
@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Being vulnerable …

I’m shy and introverted

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.iothinkinglabs.io

everyone in the team commits
at least once a day to Mainline

every commit to Mainline
triggers an automated build
and execution of all
automated tests

whenever the build fails it gets
fixed within 10 min

Continuous
Integration

Test

http://thinkinglabs.io/
http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Continuous Integration is a practice to ensure always working
software and to get feedback within a few minutes to whether any
given change broke the application.

– Jez Humble

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.iothinkinglabs.io

14 practices
Team Working for CI

Coding for CI

Building for CI

http://thinkinglabs.io/
http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.iothinkinglabs.io

Team Work
for CI

1. Version Control Everything

2. Agree as a Team to never Break the Build

3. Do not Push to a Broken Build

4. When Broken Revert

http://thinkinglabs.io/
http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Without Version Control:

● no single source of truth
● hard to rollback a deployment
● all other CI practices fall flat

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

First practice that requires a tool!

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Version Control System is a
communication tool.

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

From now on, our code in revision control
will always build successfully and pass its
tests.

– James Shore

1. Version Control Everything
2. Agree as a Team to never

Break the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

From now on, our code in revision control
will always build successfully and pass its
tests.

– James Shore

1. Version Control Everything
2. Agree as a Team to never

Break the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Stop the line, fix immediately

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

The whole team owns the failure

1. Version Control Everything
2. Agree as a Team to never

Break the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Precondition to
Continuous Integration

Fix a broken build within 10 mins

Otherwise …
a whole team at stand still
disables on-demand releases

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Why 10 mins?

because Have a Fast Build

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.iothinkinglabs.io

Coding
for CI

5. Make all changes in Small Increments

6. Commit Frequently

7. Commit Only on Green

8. Decouple the Codebase

9. Adopt Expand-Contract

10. Hide Unfinished Functionality

http://thinkinglabs.io/
http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Break large changes in a series of
small incremental changes

=> keep the application always
working

=> never tearing the application apart

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

This is hard work!

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Continuous Integration
= integrate early and often

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

When not Committing Frequently

● introduce batch work
● integrating becomes

time-consuming
● prevents communication

with the team

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

When Committing Frequently

● changes are small
● merge conflicts are less likely
● reverting a failing change is easier

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Gentle design pressure to …

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Only commit when
the Local Build says SUCCESS

=> Test Driven Development

1. Version Control Everything
2. Agree as a Team to never

Break the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Small increments
requires a decoupled codebase

=> improves quality

=> reduces engineering time

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Little unknown gem

Strong enabler for
Continuous Integration

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

What if a feature
takes too long to implement?

=> perfectly acceptable to have
unfinished functionality
in production

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Feature Toggles

enabler of Operability and Resilience

but …

comes with their fair share of
problems

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.iothinkinglabs.io

Building
for CI

11. Automate the Build

12. Run a Local Build

13. Have a Vast Amount of Automated Tests

14. Have a Fast Build

http://thinkinglabs.io/
http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Build Script -> SUCCESS or FAILURE

Used by
Local Build and Commit Build

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Second and last practice
that requires a tool!

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Prevent broken build

=> run a Local private Build
before committing

1. Version Control Everything
2. Agree as a Team to never

Break the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Commit to Mainline
=> triggers the Commit Build

Monitor the Commit Build!

1. Version Control Everything
2. Agree as a Team to never

Break the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

No tests = no feedback

=> cannot Commit Frequently

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Gain confidence

● enough automated tests
● and of high-quality

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Types of tests:
● Unit Tests
● Integration Tests
● Automated Acceptance Tests
● Smoke Tests

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Commit Frequently

=> Fast Build

1. Version Control Everything
2. Agree as a Team to never

Break the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

When the Build is slow

● not executing the Local Build
● execute the Local Build less often

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

What is fast?

● 10 min is the limit
● under 5 min is the focus
● 30s is plain bonus for engineers

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Non Reliable Tests (aka Flaky Tests)

=> increases delivery lead time

Credits to Maaret Pyhäjärvi (@maaretp)

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build
15. Have Reliable Tests

http://thinkinglabs.io/
https://twitter.com/maaretp

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

How can we fix Flaky Tests?
=> put them in Quarantine

1. Version Control Everything
2. Agree as a Team to never Break

the Build
3. Do not Push to a Broken Build
4. Revert When Broken

5. Make all changes in Small
Increments

6. Commit Frequently
7. Commit Only on Green
8. Decouple the Codebase
9. Adopt Expand-Contract

10. Hide Unfinished Functionality

11. Automate the Build
12. Run a Local Build
13. Have a Vast Amount of High

Quality Automated Tests
14. Have a Fast Build
15. Have Reliable Tests

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.iothinkinglabs.io

Only two tools! ● Version Control System

● Automated build

http://thinkinglabs.io/
http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Where do we start?

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

The Improvement Kata

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.io

Continuous Integration
together with trunk-based development
predicts
higher throughput and quality.

http://thinkinglabs.io/

@tdpauw
@tdpauw@mastodon.social thinkinglabs.iothinkinglabs.io
@tdpauw
@tdpauw@mastodon.social

Hello, I am Thierry de Pauw

Acknowledgments:

Els, the one I love!

Lisi Hocke (@lisihocke), Seb Rose (@sebrose) and Steve Smith (@SteveSmith_Tech) for their
thorough reviews of the article series.

Martin Van Aken (@martinvanaken), Martin Dürrmeier (@md42), Aki Salmi (@rinkkasatiainen),
Nelis Boucke (@nelisboucke), Karel Bernolet (@BernoletKarel) for reviewing the slides.

The article series: The Practices that make Continuous Integration

https://thinkinglabs.io/the-practices-that-make-continuous-integration

http://thinkinglabs.io/
http://thinkinglabs.io/
https://twitter.com/lisihocke
https://twitter.com/sebrose
https://twitter.com/SteveSmith_Tech
https://twitter.com/martinvanaken
https://twitter.com/md42
https://twitter.com/rinkkasatiainen
https://twitter.com/nelisboucke
https://twitter.com/BernoletKarel
https://thinkinglabs.io/the-practices-that-make-continuous-integration

