THE PRACTICES THAT MAKE
CONTINUOUS INTEGRATION

THIERRY DE PAUW .

http://thinkinglabs.io/

I:.k ThinkingLabs

Being vulnerable ...

I'm shy and introverted

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

http://thinkinglabs.io/

= ThinkingLabs

Feature Branching is Evil

Continuous Delivery Conference NL 2016
Thierry de Pauw, @tdpauw

@tdpauw thinkinglabs.io

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

http://thinkinglabs.io/

? Labs

Continuous
Integration
Test

@tdpauw
@tdpauw@masto don.social

http://thinkinglabs.io/
http://thinkinglabs.io/

<

Continuous Integration is a practice to ensure always working
software and to get feedback within a few minutes to whether any

given change broke the application.

- Jez Humble

@tdpauw
thinkinglabs.io

@tdpauw@mastodon.social

http://thinkinglabs.io/

? Labs

14 practices

@tdpauw
@tdpauw@mastodon.social

thinkinglabs.io

http://thinkinglabs.io/
http://thinkinglabs.io/

? Labs

Team Work
for C

000
'a R

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

http://thinkinglabs.io/
http://thinkinglabs.io/

iinkinoLabs
2. Agree as a Team to never Break

the Build
) allan kelly 3. Do not Push to a Broken BuilolO

@alankelgnes 4. Revert When Broken SR
Replying to @SteveSmith_Tech and @davefarley77 5. Make all Changes in Small
Historically | meet 1 team a year on average who aren't nerements
using version/source code control. Common reasons: - “Ommitrrequently
- very immature team 7. Commit Only on Green
-SQL 8. Decouple the Codebase
- PickOS derivative or ERM/CRM system 9. Adopt Expand-Contract </>

10. Hide Unfinished Functionality

Last category may even lack tooling 11. Automate the Build
5:34 PM - Nov 8, 2020 - Twitter Web App 12. Run a Local Build

13. Have a Vast Amount of High
Quality Automated Tests

@tdpauw 14. Have a Fast Build :(7)
@tdpauw@mastodon.social

http://thinkinglabs.io/

l:. ThinkingLabs

Without Version Control:

e no single source of truth
e hard to rollback a deployment
e all other Cl practices fall flat

@tdpauw
@tdpauw@mastodon.social

© N o

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Build
. Revert When Broken

R

. Make all changes in Small

Increments

Commit Frequently
Commit Only on Green
Decouple the Codebase

9. Adopt Expand-Contract ~ </>

10.

11.
12.
13.

14.

Hide Unfinished Functionality

Automate the Build
Run a Local Build

Have a Vast Amount of High
Quality Automated Tests

Have a Fast Build </>:

http://thinkinglabs.io/

I:.k ThinkingLabs

First practice that requires a tool!

@tdpauw
@tdpauw@mastodon.social

Ul

© N o

14.

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Build
. Revert When Broken

R

. Make all changes in Small

Increments

Commit Frequently

Commit Only on Green
Decouple the Codebase

Adopt Expand-Contract ~ </>

. Hide Unfinished Functionality

11.
12.
13.

Automate the Build
Run a Local Build

Have a Vast Amount of High
Quality Automated Tests

Have a Fast Build (/>:

http://thinkinglabs.io/

I:.k ThinkingLabs

Version Control System is a
communication tool.

@tdpauw
@tdpauw@mastodon.social

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Build
. Revert When Broken

R

. Make all changes in Small

Increments

Commit Frequently

Commit Only on Green
Decouple the Codebase

Adopt Expand-Contract ~ </>

. Hide Unfinished Functionality

. Automate the Build
. Run a Local Build
. Have a Vast Amount of High

Quality Automated Tests

. Have a Fast Build (/>:

http://thinkinglabs.io/

. Version Control Everything

. Agree as a Team to never
Break the Build

. Do not Push to a Broken Build

. Revert When Broken °°

. Make all changes in Small
Increments

. Commit Frequently

. Commit Only on Green

. Decouple the Codebase

. Adopt Expand-Contract ~ </>
. Hide Unfinished Functionality

. Automate the Build
. Run a Local Build

. Have a Vast Amount of High
Quality Automated Tests

. Have a Fast Build (,)

http://thinkinglabs.io/

. Version Control Everything

. Agree as a Team to never
Break the Build

. Do not Push to a Broken Build

R

. Revert When Broken

. Make all changes in Small
Increments

. Commit Frequently

. Commit Only on Green

. Decouple the Codebase

. Adopt Expand-Contract ~ </>
. Hide Unfinished Functionality

. Automate the Build
. Run a Local Build

. Have a Vast Amount of High
Quality Automated Tests

. Have a Fast Build (,)

http://thinkinglabs.io/

I:.k ThinkingLabs

Stop the line, fix immediately

@tdpauw
@tdpauw@mastodon.social

Ul

© N o

14.

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Buil
. Revert When Broken

R

. Make all changes in Small

Increments

Commit Frequently

Commit Only on Green
Decouple the Codebase

Adopt Expand-Contract ~ </>

. Hide Unfinished Functionality

11.
12.
13.

Automate the Build
Run a Local Build

Have a Vast Amount of High
Quality Automated Tests

Have a Fast Build (/>:

http://thinkinglabs.io/

I:. ThinkingLabs

The whole team owns the failure

@tdpauw
@tdpauw@mastodon.social

Ul

© N o

14.

. Version Control Everything
. Agree as a Team to never

Break the Build

. Do not Push to a Broken Buil
. Revert When Broken

o

. Make all changes in Small

Increments

Commit Frequently
Commit Only on Green
Decouple the Codebase

. Adopt Expand-Contract <[>
. Hide Unfinished Functionality

11.
12.
13.

Automate the Build
Run a Local Build

Have a Vast Amount of High
Quality Automated Tests

Have a Fast Build </>:

http://thinkinglabs.io/

I:.k ThinkingLabs

Precondition to
Continuous Integration

Fix a broken build within 10 mins

Otherwise ...
a whole team at stand still
disables on-demand releases

@tdpauw
@tdpauw@mastodon.social

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Build

R

Revert When Broken

Make all changes in Small
Increments

Commit Frequently

Commit Only on Green
Decouple the Codebase

Adopt Expand-Contract ~ </>
Hide Unfinished Functionality

. Automate the Build
. Run a Local Build
. Have a Vast Amount of High

Quality Automated Tests

. Have a Fast Build (/>:

http://thinkinglabs.io/

®

®

QiT hinkinolLabs

Why 10 mins?

because Have a Fast Build

@tdpauw
@tdpauw@mastodon.social

Ul

14.

. Revert When Broken

© N o

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Build

R

. Make all changes in Small

Increments

Commit Frequently
Commit Only on Green
Decouple the Codebase

. Adopt Expand-Contract <[>
. Hide Unfinished Functionality

11.
12.
13.

Automate the Build
Run a Local Build

Have a Vast Amount of High
Quality Automated Tests

Have a Fast Build <,>:

http://thinkinglabs.io/

? «inuLabs

Coding
for CI

<[>

@tdpauw
@tdpauw@mastodon.social

© © ® N o W

Make all changes in Small Increments
Commit Frequently

Commit Only on Green

Decouple the Codebase

Adopt Expand-Contract

Hide Unfinished Functionality

thinkinglabs.io

http://thinkinglabs.io/
http://thinkinglabs.io/

I:.k ThinkingLabs

Break large changes in a series of
small incremental changes

=> keep the application always
working

i s

© N o

0.

=> never tearing the application apart "

@tdpauw
@tdpauw@mastodon.social

11.
12.
13.

14.

. Revert When Broken

. Version Control Everything
. Agree as a Team to never Break

the Build
Do not Push to a Broken Build

R

Make all changes in Small
Increments

Commit Frequently

Commit Only on Green
Decouple the Codebase

Adopt Expand-Contract ~ </>
Hide Unfinished Functionality

Automate the Build
Run a Local Build

Have a Vast Amount of High
Quality Automated Tests

Have a Fast Build (/>>

http://thinkinglabs.io/

®

hinkingLabs 1. Version Control Everything
2. Agree as a Team to never Break
the Build

3. Do not Push to a Broken Build
4. Revert When Broken moo

o

Make all changes in Small
Increments

Commit Frequently

This is hard work! Commit Only on Green
Decouple the Codebase

9. Adopt Expand-Contract </>

10. Hide Unfinished Functionality

o N o

11. Automate the Build
12. Run a Local Build

13. Have a Vast Amount of High
Quality Automated Tests

@tdpauw 14. Have a Fast Build :<7>
@tdpauw@mastodon.social

http://thinkinglabs.io/

I:.k ThinkingLabs

Continuous Integration
= integrate early and often

@tdpauw
@tdpauw@mastodon.social

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Build

R

Revert When Broken

Make all changes in Small
Increments

Commit Frequently

Commit Only on Green
Decouple the Codebase

Adopt Expand-Contract ~ </>

. Hide Unfinished Functionality

. Automate the Build
. Run a Local Build
. Have a Vast Amount of High

Quality Automated Tests

. Have a Fast Build (/>:

http://thinkinglabs.io/

ThinkingLabs 1.
@ .

3

When not Committing Frequently :
e introduce batch work 6.
e integrating becomes 7.
time-consuming §

e prevents communication 10
with the team 1

12.

13.

14.

@tdpauw
@tdpauw@mastodon.social

. Revert When Broken

Version Control Everything

Agree as a Team to never Break
the Build

. Do not Push to a Broken Build

R

Make all changes in Small
Increments

Commit Frequently

Commit Only on Green
Decouple the Codebase

Adopt Expand-Contract ~ </>

. Hide Unfinished Functionality

. Automate the Build

Run a Local Build

Have a Vast Amount of High
Quality Automated Tests

Have a Fast Build (/>>

http://thinkinglabs.io/

I:.k ThinkingLabs

When Committing Frequently

e changes are small
e merge conflicts are less likely
e reverting a failing change is easier

@tdpauw
@tdpauw@mastodon.social

. Revert When Broken

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Build

R

5. Make all changes in Small

0o N o

10.

11.
12.
13.

14.

Increments

Commit Frequently

Commit Only on Green
Decouple the Codebase

Adopt Expand-Contract ~ </>
Hide Unfinished Functionality

Automate the Build
Run a Local Build

Have a Vast Amount of High
Quality Automated Tests

Have a Fast Build (/>>

http://thinkinglabs.io/

Gentle design pressure to ...

@tdpauw
@tdpauw@mastodon.social

(5]

© @ N o

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Build
. Revert When Broken Prgg

. Make all changes in Small

Increments

Commit Frequently

Commit Only on Green
Decouple the Codebase

Adopt Expand-Contract <[>

. Hide Unfinished Functionality

. Automate the Build
. Run a Local Build
. Have a Vast Amount of High

Quality Automated Tests

. Have a Fast Build </>:

http://thinkinglabs.io/

®

hinkingLabs 1. Version Control Everything
2. Agree as a Team to never
Break the Build

3. Do not Push to a Broken Build
4. Revert When Broken fﬁ\oo

. Make all changes in Small
Increments

. Commit Frequently

. Commit Only on Green

. Decouple the Codebase

. Adopt Expand-Contract <[>
. Hide Unfinished Functionality

Only commit when
the Local Build says SUCCESS

=> Test Driven Development

. Automate the Build
. Run a Local Build

. Have a Vast Amount of High
Quality Automated Tests

@tdpauw 14. Have a Fast Build :<7>
@tdpauw@mastodon.social

http://thinkinglabs.io/

Ii ThinkingLabs

Small increments
requires a decoupled codebase

=> improves quality

=> reduces engineering time

@tdpauw
@tdpauw@mastodon.social

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Build
. Revert When Broken

2R

Make all changes in Small
Increments

Commit Frequently
Commit Only on Green
Decouple the Codebase

. Adopt Expand-Contract <[>
. Hide Unfinished Functionality

. Automate the Build
. Run a Local Build
. Have a Vast Amount of High

Quality Automated Tests

. H F Buil
ave a Fast Build </>:

http://thinkinglabs.io/

hinkingLabs 1. Version Control Everything
2. Agree as a Team to never Break
the Build

3. Do not Push to a Broken Build
4. Revert When Broken rmoo

. Make all changes in Small
Little unknown gem Increments

. Commit Frequently

. Commit Only on Green

. Decouple the Codebase

. Adopt Expand-Contract </>

. Hide Unfinished Functionality

Strong enabler for
Continuous Integration

11. Automate the Build
12. Run a Local Build

13. Have a Vast Amount of High
Quality Automated Tests

@tdpauw 14. Have a Fast Build :<7>
@tdpauw@mastodon.social

http://thinkinglabs.io/

§

[
[]

®

@tdpauw

N ©

@tdpauw@mastodon.social

]

=(

—_—

Ul

0 N O

11.
12.
13.

14.

. Version Control Everything

. Agree as a Team to never Break
the Build

. Do not Push to a Broken Build

. Revert When Broken PP\‘%

. Make all changes in Small
Increments

. Commit Frequently

. Commit Only on Green

. Decouple the Codebase

. Adopt Expand-Contract </>

Hide Unfinished Functionality

Automate the Build
Run a Local Build
Have a Vast Amount of High

Quality Automated Tests
<</ >>

Have a Fast Build

http://thinkinglabs.io/

l:. ThinkingLabs

What if a feature
takes too long to implement?

=> perfectly acceptable to have
unfinished functionality
in production

@tdpauw
@tdpauw@mastodon.social

Ul

RN

10.

11.
12.
13.

14.

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Build
. Revert When Broken

R

. Make all changes in Small

Increments

. Commit Frequently

Commit Only on Green
Decouple the Codebase
Adopt Expand-Contract ~ </>
Hide Unfinished Functionality

Automate the Build
Run a Local Build

Have a Vast Amount of High
Quality Automated Tests

Have a Fast Build (,):

http://thinkinglabs.io/

I:.k ThinkingLabs

Feature Toggles

enabler of Operability and Resilience

but ...

comes with their fair share of
problems

@tdpauw
@tdpauw@mastodon.social

o o N o

14.

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Build
. Revert When Broken

R

Make all changes in Small
Increments

Commit Frequently

Commit Only on Green
Decouple the Codebase

Adopt Expand-Contract ~ </>

. Hide Unfinished Functionality

11.
12.
13.

Automate the Build
Run a Local Build

Have a Vast Amount of High
Quality Automated Tests

Have a Fast Build (/>:

http://thinkinglabs.io/

? Labs

Building
for CI

<</ >>

@tdpauw@masto don.social

http://thinkinglabs.io/
http://thinkinglabs.io/

ThinkingLabs 1.
@ .

. Do not Push to a Broken Build
. Revert When Broken

Version Control Everything

Agree as a Team to never Break
the Build

R

5. Make all changes in Small

Build Script -> SUCCESS or FAILURE

6
Used by ;
Local Build and Commit Build ;
10

@tdpauw
@tdpauw@mastodon.social

14.

Increments

. Commit Frequently

Commit Only on Green

. Decouple the Codebase
. Adopt Expand-Contract <[>
. Hide Unfinished Functionality

11.

13.

Automate the Build
Run a Local Build

Have a Vast Amount of High
Quality Automated Tests

Have a Fast Build </>:

http://thinkinglabs.io/

I:.k ThinkingLabs

Second and last practice
that requires a tool!

@tdpauw
@tdpauw@mastodon.social

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Build
. Revert When Broken

R

Make all changes in Small
Increments

Commit Frequently

Commit Only on Green
Decouple the Codebase

Adopt Expand-Contract ~ </>

. Hide Unfinished Functionality

. Automate the Build
. Run a Local Build
. Have a Vast Amount of High

Quality Automated Tests

. Have a Fast Build (/>:

http://thinkinglabs.io/

®

®

QiT hinkinolLabs

Prevent broken build

=>run a Local private Build

@tdpauw

before committing

@tdpauw@mastodon.social

14.

© ©®NO

11.
12.
13.

. Version Control Everything
. Agree as a Team to never

Break the Build

. Do not Push to a Broken Build
. Revert When Broken

R

. Make all changes in Small

Increments

Commit Frequently
Commit Only on Green
Decouple the Codebase

. Adopt Expand-Contract <[>

Hide Unfinished Functionality

Automate the Build
Run a Local Build

Have a Vast Amount of High
Quality Automated Tests

H F Buil
ave a Fast Build </>:

http://thinkinglabs.io/

L

®

QiT hinkinolLabs

Commit to Mainline
=> triggers the Commit Build

Monitor the Commit Build!

@tdpauw
@tdpauw@mastodon.social

. Version Control Everything

. Agree as a Team to never
Break the Build

. Do not Push to a Broken Build
. Revert When Broken 29%

. Make all changes in Small
Increments

Commit Frequently

Commit Only on Green
Decouple the Codebase

. Adopt Expand-Contract <[>
Hide Unfinished Functionality

© ©®NO

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests

14. Have a Fast Build </>:

http://thinkinglabs.io/

I:. ThinkingLabs

No tests = no feedback

=> cannot Commit Frequently

@tdpauw
@tdpauw@mastodon.social

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Build
. Revert When Broken

R

Make all changes in Small
Increments

Commit Frequently

Commit Only on Green
Decouple the Codebase

Adopt Expand-Contract <[>

. Hide Unfinished Functionality

. Automate the Build
. Run a Local Build
. Have a Vast Amount of High

Quality Automated Tests

. Have a Fast Build </>>

http://thinkinglabs.io/

I:. ThinkingLabs

Gain confidence

e enough automated tests
e and of high-quality

@tdpauw
@tdpauw@mastodon.social

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Build
. Revert When Broken

R

Make all changes in Small
Increments

Commit Frequently

Commit Only on Green
Decouple the Codebase

Adopt Expand-Contract <[>

. Hide Unfinished Functionality

. Automate the Build
. Run a Local Build
. Have a Vast Amount of High

Quality Automated Tests

. Have a Fast Build </>>

http://thinkinglabs.io/

I:. ThinkingLabs

Types of tests:
Unit Tests

Smoke Tests

@tdpauw
@tdpauw@mastodon.social

Integration Tests
Automated Acceptance Tests

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Build
. Revert When Broken

R

Make all changes in Small
Increments

Commit Frequently

Commit Only on Green
Decouple the Codebase

Adopt Expand-Contract <[>

. Hide Unfinished Functionality

. Automate the Build
. Run a Local Build
. Have a Vast Amount of High

Quality Automated Tests

. Have a Fast Build </>>

http://thinkinglabs.io/

ThinkinoLabs 1

)
A

Ul

Commit Frequently

=> Fast Build

@tdpauw
@tdpauw@mastodon.social

© N o

. Version Control Everything
. Agree as a Team to never

Break the Build

. Do not Push to a Broken Build
. Revert When Broken moo

. Make all changes in Small

Increments

Commit Frequently
Commit Only on Green
Decouple the Codebase

. Adopt Expand-Contract ~ </>
. Hide Unfinished Functionality

. Automate the Build
. Run a Local Build
. Have a Vast Amount of High

Quality Automated Tests

. H F Buil
ave a Fast Build (/>:

http://thinkinglabs.io/

I:.k ThinkingLabs

When the Build is slow

e not executing the Local Build
e execute the Local Build less often

@tdpauw
@tdpauw@mastodon.social

. Revert When Broken

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Build

R

Make all changes in Small
Increments

Commit Frequently

Commit Only on Green
Decouple the Codebase

Adopt Expand-Contract ~ </>

. Hide Unfinished Functionality

. Automate the Build
. Run a Local Build
. Have a Vast Amount of High

Quality Automated Tests

.H F Buil
ave a Fast Build (/>:

http://thinkinglabs.io/

®

QI'TninkingLabs

What is fast?

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE’S COMPILING.”

HEY! GET BACK
TO WORK!
D,

= = [COMPILING!

e 10 minis the limit
e under 5 min is the focus
e 30s is plain bonus for engineers

@tdpauw
@tdpauw@mastodon.social

1. Version Control Everything

2. Agree as a Team to never Break
the Build

3. Do not Push to a Broken Build
4. Revert When Broken moo

5. Make all changes in Small
Increments

6. Commit Frequently

7. Commit Only on Green

8. Decouple the Codebase

9. Adopt Expand-Contract ~ </>
10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build

13. Have a Vast Amount of High
Quality Automated Tests

14. H F Buil
ave a Fast Build </>:

http://thinkinglabs.io/

I:.k ThinkingLabs

Non Reliable Tests (aka Flaky Tests)

=> increases delivery lead time

Credits to Maaret Pyhajarvi (@maaretp)

@tdpauw
@tdpauw@mastodon.social

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Build
. Revert When Broken

R

Make all changes in Small
Increments

Commit Frequently

Commit Only on Green
Decouple the Codebase

Adopt Expand-Contract ~ </>

. Hide Unfinished Functionality

. Automate the Build
. Run a Local Build
. Have a Vast Amount of High

Quality Automated Tests

. Have a Fast Build
i <</>>
Have Reliable Tests

http://thinkinglabs.io/
https://twitter.com/maaretp

I:.k ThinkingLabs

How can we fix Flaky Tests?
=> put them in Quarantine

@tdpauw
@tdpauw@mastodon.social

. Version Control Everything
. Agree as a Team to never Break

the Build

. Do not Push to a Broken Build
. Revert When Broken

R

Make all changes in Small
Increments

Commit Frequently

Commit Only on Green
Decouple the Codebase

Adopt Expand-Contract ~ </>

. Hide Unfinished Functionality

. Automate the Build
. Run a Local Build
. Have a Vast Amount of High

Quality Automated Tests

. Have a Fast Build
i <</>>
Have Reliable Tests

http://thinkinglabs.io/

? Labs

Only two tools!

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

http://thinkinglabs.io/
http://thinkinglabs.io/

T hinkingLabs

Adopt Expand-
Contract

I

'

B Make all
~ Changes in Small
Increments
| T —

|
Have a Fast
" Build

o
«

@tdpauw
@tdpauw@mastodon.social

Decouple the Hide Unfinished
Code Base Functionality

v
-

Have a Vast Amount

of High-Quality
Automated Tests

Adapted from Michael Lihs (@kaktusmimi), ThoughtWorks

Version Control
Everything

thinkinglabs.io

http://thinkinglabs.io/

®

B

QiT hinkinolLabs

Where do we start?

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

http://thinkinglabs.io/

? «inuLabs

The Improvement Kata

VNDERSTAND THE
). DlrecTioNn ok
CHALLENGE

ESTABLISH YOUR
B, WNEexT TARGET
CONDITION

N

S \. ¢ CONDUCT EXPERIMENTS

° TO GET THERE

GRASP THE
2. CVRRENT
CONDITION

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

http://thinkinglabs.io/

I:. ThinkingLabs

Continuous Integration

together with trunk-based development
predicts

higher throughput and quality.

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

http://thinkinglabs.io/

'.Thinking

Hello, | am Thierry de Pauw

The article series: The Practices that make Continuous Integration

https://thinkinglabs.io/the-practices-that-make-continuous-integration

Acknowledgments:

Els, the one | love!

Lisi Hocke (), Seb Rose () and Steve Smith () for their
thorough reviews of the article series.
Martin Van Aken (), Martin DUrrmeier (), Aki Salmi),
Nelis Boucke (), Karel Bernolet () for reviewing the slides.

@tdpauw

@tdpauw@mastodon.social thinkinglabs.io

http://thinkinglabs.io/
http://thinkinglabs.io/
https://twitter.com/lisihocke
https://twitter.com/sebrose
https://twitter.com/SteveSmith_Tech
https://twitter.com/martinvanaken
https://twitter.com/md42
https://twitter.com/rinkkasatiainen
https://twitter.com/nelisboucke
https://twitter.com/BernoletKarel
https://thinkinglabs.io/the-practices-that-make-continuous-integration

