed arithmetic underflow/overflow

• Undefined behavior

Undefined Behavior
• Back to variant

• When !valid(), what operations should be
errors?

• The committee struggles with this

• Contracts (C++2023?) gives us the language
and framework to describe this

Kona 2015

• LEWG discussion (19 people)

• Allow conversion (if unique) for both
construction and assignment: 4-4-3-4-0

• Bike shedding

• valid() —> !valueless_by_exception()

128

std::variant v6

• P0088R1

• Incorporate Kona changes

• Bug fixes

129

std::variant v7
• P0088R2

• Instead of targeting a TS, target C++17!

• After the Jacksonville 2016 meeting (v6
discussed), people were asked if we could
possibly gather consensus in Oulu to target
C++17. This would be the last chance before
feature freeze.

• General feeling: we have consensus; ship it!

130

std::variant v7
• P0088R2 - Axel Neumann

• Introduction by David Sankel

• “C++17 needs a type-safe union:

• “Lets not make the same mistake we made with std::optional by putting this library into
a TS. We waited three years where no substantial feedback or discussion occurred, and then
moved it into the IS virtually unchanged. Meanwhile, the C++ community suffered, and we
continue to suffer from lack of this essential vocabulary type in interfaces.

• “The implications of the consensus variant design are well understood and have been
explored over several LEWG discussions, over a thousand emails, a joint LEWG/EWG
session, and not to mention 12 years of experience with Boost and other libraries. The last
major change made to the proposal was non-breaking and added exception throws where
previously there was undefined behavior. Since then, all suggested modifications have been
cosmetic, rehashes of older discussions, or would be handled just as well by defect
resolutions.

• “The C++ community should not wait three years for a widely useful library that is already
done, fits its purpose, and has had such extensive review. There is a low chance that we will
regret including variant in C++17, but a high chance that we will regret omitting it.”

131

Competing paper
• P0308 - “Valueless Variants Considered Harmful”

- Peter Dimov

• Pilfering constructor

• For types with a noexcept(false) move
constructor

• Destructive move

• Object can be destroyed, but nothing else
132

Oulu 2015
• P0088R3 - std::variant v8

• Bug fixes

• Final plenary

• NB (paraphrased) - “We will not accept std::any in 17 without
std::variant. People will use the wrong type”

• “Move we apply to the C++ Working Paper the Proposed
Wording from P0088R3, Variant: a type-safe union for C+
+17”

• Unanimous consent!

133

http://wg21.link/p0088R3

Issaquah 2016
• P0510R0 - “Disallowing references, incomplete types, arrays,

and empty variants” - Erich Keane

• In response to national body comments, variant can no longer
store references, incomplete types (including void) and arrays

• Optional also doesn’t support references

• Cannot use incomplete types because variant needs to
know the size of the type

• arrays are weird

• variant<> can no longer be instantiated

134

std::variant C++17
• Empty state

• valueless_by_exception

• Assignment

• Same type

• operator=

• Change type

• Copy assignment

• Copy-then-destroy-then-move-then-
destroy

• (Pessimization)

• Move assignment

• Move-then-destroy

• Comparisons

• Alternative-then-values

• Homogeneous

• variant<A, B> only comparable
with variant<A, B>

• Default construction

• Alternative 0 type

• Element access

• get

• visit

135

Let’s Brainstorm!
variant<A, B> v1 = A();
v1 = B();

• v1 holds an object of type A

• We want to store an object of type B

• Constructor for B throws

• How did we do?

136

std::variant C++CD (N4835)
• Zhihao Yuan

• P0602 variant and optional should propagate
copy/move triviality

• Added constexpr to copy/move

• If all held types are trivially copy/move
constructible/assignable, then variant is
trivially copy/move constructible/assignable

137

std::variant C++CD (N4835)
• P0608 A sane variant converting constructor (Zhihao Yuan)

• Unintended alternatives fix

variant<string, bool> x = "abc"; // holds bool

• Information loss fix

variant<char, optional<char16_t>> x = u'\u2043'; // holds char = 'C'
double d = 3.14;
variant<int, reference_wrapper<double>> y = d; // holds int = 3

• Unstable construction fix

138

std::variant C++CD (N4835)
• LEWG 3228 (Barry Revzin)

struct ConvertibleToBool
{
 constexpr operator bool() const { return true; }
};

static_assert(std::holds_alternative<bool>(std::variant<int, bool>(ConvertibleToBool{})));

• Before P0608, holds bool

• After P0608, holds int

• Proposed fix P1957 (Zhihao Yuan): core language change

• Conversion from pointer (or pointer to member) to bool becomes a
narrowing conversion

139

optional and variant
• Is optional<T> a refinement of variant<nullopt_t, T>?

• Not quite

• optional<T> has no valueless_by_exception state

• Assignment

• Same type:

• operator=

• Change type

• Destroy-or-construct a T

• Degenerate case of destroy+construct

• No extra move pessimization

• No support for get or visit

• But could be added

140

Odds and Ends

• Given that float and int are trivially noexcept
move/copy constructible

• Can variant<float, int> get into the
valueless_by_exception state?

• Sadly, yes…

141

Odds and Ends
• Agustín Bergé

• Eggs.Variant (2014)
struct S { operator int() { throw 42; } };
//…
 variant<float, int> v{12.f};
 try { v.emplace<1>(S()); }
 catch(...){}
 assert(v.valueless_by_exception());

• emplace<1> to emplace an int

• Destroy 12.f

• Call S::operator int()

• throws

142

Proposed Language Variant
• P0095R2 - Language Variants (David Sankel, Dan Sarginson, Sergei Murzin)

• lvariant keyword

• lvariant is to variant as struct is to tuple

• Alternatives have names

• Default constructible only if first type is default constructible

• Inspection

• inspect keyword (pattern matching)

• Assignment

• If any of the types can throw during move construction or assignment, then no
defaulted assignment operator

• Users can implement their own

143

Proposed Language Variant
• Discussed in EWGI at Kona 2019

• Much rehash of std::variant design

• Can still get into valueless_by_exception state

• Should that be queryable?

• What about making that state UB?

• What about throwing destructors?

• Language feature has to account for it

• Assignment

• What about =default?

• If so, we should do it for classes

• No emplace proposed yet

144

Boost.Variant2
• Peter Dimov

• Never-empty guarantee discussion

• If all types have non throwing assignment, the variant cannot fail during
assignment

• Otherwise, if an explicit null state is available, that state is chosen on
assignment failure

• Otherwise, if at least one type is noexcept default constructible, that state is
chosen on assignment failure

• Otherwise, double buffering

• Hundreds of emails…

• Sound familiar?

145

Boost.Variant2

• Never-empty

• Strong exception safety guarantee

146

Boost.Variant2

147

B B

A A ~A()

Double Buffering

B

A A

B

~A() B

moved-
from

B

BAll types have a
non-throwing

move constructor

or

Pattern Matching
• P1371R1 Sergei Murzin, Michael Park, David Sankel, Dan Sarginson

• Discussed in Cologne (2019) post-meeting and Belfast (2019)

• Before

struct visitor {
 void operator()(int i) const {
 os << "got int: " << i;
 }
 void operator()(float f) const {
 os << "got float: " << f;
}
 std::ostream& os;
};
std::visit(visitor{strm}, v);

• After

 inspect (v) {
 <int> i: strm << "got int: " << i;
 <float> f: strm << "got float: " << f;
}

Nevin variant
• Wanted a variant to replace usage of Boost.variant

• std::variant is that variant

• std::variant is good

• Two other variants

• Strong performance

• dts::variant + refinement of optional

• Always construct/assign directly into the variant

• Never construct-then-destroy-then-move to avoid exceptions

• Strong reasoning

• Double buffering within the variant

• Construct-then-destroy (not sure what assignment should do)

• Strong exception safety guarantee

• Never-empty guarantee

149

The Many Variants of
std::variant

• Special Thanks (thank them / blame me)

• My family

• My various employers

• The C++ Community

• The C++ Committee

• David Sankel, Sean Parent, Michael Park & Matt Calabrese

• And especially…

150

The Many Variants of
std::variant

• Axel Naumann

• For championing std::variant

• “Thank you, Nevin “:-)” Liber, for bringing
sanity to this proposal”

151

Q&A
152

