
0

© 2023 Bloomberg Finance L.P. All rights reserved.

Trivial Relocation
Through Time
A historical perspective on trivial relocation and memcpy

ACCU 2023
April 21, 2023

Mungo Gill
Senior Software Engineer, BDE Team

2

• Senior Software Engineer at Bloomberg

• Over 20 years of C++ experience

• Various technology and finance companies

Introduction: Who am I?

3

• What problem are we trying to solve?

• How are libraries working around the issue now?

• What proposals are there to solve this?
o In the past
o In the present

• Where do we go from here?

• Questions?

Contents

4

• What problem are we trying to solve?

• Some background: a short history lesson

o The C++03 way

o The C++11 way

o Going further

Why do we care about trivial
relocation?

5

Growing a vector the C++03 way

class MyClass {
public:

MyClass();
MyClass(const MyClass &);

};

int main()
{

std::vector<MyClass> data;

data.push_back(MyClass());
// … 3 more times

data.push_back(MyClass());
}

Wha
t h

ap
pe

ns
 he

re?

6

data

Growing a vector the C++03 way

MyClass MyClass MyClass MyClass
MyClasspush_back

data is not big enough!

It needs to grow!

7

data

Growing a vector the C++03 way

MyClass MyClass MyClass MyClass

replacement data

Pedantic note: Many
implementations construct
the new element in place

before copying the old ones.

8

data

Growing a vector the C++03 way

MyClass MyClass MyClass MyClass

replacement data

MyClass

copy

9

data

Growing a vector the C++03 way

MyClass MyClass MyClass MyClass

replacement data

MyClass MyClass

copy

10

data

Growing a vector the C++03 way

MyClass MyClass MyClass MyClass

replacement data

MyClass MyClass MyClass

copy

11

data

Growing a vector the C++03 way

MyClass MyClass MyClass MyClass

replacement data

MyClass MyClass MyClass MyClass

copy

12

data

MyClass MyClass MyClass

replacement data

Growing a vector the C++03 way

MyClass MyClass MyClass MyClass

destruct

13

data

MyClass MyClass

replacement data

Growing a vector the C++03 way

MyClass MyClass MyClass MyClass

destruct

14

data

MyClass

replacement data

Growing a vector the C++03 way

MyClass MyClass MyClass MyClass

destruct

15

data

replacement data

Growing a vector the C++03 way

MyClass MyClass MyClass MyClass

destruct

16

data

MyClass MyClass MyClass MyClass

previous data

Growing a vector the C++03 way

swap

17

data

MyClass MyClass MyClass MyClass

previous data

Growing a vector the C++03 way

deallocate

18

How can we make this better?

C++11 gave us move constructors!

19

Growing a vector the C++11 way
class MyClass {

public:
MyClass();
MyClass(const MyClass &);
MyClass(MyClass &&) noexcept;

};

int main()
{

std::vector<MyClass> data;

data.push_back(MyClass());
// … 3 more times

data.push_back(MyClass());
}

What h
appens n

ow?

20

Growing a vector the C++11 way

There are now two possible paths.

1. If MyClass does not have a noexcept move constructor and is copy
constructible, then we do what we did in C++03.

2. If MyClass does have a noexcept move constructor, then we have a
new, more efficient approach.

21

data

Growing a vector the C++11 way

MyClass MyClass MyClass MyClass
MyClasspush_back

data is not big enough!

It needs to grow!

22

data

Growing a vector the C++11 way

MyClass MyClass MyClass MyClass

replacement data

23

data

Growing a vector the C++11 way

“Empty”
MyClass

MyClass MyClass MyClass

replacement data

MyClass

move

24

data

Growing a vector the C++11 way

“Empty”
MyClass

“Empty”
MyClass

MyClass MyClass

replacement data

MyClass MyClass

move

25

data

Growing a vector the C++11 way

“Empty”
MyClass

“Empty”
MyClass

“Empty”
MyClass

MyClass

replacement data

MyClass MyClass MyClass

move

26

data

Growing a vector the C++11 way

“Empty”
MyClass

“Empty”
MyClass

“Empty”
MyClass

“Empty”
MyClass

replacement data

MyClass MyClass MyClass MyClass

move

27

data

Growing a vector the C++11 way

“Empty”
MyClass

“Empty”
MyClass

“Empty”
MyClass

replacement data

MyClass MyClass MyClass MyClass

destruct

28

data

Growing a vector the C++11 way

“Empty”
MyClass

“Empty”
MyClass

replacement data

MyClass MyClass MyClass MyClass

destruct

29

data

Growing a vector the C++11 way

“Empty”
MyClass

replacement data

MyClass MyClass MyClass MyClass

destruct

30

data

Growing a vector the C++11 way

replacement data

MyClass MyClass MyClass MyClass

destruct

31

data

MyClass MyClass MyClass MyClass

previous data

Growing a vector the C++11 way

swap

32

data

MyClass MyClass MyClass MyClass

previous data

Growing a vector the C++11 way

deallocate

33

Growing a vector the C++11 way

• For every entry in an array, we would have to call the move
constructor on the destination and the destructor on the source.

• Let us consider vector<unique_ptr>.

Constructor (once per element) Destructor (once per element)
unique_ptr::unique_ptr(

unique_ptr&& other)
{

pointer = other.pointer;
deleter = other.deleter;
other.pointer = nullptr;

}

unique_ptr::~unique_ptr()
{

// In our case, pointer is
// always null.
if (pointer)

deleter(pointer);
}

34

Growing a vector with byte copies

• How can we make this even faster?

• Would it be faster if we were allowed to just copy the bytes?

35

data

Growing a vector with byte copies

MyClass MyClass MyClass MyClass
MyClasspush_back

data is not big enough!

It needs to grow!

36

data

Growing a vector with byte copies

MyClass MyClass MyClass MyClass

replacement data

37

data

Growing a vector with byte copies

MyClass MyClass MyClass MyClass

replacement data

MyClass MyClass MyClass MyClass

memcpy

38

data

MyClass MyClass MyClass MyClass

previous data

Growing a vector with byte copies

MyClass MyClass MyClass MyClass
swap

39

data

MyClass MyClass MyClass MyClass

previous data

Growing a vector with byte copies

deallocate

40

Growing a vector with byte copies

• Consider growing a 4-element vector<unique_ptr>.
Using move construction Using byte copying

tmp=::operator new(8*sizeof(unique_ptr));
tmp[0].pointer = src[0].pointer;
tmp[0].deleter = src[0].deleter;
src[0].pointer = 0;
tmp[1].pointer = src[1].pointer;
tmp[1].deleter = src[1].deleter;
src[1].pointer = 0;
tmp[2].pointer = src[2].pointer;
tmp[2].deleter = src[2].deleter;
src[2].pointer = 0;
tmp[3].pointer = src[3].pointer;
tmp[3].deleter = src[3].deleter;
src[3].pointer = 0;
if(src[0].pointer) …
if(src[1].pointer) …
if(src[2].pointer) …
if(src[3].pointer) …
::operator delete(src);
src=tmp

tmp=
::operator new(8*sizeof(unique_ptr));
memcpy(tmp,

src,
4*sizeof(unique_ptr));

::operator delete(src);
src=tmp

41

Growing a vector with byte copies

• We can compare the optimised assembly to grow vector<unique_ptr>.
Using move construction Using byte copying

movsxd r15, esi
lea rdi, [8*r15]
call operator new(unsigned long)@PLT
mov rbx, rax
test r15d, r15d
jle .LBB0_1
mov r15d, ebp
cmp ebp, 4
jae .LBB0_6
xor eax, eax
jmp .LBB0_5
.LBB0_1:
mov rdi, r14
call operator delete(void*)@PLT
jmp .LBB0_2
.LBB0_6:
mov eax, r15d
and eax, -4
lea rcx, [8*r15]
and rcx, -32
xor edx, edx
xorps xmm0, xmm0
.LBB0_7: # =>This Inner Loop Header:

Depth=1
movups xmm1, xmmword ptr [r14 + rdx]
movups xmm2, xmmword ptr [r14 + rdx +
16]
movups xmmword ptr [rbx + rdx], xmm1
movups xmmword ptr [rbx + rdx + 16],
xmm2
movups xmmword ptr [r14 + rdx], xmm0
movups xmmword ptr [r14 + rdx + 16],
xmm0
add rdx, 32
cmp rcx, rdx
jne .LBB0_7
cmp rax, r15
je .LBB0_9

.LBB0_5: # =>This Inner Loop Header:
Depth=1

mov rcx, qword ptr [r14 + 8*rax]
mov qword ptr [rbx + 8*rax], rcx
mov qword ptr [r14 + 8*rax], 0
inc rax
cmp r15, rax
jne .LBB0_5
.LBB0_9:
mov rdi, r14
call operator delete(void*)@PLT
test ebp, ebp
jle .LBB0_2
xor r14d, r14d
jmp .LBB0_11
.LBB0_13: # in Loop: Header=BB0_11

Depth=1
inc r14
cmp r15, r14
je .LBB0_2
.LBB0_11: # =>This Inner Loop Header:

Depth=1
mov rdi, qword ptr [rbx + 8*r14]
mov qword ptr [rbx + 8*r14], 0
test rdi, rdi
je .LBB0_13
call operator delete(void*)@PLT
jmp .LBB0_13

movsxd r14, esi
shl r14, 3
mov rdi, r14
call operator new(unsigned long)@PLT
mov r15, rax
mov rdi, rax
mov rsi, rbx
mov rdx, r14
call memcpy@PLT
mov rdi, rbx
call operator delete(void*)@PLT

42

Growing a vector with byte copies

• We can compare the optimised assembly to grow vector<string>.
Using move construction Using byte copying

movsxd r15, esi
lea rax, [8*r15]
lea rdi, [rax + 2*rax]
call operator new(unsigned long)@PLT
mov rbx, rax
test r15d, r15d
jle .LBB0_1
mov r15d, ebp
cmp ebp, 1
jne .LBB0_12
xor eax, eax
jmp .LBB0_5
.LBB0_1:
mov rdi, r14
call operator delete(void*)@PLT
jmp .LBB0_2
.LBB0_12:
mov ecx, r15d
and ecx, -2
xor edx, edx
xorps xmm0, xmm0
xor eax, eax
.LBB0_13: # =>This Inner Loop Header:

Depth=1
mov rsi, qword ptr [r14 + rdx + 16]
mov qword ptr [rbx + rdx + 16], rsi
movups xmm1, xmmword ptr [r14 + rdx]
movups xmmword ptr [rbx + rdx], xmm1
movups xmmword ptr [r14 + rdx], xmm0
mov qword ptr [r14 + rdx + 16], 0
mov rsi, qword ptr [r14 + rdx + 40]
mov qword ptr [rbx + rdx + 40], rsi
movups xmm1, xmmword ptr [r14 + rdx + 24]
movups xmmword ptr [rbx + rdx + 24], xmm1
movups xmmword ptr [r14 + rdx + 24], xmm0
mov qword ptr [r14 + rdx + 40], 0
add rax, 2
add rdx, 48
cmp rcx, rax
jne .LBB0_13

.LBB0_5:
test r15b, 1
je .LBB0_7
shl rax, 3
lea rax, [rax + 2*rax]
mov rcx, qword ptr [r14 + rax + 16]
mov qword ptr [rbx + rax + 16], rcx
movups xmm0, xmmword ptr [r14 + rax]
movups xmmword ptr [rbx + rax], xmm0
xorps xmm0, xmm0
movups xmmword ptr [r14 + rax], xmm0
mov qword ptr [r14 + rax + 16], 0
.LBB0_7:
mov rdi, r14
call operator delete(void*)@PLT
test ebp, ebp
jle .LBB0_2
shl r15, 3
lea r14, [r15 + 2*r15]
xor r15d, r15d
jmp .LBB0_9
.LBB0_11: # in Loop: Header=BB0_9

Depth=1
add r15, 24
cmp r14, r15
je .LBB0_2
.LBB0_9: # =>This Inner Loop Header:

Depth=1
test byte ptr [rbx + r15], 1
je .LBB0_11
mov rdi, qword ptr [rbx + r15 + 16]
call operator delete(void*)@PLT
jmp .LBB0_11

movsxd rax, esi
shl rax, 3
lea r14, [rax + 2*rax]
mov rdi, r14
call operator new(unsigned long)@PLT
mov r15, rax
mov rdi, rax
mov rsi, rbx
mov rdx, r14
call memcpy@PLT
mov rdi, rbx
call operator delete(void*)@PLT

43

Growing a vector with byte copies

• Applying trivial relocation optimisations to vector<string> gives
a factor-2.8 speed-up versus the C++20 Standard Library version,
according to a test on quick-bench.com (with optimisation).

quick-bench.com

44

Introducing trivially copyable

Can we really just copy the bytes?

45

Trivially copyable
The C++ Standard defines the term trivially copyable type as follows:

6.8.1 General [basic.types.general]

• Arithmetic types ([basic.fundamental]), enumeration types, pointer types, pointer-to-member types ([basic.compound]),
std::nullptr_t, and cv-qualified versions of these types are collectively called scalar types. Scalar types, trivially copyable
class types ([class.prop]), arrays of such types, and cv-qualified versions of these types are collectively called trivially copyable
types.

11.2 Properties of classes [class.prop]

A trivially copyable class is a class:

• (1.1) that has at least one eligible copy constructor, move constructor, copy assignment operator, or move assignment operator
([special], [class.copy.ctor], [class.copy.assign]),

• (1.2) where each eligible copy constructor, move constructor, copy assignment operator, and move assignment operator is trivial,
and

• (1.3) that has a trivial, non-deleted destructor ([class.dtor]).

[Note 1: In particular, a trivially copyable or trivial class does not have virtual functions or virtual
base classes. — end note]

https://eel.is/c++draft/basic.fundamental
https://eel.is/c++draft/basic.compound
https://eel.is/c++draft/basic.type.qualifier
https://eel.is/c++draft/basic.types.general
https://eel.is/c++draft/basic.types.general
https://eel.is/c++draft/class.prop
https://eel.is/c++draft/basic.types.general
https://eel.is/c++draft/basic.types.general
https://eel.is/c++draft/basic.types.general
https://eel.is/c++draft/class.prop
https://eel.is/c++draft/class.prop
https://eel.is/c++draft/special
https://eel.is/c++draft/class.copy.ctor
https://eel.is/c++draft/class.copy.assign
https://eel.is/c++draft/class.prop
https://eel.is/c++draft/class.prop
https://eel.is/c++draft/class.dtor
https://eel.is/c++draft/class.prop
https://eel.is/c++draft/class.prop

46

Trivially copyable
The C++ Standard defines the term trivial for such functions as follows (slide 1/2):

11.4.5.2 Default constructors [class.default.ctor]

• A default constructor is trivial if it is not user-provided and if:
• (3.1) its class has no virtual functions ([class.virtual]) and no virtual base classes ([class.mi]), and
• (3.2) no non-static data member of its class has a default member initializer ([class.mem]), and
• (3.3) all the direct base classes of its class have trivial default constructors, and
• (3.4) for all the non-static data members of its class that are of class type (or array thereof), each such class has a trivial default

constructor.

11.4.5.3 Copy/move constructors [class.copy.ctor]

• A copy/move constructor for class X is trivial if it is not user-provided and if:
• (11.1) class X has no virtual functions ([class.virtual]) and no virtual base classes ([class.mi]), and

• (11.2) the constructor selected to copy/move each direct base class subobject is trivial, and
• (11.3) for each non-static data member of X that is of class type (or array thereof), the constructor selected to copy/move that member

is trivial;

https://eel.is/c++draft/class.default.ctor
https://eel.is/c++draft/class.default.ctor
https://eel.is/c++draft/class.virtual
https://eel.is/c++draft/class.mi
https://eel.is/c++draft/class.default.ctor
https://eel.is/c++draft/class.mem
https://eel.is/c++draft/class.default.ctor
https://eel.is/c++draft/class.default.ctor
https://eel.is/c++draft/class.default.ctor
https://eel.is/c++draft/class.copy.ctor
https://eel.is/c++draft/class.virtual
https://eel.is/c++draft/class.mi
https://eel.is/c++draft/class.copy.ctor
https://eel.is/c++draft/class.copy.ctor

47

Trivially copyable
The C++ Standard defines the term trivial for such functions as follows (slide 2/2):

11.4.6 Copy/move assignment operator [class.copy.assign]

• A copy/move assignment operator for class X is trivial if it is not user-provided and if:
• (9.1) class X has no virtual functions ([class.virtual]) and no virtual base classes ([class.mi]), and
• (9.2) the assignment operator selected to copy/move each direct base class subobject is trivial, and
• (9.3) for each non-static data member of X that is of class type (or array thereof), the assignment operator selected to copy/move that

member is trivial;

11.4.7 Destructors [class.dtor]

• A destructor is trivial if it is not user-provided and if:
• (8.1) the destructor is not virtual,
• (8.2) all of the direct base classes of its class have trivial destructors, and
• (8.3) for all of the non-static data members of its class that are of class type (or array thereof), each such class has a trivial destructor.

https://eel.is/c++draft/class.copy.assign
https://eel.is/c++draft/class.virtual
https://eel.is/c++draft/class.mi
https://eel.is/c++draft/class.copy.assign
https://eel.is/c++draft/class.copy.assign
https://eel.is/c++draft/class.dtor
https://eel.is/c++draft/class.dtor
https://eel.is/c++draft/class.dtor

48

Trivially copyable
In high-level terms, a good way to think about this is that, if you have any of the
following, then your class is unlikely to be trivially copyable:

• Your own constructor(s)
• Your own destructor
• Your own assignment operator(s)
• Any virtual function(s) or base class(es)
• Any members or bases that are not trivially copyable

So, generally speaking, only the most simple types tend to be trivially copyable.

49

Trivially copyable
Example of a type that is trivially copyable and, therefore, a vector would use
an optimised implementation:

struct MyClass {
int data1;
int data2;
double calculate();

};

50

Trivially copyable
Examples of types that are not trivially copyable:

std::unique_ptr
std::shared_ptr
std::string
std::pair<int, int>

51

Trivially copyable

Most current implementations of vector will use
memcpy as an optimization for trivially copyable
types.

52

Introducing trivially relocatable

Facebook Folly (open source)

Bloomberg BDE (open source)

Others (such as Qt)

Common themes

What do current libraries do?

53

Trivially relocatable
• The term trivially relocatable is not defined in the Standard.

• For the purposes of this presentation, we will use the term trivially relocatable
to describe a type that we can relocate using memcpy (given the proviso that
we do not subsequently call the destructor on the relocated-from object).

—A good mental model is to consider, after a relocation operation, that the source object is
no more. It has ceased to be. Bereft of life, it rests in peace. It is an ex-object.

54

Trivially relocatable

Trivial relocation Relocation using move constructor
// allocate destination memory
dest =

::operator new(sizeof(Type));

// copy bytes
memcpy(dest, source,

sizeof(Type));

// deallocate source
::operator delete(source);

// allocate destination memory
dest =
::operator new(sizeof(Type));

// move construct
::new(dest)

Type(std::move(*source));

// destruct source
source->~Type();

// deallocate source
::operator delete(source);

55

Facebook Folly (open source)

• Folly’s fbvector class supports memcpy for relocations.

• If your type can be relocated using memcpy, you need to indicate this fact by
partially specialising IsRelocatable<>.

• This must be done after your definition of Widget but before you make use
of fbvector<Widget>.

// at global namespace level
namespace folly {

struct IsRelocatable<Widget> : boost::true_type {};
}

56

Bloomberg BDE (open source)

• Bloomberg BDE’s vector implementation also supports memcpy for
relocations.

• If your type can be relocated using memcpy, you need to indicate this,
which can be done with either a nested trait syntax or a standard trait-like
partial specialization.

57

Bloomberg BDE (open source)
class Widget {

// ...
// TRAITS
BSLMF_NESTED_TRAIT_DECLARATION(Widget,

BloombergLP::bslmf::IsBitwiseMoveable);
// 'Widget' is trivially relocatable.

// ...
};

// TYPE TRAITS
namespace bslmf {

template <>
struct IsBitwiseMoveable<Widget> : bsl::true_type
{

// 'Widget' is trivially relocatable.
};

} // close namespace bslmf

58

Others

• Many other libraries, lacking language support, adopt similar approaches.

• In Qt, for example, the syntax uses a macro.

Q_DECLARE_TYPEINFO(Widget, Q_RELOCATABLE_TYPE);

59

Common themes

• Every single non-trivially copyable type that we wish to optimise using
memcpy must be individually flagged.

• Flagging Standard Library types results in code portability issues (e.g.,
std::string in libc++ vs. libstdc++).

• The elephant in the room: Both libraries rely on compilers allowing what is,
technically, undefined behaviour.

Note: std::string can be trivially relocated in libc++ but not in libstdc++,
which uses self-references in its short string optimization.

60

Relying on undefined behaviour
The caveat with using memcpy:

If the type is not an implicit-lifetime type, then it is, technically, undefined
behaviour to access any non-static members or call any non-static functions
on the copied object.
(C++ Standard, section [basic.life])

The good news:

No current compilers track this, so libraries can “get away with it”, but there is
no guarantee that a future compiler will not decide to optimise away that
access and break our code.

Note: All trivially copyable types are, by definition, implicit-lifetime types.

61

Is trivial relocation worth doing?

• The vast majority of types are not trivially copyable, and those that are tend
to be very small and very simple.

• The vast majority of types can be trivially relocated.

• The only non-trivially relocatable types tend to be complex structures that
store (directly or indirectly) pointers to themselves or to their own
members.

• Thus, adding trivial relocatability to the language would allow std::vector to
use memcpy in almost all cases.

62

Is trivial relocation worth doing?

All of the following Standard Library types, though not trivially copyable, may be,
depending on the library implementation, trivially relocatable:

std::unique_ptr
std::shared_ptr
std::string
std::pair<int, int>

Note: std::string can be trivially relocated in libc++ but not in libstdc++,
which uses self-references in its short string optimization.

63

First attempt: 2014, N4034, Pablo Halpern

Adding trivial relocation to the
C++ Standard

64

N4158: Destructive Move

https://wg21.link/n4158

First attempt, 2014, Pablo Halpern

https://wg21.link/n4158

65

• This originally started out as paper N4034 https://wg21.link/n4034.

• It was based on (or at least inspired by) the BDE library approach.

• Note that this proposal also considers the case of non-trivial
relocations, but that is out of scope for this presentation.

First attempt, 2014, Pablo Halpern

https://wg21.link/n4034

66

• New Standard Library type traits were proposed.

• is_trivially_destructive_movable defaults to true for types
that are both

— trivially move constructible.

— trivially destructible.

• is_nothrow_destructive_movable defaults to true if calling
uninitialized_destructive_move on a type is noexcept.

First attempt, 2014, Pablo Halpern

is_trivially_destructive_movable
is_nothrow_destructive_movable

67

• A new low-level Standard Library function was proposed.

• This function is equivalent to
— running memcpy(to, from, sizeof(T)).

— starting the lifetime of *to.

— ending the lifetime of *from.

• This function requires the trait
is_trivially_destructive_movable<T> to be true.

First attempt, 2014, Pablo Halpern

template<class T>
uninitialized_trivial_destructive_move(T* from, T* to);

68

• New Standard Library functions were proposed.

• These functions default to calling the move constructor and
destructor if is_trivially_destructive_movable is
false, otherwise they call
uninitialized_trivial_destructive_move.

• Standard Library container implementations can profit by using
these methods.

First attempt, 2014, Pablo Halpern

uninitialized_destructive_move
uninitialized_destructive_move_n

69

• So what happens if a type, say, Widget, can be relocated using memcpy?

• You would specialise the is_trivially_destructive_movable trait
as follows:

• As a result of this, the function uninitialized_destructive_move
uses uninitialized_trivial_destructive_move rather than
construction and destruction
(as does uninitialized_destructive_move_n).

First attempt, 2014, Pablo Halpern

template <> struct
is_trivially_destructive_movable<Widget> : std::true_type

70

• This paper did not progress as it would have required a core language
proposal to change the lifetime model and allow something other than a
constructor to start the lifetime of an object.

• The WG21 discussion of the lifetime issues raised by this paper did inspire
another subsequent paper N4393, “Noop Constructors and Destructors”
https://wg21.link/n4393.

• N4393 proposed special constructor and destructor syntax to begin and
end the lifetime of an object.

First attempt, 2014, Pablo Halpern

https://wg21.link/n4393

71

First attempt: 2014, N4034, Pablo Halpern

Second attempt: 2016, P0023, Denis Bider

Adding trivial relocation to the
C++ Standard

72

P0023: Relocator: Efficiently moving objects

https://wg21.link/p0023

Second attempt, 2016, Denis Bider

https://wg21.link/p0023

73

• A relocation constructor, somewhat akin to move constructors, was proposed.

Second attempt, 2016, Denis Bider

class A {
>>A(A&); // relocator

};

74

• This was the very first proposal to include rules whereby the compiler can
deduce a type’s trivial relocatability.

Second attempt, 2016, Denis Bider

If the definition of a class X does not explicitly declare a relocator, a non-
explicit one is implicitly declared as defaulted, if and only if class X satisfies
the following criterion for each other special member:

• X does not have a user-declared (special member), or the user-declared
(special member) is defaulted at first declaration.

75

• Two new type traits were proposed.

• These were defined as follows:

Second attempt, 2016, Denis Bider

template struct is_relocatable;
template struct is_trivially_relocatable;

The value of is_relocatable::value is true if T has either a user-
defined relocator, or a defaulted relocator that is not defined as deleted.

The value of is_trivially_relocatable::value is true if T has a
trivial relocator. A trivial relocator is one that is defaulted, not deleted, and
calls only other trivial relocators. It is equivalent to memcpy.

76

• So what happens if a type, say, Widget, can be relocated using memcpy?

• You would default the relocator using the following syntax:

• Library functions can then, if they wish, test this using
is_trivially_relocatable and optimise accordingly.

Second attempt, 2016, Denis Bider

class A {
>>A(A&) = default; // relocator

};

77

• Note that this proposal also looks at the case of non-trivial relocations, but
that is out of scope for this presentation.

• For unrelated reasons, this proposal did not progress beyond the initial
(revision 0) version.

Second attempt, 2016, Denis Bider

78

ACCU 2023

First attempt: 2014, N4034, Pablo Halpern

Second attempt: 2016, P0023, Denis Bider

Third attempt: 2020, P1029, Niall Douglas

Adding trivial relocation to the
C++ Standard

79

P1029: move = bitcopies

https://wg21.link/p1029

Third attempt, 2020, Niall Douglas

https://wg21.link/p1029

80

• This proposal was partly motivated by a desire to optimise lightweight
exceptions.

• For more details, see the paper “Zero-overhead deterministic exceptions:
Throwing values” by Herb Sutter https://wg21.link/p0709

Third attempt, 2020, Niall Douglas

https://wg21.link/p0709

81

• This proposal suggests a mechanism to specify that the move constructor
can be performed by means of a memcpy.

• This causes the compiler to perform all move constructions using as-if
memcpy (i.e., the compiler is permitted to elide the copy if it is able to do so).

Third attempt, 2020, Niall Douglas

class A {
A(A &&) = bitcopies;

};

82

A type trait was proposed

which enables libraries to optimise based on trivial relocatability.

Third attempt, 2020, Niall Douglas

template is_move_constructor_bitcopying;

If a type T’s move constructor has = bitcopies compatible semantics
(which includes trivial copyability), the trait
std::is_move_constructor_bitcopying<T> shall be true.

83

• This proposal also includes a mechanism to delegate the decision-making to the
compiler.

Third attempt, 2020, Niall Douglas

class A {
A(A &&) = bitcopies(auto);

};

84

• An = bitcopies move requires two memcpy operations (although the
compiler may choose to elide one or both of these).

• Such a move is defined to be equivalent to the following:

Third attempt, 2020, Niall Douglas

// Copy bytes of src to dest
memcpy(dest, src, sizeof(Type));

// Copy bytes of constexpr default constructed
// instance to src
static constexpr Type default_constructed{};
memcpy(src, &default_constructed, sizeof(Type));

85

• There are a number of limitations on using move = bitcopies.

— All bases and members must be either trivially copyable or have an = bitcopies
move constructor.

— There must be no virtual inheritance.

— The type itself, as well as all bases and members, must have a constexpr default
constructor.

Third attempt, 2020, Niall Douglas

86

• So, not all trivially relocatable types can be given an = bitcopies move
constructor!

— This excludes, for example, std::list, which is permitted to allocate on construction.

— This also excludes, for example, anything that writes debug output to a log file on
construction.

Third attempt, 2020, Niall Douglas

87

• For various unrelated reasons, this proposal didn’t progress beyond the initial
paper.

Third attempt, 2020, Niall Douglas

88

First attempt: 2014, N4034, Pablo Halpern

Second attempt: 2016, P0023, Denis Bider

Third attempt: 2020, P1029, Niall Douglas

Fourth attempt: 2018-present, P1144, Arthur O’Dwyer

Fifth attempt: 2023-present, P2786, Alisdair Meredith &
Mungo Gill

Adding trivial relocation to the
C++ Standard

89

P1144: Object relocation in terms of move plus destroy
Arthur O’Dwyer
https://wg21.link/p1144r6

P2786: Trivial relocatability options
Alisdair Meredith & Mungo Gill
https://wg21.link/p2786

Note: As of revision 7, the title of P1144 has been changed to std::is_trivially_relocatable.

Fourth and fifth attempts, 2018-present

https://wg21.link/p1144r6
https://wg21.link/p2786

90

• P1144 has been under development since 2018.

• P2786 was first introduced during the WG21 2023 Issaquah meeting.

• Unlike the previous papers, these are still under consideration for possible
inclusion in the C++ Standard.

• As both proposals are very similar, we will discuss them together and then
talk about the differences.

Fourth and fifth attempts, 2018-present

91

• Both proposals focus almost entirely on the trivially relocatable case.

— Trivial relocation is less complicated than non-trivial relocation.

— Trivial relocation provides the greatest opportunities for optimisation compared to non-trivial
relocations.

• Both proposals agree that the object lifetime model will need to be addressed
to avoid reliance on technically undefined behaviour, involving changes to the
abstract machine.

Fourth and fifth attempts, 2018-present

92

• Neither proposal requires or relies upon any changes to the existing Standard
Library containers and algorithms.

• Both proposals have reference implementations (compiler and Standard
Library) either completed or in progress.

— The P1144 reference implementation is publicly available on https://godbolt.org, e.g., see
https://godbolt.org/z/1MzfsPGxd.

Fourth and fifth attempts, 2018-present

https://godbolt.org/
https://godbolt.org/z/1MzfsPGxd

93

• Both proposals agree that trivially copyable types are implicitly trivially
relocatable.

• Both proposals agree that, after relocating from an object, the destructor must not
be called for that object (now bereft of life); to do so leads to undefined behaviour.

— Relocating to or from an automatic variable is generally a bad idea, unless you really know
what you are doing.

• If a type is explicitly marked as trivially relocatable, but for that type move+destroy
is not equivalent to memcpy, then greater care is required as resulting behaviour
may not be what you intended.

Fourth and fifth attempts, 2018-present

94

• Both proposals provide type traits to enable library implementors to determine
trivial relocatability.

Fourth and fifth attempts, 2018-present

P1144 P2786
template< class T > struct
is_relocatable;

template< class T > struct
is_nothrow_relocatable;

template< class T > struct
is_trivially_relocatable;

template< class T > struct
is_trivially_relocatable;

95

• Both proposals provide a syntax to flag classes as trivially relocatable.

Fourth and fifth attempts, 2018-present

P1144 P2786
struct
[[trivially_relocatable(true)]]
C {

C(C&&);
~C();

};
static_assert(
is_trivially_relocatable_v<C>);

struct C
trivially_relocatable(true)
{

C(C&&);
~C();

};
static_assert(
is_trivially_relocatable_v<C>);

96

• Both proposals provide relocation functions although, as we will
show in a subsequent slide, they behave very differently.

Fourth and fifth attempts, 2018-present

P1144 P2786
template<class T>
T *relocate_at(T* source, T* dest);

template<class T>
T relocate(

T* source);

template<class T>
requires
(is_trivially_relocatable_v<T> &&

!is_const_v<T>)
void trivially_relocate(

T* begin,
T* end,
T* new_location) noexcept;

97

Fourth and fifth attempts, 2018-present
• Both also provide convenience functions.

P1144 P2786
template<class InputIterator,

class NoThrowFwdIterator>
NoThrowFwdIterator
uninitialized_relocate(

InputIterator first,
InputIterator last,
NoThrowFwdIterator result);

template<class InputIt, class Size,
class NoThrowFwdIt>

pair<InputIt, NoThrowFwdIt>
uninitialized_relocate_n(

InputIt first, Size n,
NoThrowFwdIt result);

template<class T>
requires
((is_trivially_relocatable_v<T> &&
!is_const_v<T>) ||
is_nothrow_move_constructible_v<T>)
T* relocate(

T* begin, T* end,
T* new_location)

NOTE: P1144’s relocate
and P2786’s relocate are

very different functions.
They just happen to have the
same name in both proposals.

98

Fourth and fifth attempts, 2018-present
• Both proposals provide automatic compiler detection of trivially relocatable types.

P1144
A object type T is a trivially relocatable type if it is:
— a trivially copyable type, or
— an array of trivially relocatable type, or
— a (possibly cv-qualified) class type declared with a [[trivially_relocatable]] attribute with value true, or
— a (possibly cv-qualified) class type which:

— has no user-provided move constructors or move assignment operators,
— has no user-provided copy constructors or copy assignment operators,
— has no user-provided destructors,
— has no virtual member functions,
— has no virtual base classes,
— all of whose members are either of reference type or of trivially relocatable type, and
— all of whose base classes are trivially relocatable.

99

Fourth and fifth attempts, 2018-present
• Both proposals provide automatic compiler detection of trivially relocatable types.

P2786 (This definition is currently being revised.)
A trivially relocatable class is a class that:
— has no base classes that are not of trivially relocatable type,
— has no non-static non-reference data members whose type is not a trivially relocatable type,
— has no virtual base classes,
— has no user-provided or deleted destructors,
— either has no trivially_relocatable predicate, or has a trivially_relocatable predicate that evaluates to

true,
— and either

— has a move constructor that is neither user-provided nor deleted, or
— has no move constructor and has a copy constructor that is neither user provided nor deleted.

100

• So, if they have so much in common, why are there two proposals
under consideration?

• Why are they different?

• (We will ignore any cosmetic stuff like function names and the
keyword vs. attribute question.)

Fourth and fifth attempts, 2018-2023

101

• P1144 is more focused on providing methods for higher-level language users.

— There are more utility functions.

— Iterator-based interfaces are provided.

— There is less implementation detail.

• P2768 is more focused on providing a low-level interface for library implementors.

— A key focus is on the implications for the abstract machine.

— Only one low-level interface and one optional utility function are provided.

Key differences: A difference in tone

102

• In P1144, the functions relocate_at (and relocate) will use
memcpy for trivially relocatable types but will fall back to using move
construction and destruction otherwise.

• In P2768, trivially_relocate will use memcpy for trivially
relocatable types and will fail to compile otherwise.

Key differences: Utility functions vs. a low-level interface

103

• P1144 supports relocation based on the public interface of a type.

— It is explicitly stated that relocation is equivalent to move+destroy.

— A type must have a public constructor and destructor.

• P2768 is instead based on the semantics of a type.

— Relocation is a primitive operation in the memory/object model.

— Constructors and destructors are not required to be public.

— Assignment operators have no bearing on the matter.

Key differences: Interface vs. semantics

104

• Types considered trivially relocatable under P2768 but not P1144 include

— polymorphic types.

— everything in pmr (i.e., types following scoped allocator model).

— const objects.

— (some) types with const data members.

• Types considered trivially relocatable under P1144 but not P2786 include

— objects with data members from third-party libraries where those types are not
marked as trivially relocatable.

Key differences: Examples

105

• P1144 is more dangerous but gives developers greater freedom.

— Marking a type trivially relocatable where that doesn’t make sense is ill formed but is not
required to generate any diagnostics and will result in undefined behaviour.

• P2768 is safer but more restrictive for developers.

— Marking a type trivially relocatable will result in a compile-time error where any members or
base classes are not trivially relocatable or where there is virtual inheritance.

Note: In the interests of openness I should point out that the author of P1144 disagrees with this
opinion of the relative safety of these proposals.

Key differences: Ill-formed code

106

• P1144 includes an assumption that, for a trivially relocatable type

— memcpy can be used in place of move-constructor relocation.

— memcpy can be used in place of assignment-operator relocation.

— memcpy can be used for swapping.

• P2768 assumes only the first of these.

• Note: The author of P1144 subsequently discussed the generic swap
question in blog posts at
https://quuxplusone.github.io/blog/2023/02/24/trivial-swap-x-prize/.

Key differences: What about assignment and std::swap?

https://quuxplusone.github.io/blog/2023/02/24/trivial-swap-x-prize/

107

Is relocation using the move constructor equivalent to relocation using
the assignment operator?

Key differences: What about assignment and std::swap?

Move constructor Assignment operator
// Destruct the destination.
destination->~Type();
// move construct
new(destination)

Type(std::move(*source));

// assign
*destination = *source;

108

Is relocation using the move constructor equivalent to relocation using
the assignment operator?

• For some types, this is generally NOT the case, such as

— types with const and/or reference members (such types are not assignable).

— types with non-propagating allocators, such as std::pmr::string, unless it can be
guaranteed that the source and target objects have the same allocator.

Key differences: What about assignment and std::swap?

109

Is relocation using the move constructor equivalent to relocation using
the assignment operator?

• For std::pmr::vector, we can safely assume that all members of that
vector have been constructed using the same allocator.

• Therefore, for P2786-style trivially relocatable types,

— it is perfectly safe to use memcpy to move elements around within a
std::pmr::vector or similarly allocator-aware container.

— we cannot assume this is safe in any other situation.

Key differences: What about assignment and std::swap?

110

• The papers’ authors will work together to reconcile their papers, where
possible.

• Commonalities and irreconcilable differences will be re-presented to the WG21
committee for further guidance.

• This process will not be quick, but we need to be confident we are doing the
right thing before changing the language Standard.

Fourth and fifth attempts – Next steps

111

• Enabling containers to use memcpy would be a valuable optimisation.

• Current libraries have workarounds, but they are not perfect and cannot be
perfect without language support.

• Over the last 9 years, three previous proposals and two current, ongoing
proposals indicate the need for adding support for trivial relocatability into the
language.

• Perhaps some combination of the two current attempts will make it into
C++26.

Conclusion

© 2023 Bloomberg Finance L.P. All rights reserved.

Thank you! Questions?
https://www.TechAtBloomberg.com/cplusplus

We are hiring: bloomberg.com/engineering

https://www.techatbloomberg.com/cplusplus
http://bloomberg.com/engineering

