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Being vulnerable …

I’m shy and introverted 
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everyone in the team commits 
at least once a day to Mainline 

every commit to Mainline 
triggers an automated build 
and execution of all 
automated tests

whenever the build fails it gets 
fixed within 10 min

Continuous 
Integration 

Test
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Continuous Integration is a practice to ensure always working 
software and to get feedback within a few minutes to whether any 
given change broke the application.

– Jez Humble
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14 practices
Team Working for CI

Coding for CI

Building for CI
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Team Work
for CI

1. Version Control Everything

2. Agree as a Team to never Break the Build

3. Do not Push to a Broken Build

4. When Broken Revert
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1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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Without Version Control:

● no single source of truth
● hard to rollback a deployment
● all other CI practices fall flat

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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First practice that requires a tool!

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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Version Control System is a 
communication tool.

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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From now on, our code in revision control 
will always build successfully and pass its 
tests.

– James Shore

1. Version Control Everything
2. Agree as a Team to never 

Break the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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From now on, our code in revision control 
will always build successfully and pass its 
tests.

– James Shore

1. Version Control Everything
2. Agree as a Team to never 

Break the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/


@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Stop the line, fix immediately

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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The whole team owns the failure

1. Version Control Everything
2. Agree as a Team to never 

Break the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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Precondition to 
Continuous Integration

Fix a broken build within 10 mins

Otherwise … 
a whole team at stand still
disables on-demand releases

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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Why 10 mins?

because Have a Fast Build

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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Coding
for CI

5. Make all changes in Small Increments

6. Commit Frequently

7. Commit Only on Green

8. Decouple the Codebase

9. Adopt Expand-Contract

10. Hide Unfinished Functionality
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Break large changes in a series of 
small incremental changes

=> keep the application always 
working

=> never tearing the application apart

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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This is hard work!

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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Continuous Integration
= integrate early and often

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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When not Committing Frequently

● introduce batch work
● integrating becomes 

time-consuming
● prevents communication 

with the team

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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When Committing Frequently

● changes are small
● merge conflicts are less likely
● reverting a failing change is easier

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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Gentle design pressure to …

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/


@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Only commit when
the Local Build says SUCCESS

=> Test Driven Development

1. Version Control Everything
2. Agree as a Team to never 

Break the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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Small increments 
requires a decoupled codebase

=> improves quality

=> reduces engineering time

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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Little unknown gem

Strong enabler for
Continuous Integration

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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What if a feature
takes too long to implement?

=> perfectly acceptable to have
unfinished functionality
in production

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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Feature Toggles

enabler of Operability and Resilience

but …

comes with their fair share of 
problems

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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Building
for CI

11. Automate the Build

12. Run a Local Build

13. Have a Vast Amount of Automated Tests

14. Have a Fast Build
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Build Script -> SUCCESS or FAILURE

Used by
Local Build and Commit Build

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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Second and last practice
that requires a tool!

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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Prevent broken build

=> run a Local private Build
before committing

1. Version Control Everything
2. Agree as a Team to never 

Break the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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Commit to Mainline
=> triggers the Commit Build

Monitor the Commit Build!

1. Version Control Everything
2. Agree as a Team to never 

Break the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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No tests = no feedback

=> cannot Commit Frequently

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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Gain confidence

● enough automated tests
● and of high-quality

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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Types of tests:
● Unit Tests
● Integration Tests
● Automated Acceptance Tests
● Smoke Tests

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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Commit Frequently

=> Fast Build

1. Version Control Everything
2. Agree as a Team to never 

Break the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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When the Build is slow

● not executing the Local Build
● execute the Local Build less often

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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What is fast?

● 10 min is the limit
● under 5 min is the focus 
● 30s is plain bonus for engineers

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
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Non Reliable Tests (aka Flaky Tests)

=> increases delivery lead time

Credits to Maaret Pyhäjärvi (@maaretp)

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
15. Have Reliable Tests
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How can we fix Flaky Tests?
=> put them in Quarantine

1. Version Control Everything
2. Agree as a Team to never Break 

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small 
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High 

Quality Automated Tests
14. Have a Fast Build
15. Have Reliable Tests
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Only two tools! ● Version Control System

● Automated build
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Where do we start?
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The Improvement Kata
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Continuous Integration
together with trunk-based development
predicts
higher throughput and quality.
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Hello, I am Thierry de Pauw
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