
Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Template Meta-State Machines, Shannon,
Madness...

J.M.McGuiness1

1accuconf2023@hussar.me.uk

ACCU Conference, Bristol, 2023
Version: 8ccc1

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

mailto:accuconf2023@hussar.me.uk

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Outline
1 Introduction: Problem Statement.

Template Meta-State Machines, Shannon, Madness? Eh?
Methodology: A simple FIX-to-MIT protocol translator.

2 The Adventure Begins...
Reflections on computed-GOTO.

3 The components in more detail.
The template meta-programming madness...
What about the hash?

4 Results.
Methodology.
Results: generated code & histograms, reflections.

5 Conclusions.
6 Epilogue.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Template Meta-State Machines, Shannon, Madness? Eh?
Methodology: A simple FIX-to-MIT protocol translator.

A very simple piece of code...

Why is this instruction sequence so interesting?

GOTO considered harmful[1]:
CALL QWORD PTR [BASE+STRIDE*STATE]
STATE input, branch-target is Transition.

Because it is at the heart of a state machine.
This may be generated as an if-else chain.
But this could impact the branch-predictor.

The instruction timing for a computed-GOTO is excellent in
modern super-scalar architectures vs mis-prediction of a
branch:

1-2 clock cycles vs O (20) estimated from the depth of the
pipeline ≈ 20 stages[2], the cost of a pipeline restart.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Template Meta-State Machines, Shannon, Madness? Eh?
Methodology: A simple FIX-to-MIT protocol translator.

How to compute the STATE?

We shall leave aside the computation of the BASE and the
STRIDE as they are more easy to compute.
The STATE may be more complex: because this may be
random, not sequential.

Thus a perfect, preferably minimal hash should be generated.
Information Entropy, elucidated by Shannon, means there is no
general solution...
Persevere: generation of the hash shall be attempted despite
those issues...

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Template Meta-State Machines, Shannon, Madness? Eh?
Methodology: A simple FIX-to-MIT protocol translator.

Problem statement.

1 We shall generate computed-GOTOs.
2 No amount of effort shall be sacrificed to attain point 1, above.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Template Meta-State Machines, Shannon, Madness? Eh?
Methodology: A simple FIX-to-MIT protocol translator.

Methodology for the investigation.

1 We need to identify a suitable code-base for this:
1 In this case I chose the FIX-to-MIT translator[3] as the

contained meta state-machines are suitable.
(Upon which I have previously much presented.)

2 Modifications to the code-base shall be made to permit
comparative testing.

1 Computed-GOTO vs. a “naïve” meta state-machine that has
been implemented with if-else chains.

2 The results shall be statistically significant.
3 Using computed-GOTO s shall have ramifications.

Which shall be discussed, later.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Template Meta-State Machines, Shannon, Madness? Eh?
Methodology: A simple FIX-to-MIT protocol translator.

Results of the investigation.

1 Histograms of the if-else vs computed-GOTO performance
shall be presented.

1 And discussion of these in detail...
2 A detailed, subjective review of the code that had to be added:

1 including reviewing the comprehensibility, maintainability and
impact on compile-time.

3 Finally, conclusions shall be presented drawn from these
analyses.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Template Meta-State Machines, Shannon, Madness? Eh?
Methodology: A simple FIX-to-MIT protocol translator.

A low-latency, HFT FIX-to-MIT/BIT translator?
In trading systems one has this simplified process:

Messages sent from a client to an exchange.
This involves a state machine.

Messages sent from an exchange back to a client.
Likewise this includes a state machine.

Both state machines are on the hot path.
My numerous previous presentations regarding low-latency
optimisations and HFT [3] in C++ motivated this investigation
regarding writing the fastest meta state-machine possible...

To such an extreme that there would no longer be statistically
significant performance differences!

Why, oh why?
The adventure of writing the code to implement this was
beyond anything one may ever wish to sensibly do...

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Template Meta-State Machines, Shannon, Madness? Eh?
Methodology: A simple FIX-to-MIT protocol translator.

BEWARE!

This is not a talk about how to optimise code that has not yet
been optimised!

Premature optimisation is the root of all evil[4]!
This talk certainly verges on that...

Ensure that one has run one’s preferred profiler, etc,
beforehand.

Heed Amdahl’s Law[5].
Code should be: comprehensible, maintainable & compile
reasonably quickly.

The code presented here, in my opinion, verges on failing all of
those requirements!

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Reflections on computed-GOTO.

The impact of the runtime STATE.
constrained_override_type

The target address is all that is known about the destination
object, the Transition.
Specifically, run-time STATE shall cause a jump to the related
Transition::process(...):

in a generic manner if a generic state machine is to be used,
effectively that STATE should be an index operation into a
collection of Transitions,
generality shall be provided by generating wrappers for
Transition::process(...),

the types of the parameters to process(...) must be
recovered to permit overloading resolution,

the state machine that was implemented was based upon the
Boost “Meta State Machine”[6].

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Reflections on computed-GOTO.

The transitions - BASE & STRIDE.
(Inspired by discussions with Vladimir Arnost.)
unordered_tuple

We shall need a collection of Transitions into which the STATEs
index.

It was chosen to implement this as a buffer of
alignas(STRIDE) std::array<std::byte,...>
into which the Transitions shall be placement-new’d.
Thus the BASE & STRIDE may be computed at compile-time.
This collection will require a suitable operator[] indexed by
the input STATE.

The STATEs shall need hashing... More later...

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Beware the angle-bracket, my son...
Much has been written on the pitfalls relating to unconstrained
abuse of template meta-programming in C++, amongst such
luminaries as:

“Henney’s Hypothesis”[7]:
For each additional template parameter, the potential num-
ber of users is halved.

I have many of these, in some cases unbounded sets...
“Template Metaprogramming Made Easy (Huh?)” by Bartosz
Milewski[8]:

... Big part of it is that C++ templates are rather ill suited
for metaprogramming, to put it mildly. ...

This presentation contains many such sins...
You have been warned...

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Schematic design of computed-GOTO meta state-machine.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

The unordered_tuple.

The purpose of this class is to contain all of the transitions:

Schematic of unordered_tuple.
template<class TransitionBase, class Hasher, class... Transitions>
class unordered_tuple {
public:

constexpr size_t max_size = ...;
constexpr size_t stride = ...;
TransitionBase &operator[](state_type state) {

auto base = wrapped_transitions.data();
auto offset = Hasher(state)*stride;
return reinterpret_cast<TransitionBase &>(base+offset);

}
private:

alignas(stride)
std::array<std::byte, max_size> wrapped_transitions{};

};

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Notes: unordered_tuple.

TransitionBase: base class common to all Transitions. Shall
be supplied by constrained_override_type as
abstract_base_type.

Hasher: hashing algorithm applied to the set of STATEs
contained in the Transitions. More details later...

Transitions: The set of Transitions to be contained. Each of
which has a copy of the STATE as a value. Each
Transition wrapped by a
constrained_override_type from the
meta_state_machine.

wrapped_transitions: The set of Transitions is
placement-new’d into a buffer of suitable alignment &
size. Placed with a stride of STRIDE.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Why constrained_override_type?
Warning it is just syntactic sugar!

Consider a naïve if-else implementation of a state machine:

example if-else implementation.
state_type msm::process(state_type state, Params... &&p) {

if (state == NEW_ORDER) {
return new_order_transition.process(p...);

} else if (state == ORDER_CANCEL) {
...
}

vs:

example computed-GOTO implementation.
state_type msm::process(state_type state, Params... &&p) {

return transitions[state].process(p...);
}

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Discussion of why constrained_override_type?
In the if-else implementation we know the exact transition
to call, thus the type and number of parameters at
compile-time.
Whereas in the computed-GOTO implementation some form of
interface class must be called, as the STATE is only known at
run-time.

Therefore the process() method must be provided by some
form of base class.
But the parameters to it may vary or be of disparate types...!
C++ does not support virtual, template member-functions!
One cannot write:

virtual, templated member-functions - no!
struct foo {

template<class... Params>
::::::
virtual void bar(Params... p);

};

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Purposes: constrained_override_type.
1 Supply a suitable abstract base class for each of the

Transitions with suitable declarations of pure-virtual
process() methods obtained from each particular
Transition.

2 From those base classes, aggregate them in an inheritance
chain to compute a TransitionBase abstract base class for
the unordered_tuple TransitionBase class.

3 Create wrappers for each Transition so that the wrapper
may inherit from the abstract base class so generated and the
Transition it will wrap. These wrappers may then be passed
to the unordered_tuple.

4 In reality this is overly general for these needs, but I wanted to
generalise... Oops...

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Notes: constrained_override_type.

As C++ does not yet support reflection, the previous points 1 & 3
imply that each Transition must supply some kind of type that
lists the return type and parameter types for each declaration of
process() within each Transition, termed ProcessFns in the
following examples.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Components: constrained_override_type.

We need to generate the pure-virtual methods with the correct
declarations for the ProcessFns of the Transition:

Schematic of abstract_type_unroller - base case.
template<class RetT, class... Params>
struct abstract_type_unroller<member_function_type<RetT, Params...>>
: ultimate_base_type {

::::::
virtual

:::::
RetT

::::::::::::
process(Params

:::::::
...&&p)

:::::
const

::::::::::::::
noexcept(false)

::
=

::
0;

::::::
virtual

:::::
RetT

::::::::::::
process(Params

:::::::
...&&p)

::::::::::::::
noexcept(false)

:
=
:::
0;

};

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Components: constrained_override_type.
Now generate the remaining pure-virtual methods for the
ProcessFns of the Transition:

Schematic of abstract_type_unroller - generate the rest.
template<class RetT, class... Params, class... ProcessFns>
... abstract_type_unroller<member_function_type<RetT, Params...>,

ProcessFns...> : abstract_type_unroller<ProcessFns...> {
using base_type::base_type;
:::::
using

:::::::::::::::::
base_type::process;

::::::
virtual

:::::
RetT

::::::::::::
process(Params

:::::::
...&&p)

:::::
const

::::::::::::::
noexcept(false)

::
=

::
0;

::::::
virtual

:::::
RetT

::::::::::::
process(Params

:::::::
...&&p)

::::::::::::::
noexcept(false)

:
=
:::
0;

};

Declare a type that shall be the abstract base class containing all
the pure-virtual methods:

using abstract_base_type = abstract_type_unroller<Transitions...>;
using TransitionBase = abstract_base_type;

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Components: constrained_override_type.
We now need a class that has an is-a Transition for which the
ProcessFns may be called:

Schematic of concrete_type - base case.
template<class abstract_base_type, class Transition, class RetT,
class... Params>
struct concrete_type<abstract_base_type, Transition,
member_function_type<RetT, Params...>>
: Transition, abstract_base_type {

template<class... Args>
explicit concrete_type(Args &&...args) noexcept(...)
: Transition(std::forward<Args>(args)...), abstract_base_type() {
}
RetT process(Params &&...p) const noexcept(...) override {

return this->Transition::process(std::forward<Params>(p)...);
}
RetT process(Params &&...p) noexcept(...) override {

return this->Transition::process(std::forward<Params>(p)...);
}

};

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Components 1/2: constrained_override_type.

Now generate the rest for all of the Transitions:

Schematic of concrete_type - generate the rest.
template<class abstract_base_type, class Transition, class RetT,
class... Params, class... ProcessFns>
struct concrete_type<abstract_base_type,
member_function_type<RetT, Params...>, ProcessFns...>
: concrete_type<abstract_base_type, Transition, ProcessFns...> {

using
base_t = concrete_type<abstract_base_type, Transition, ProcessFns...>;

using base_t::base_t;
using base_t::process;
RetT process(Params &&...p) const noexcept(...) override {

return this->Transition::process(std::forward<Params>(p)...);
}
RetT process(Params &&...p) noexcept(...) override {

return this->Transition::process(std::forward<Params>(p)...);
}

};

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Components 2/2: constrained_override_type.

Declare an equivalent type that shall be the concrete class
containing all the overridden wrappers for the
Transition::process() methods:

template<class T>
struct finalizer final : T {

using T::T;
};
using final_concrete_type =
finalizer<concrete_type<abstract_base_type, Transitions...>>;

Compare to abstract_base_type, above.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Reflections 1/2: constrained_override_type.

The final_concrete_type may be used inside unordered_tuple
to supply the process() methods that should be called according
to the STATEs in a type-safe manner.

Ultimately, the generated concrete_type has been
inherited-from with the final keyword to remove all
virtual-function calls by finalizer<T>. The fact that all of
the types are fully defined before use is also vital for this.
We have now recovered the type information for the return
and parameter types for each of the
Transition::process()’s, so they may be called safely.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Reflections 2/2: constrained_override_type.

This requires that each Transition defines
signatures_types (ProcessFns) that contains the return
and parameter types for each Transition::process()
declared:

using signatures_types = std::pair<
return_type, // N.B. all process() methods return the same type.
std::tuple<

std::tuple<first_parameter_for_first_overload, ...>,
std::tuple<first_parameter_for_second_overload, ...>

>
>;

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Introducing schematic of: meta_state_machine.

template<class StateTransitionTable>
struct machine {

using states_type = typename StateTransitionTable::states_type;
template<class... Args> machine(Args &&...args) noexcept(...);
template<class... Params> states_type
process(states_type state, Params &&...p) const noexcept(...) {

return
:::::::::::::::::
table[state].process(std::forward<Params>(p)...);

}
template<class... Params> states_type
process(states_type state, Params &&...p) noexcept(...) {

return
:::::::::::::::::
table[state].process(std::forward<Params>(p)...);

}
StateTransitionTable table;

};

The chief item of interest is the StateTransitionTable: it combines the
unordered_tuple & constrained_override_type.

U.B. would happen if the wrong Transition were called via a valid, but
mis-computed hash of a STATE...

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Schematic details of: StateTransitionTable.

template<class... Transitions>
using StateTransitionTable = unordered_tuple<

states_type,
wrapped_first_row_t::abstract_base_type,
perfect_hash<get_state_as_hash<Transitions>::value...>,
wrapped_first_row_t::template final_type<Transition>,
detuple_make_rows<

Transitions,
make_row_wrappers_t<Transitions::signatures_types...>::type

>::type...
>;

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Notes for: StateTransitionTable.

abstract_base_type: introduced earlier in the discussion
regarding constrained_override_type.

perfect_hash: the generated hasher that shall be discussed in the
next section...

make_row_wrappers_t: a meta-function that extracts the details
from signatures_types for use by...

detuple_make_rows: wraps the ProcessFns in each Transition
in the StateTransitionTable with a
constrained_override_type:

template<Transition>
using detuple_make_row =
constrained_override_type::result_type<Transition>;

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Schematic exchange to client: meta_state_machine.

using StateTransitionTable = rows<
row<

ServerHeartbeat_t::static_type,
just_send_to_client<ClientHeartbeat_t>, // Example

Transition.
ClientHeartbeat_t::static_type

>,
row<

ExecutionReport_t::static_type,
ExecutionReportResponse, // Example Transition.
ExecutionReportResponse::exit_values

>,
...,
row<

MsgTypes_t::MatchAll,
send_specified_msg<Reject_t>, // Example Transition.
Reject_t::static_type

>>;

Note that the definitions of rows and row have been omitted for
brevity, see [3] for more details.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

The hashing algorithm: requirements.
We know the discreet set of STATEs a posteriori: it is part of
the MIT specifications[9].
A perfect hash is required, preferably minimal.
The generated hash-function must have as few instructions as
possible.

Existing hash-generators such as gperf[10] do not fit all of the
above criteria.

The generated hash functions are many lines of assembly, we
require � 20 instructions.

We need to create a generator for this highly-optimised hash
algorithm.

Minor relaxation: the hashing need not be stable in the sense
of order of the STATEs in the domain.

Generated hash-function shall be checked to ensure no
collisions.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

The hashing algorithm: requirements.
We know the discreet set of STATEs a posteriori: it is part of
the MIT specifications[9].
A perfect hash is required, preferably minimal.
The generated hash-function must have as few instructions as
possible.

Existing hash-generators such as gperf[10] do not fit all of the
above criteria.

The generated hash functions are many lines of assembly, we
require � 20 instructions.

We need to create a generator for this highly-optimised hash
algorithm.

Minor relaxation: the hashing need not be stable in the sense
of order of the STATEs in the domain.

Generated hash-function shall be checked to ensure no
collisions.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

The xor_modulo_hash algorithm: design.
(Inspired by discussions with Dr. Richard A. Harris[11], deceased.)

size_t xor_modulo_hash(state_type state, uint64_t seed,
size_t denominator) {

return (state ^ seed) % denominator;
}

^ operation: the seed shuffles the bits in the STATE so in a
sense adds extra entropy to the algorithm.

Brute-force search attempts to find an acceptable seed
(enumerates domain of all seeds).

% operation: constrains the output of the algorithm, also:
Range is [0, . . . ,denominator), i.e. how minimal hash shall be.
Experimentation: denominator must be odd.
Strength reduction: optimise potentially very slow %.

Fixed {seed, denominator} instantiates a hash function,
written to a C++ header-file.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Generating the seed and denominator, 1/3.

Surprisingly slow: on my AMD Ryzen 9 3900 at over 4GHz it
can take over 15 minutes.

No surprise as brute-force!
Searching for the seed is embarrassingly parallel:

Developed find_first_of(...) a data-parallel algorithm as
part of PPD[12]: it searches the input domain [start, ...,end)
to find a suitable seed for a suitable predicate.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Generating the seed and denominator, 2/3.
May never find a suitable seed with a sufficiently small
denominator for the set of input STATEs.

1 A perfect, minimal hash ∀ sets of STATEs input does not exist.
The entropy added by the seed and denominator will be
inadequate for the majority of inputs.
Shannon: there is only so much information in the inputs and
a very constrained amount of entropy that may be added in
the xor_modulo_hash algorithm.
One may need a different algorithm.
For the same denominator the smallest seed was used.
If a seed of 0 found we should use that optimisation!

2 Experimentation revealed that usually a
denominator> (n+1) was required, where n is the number
of STATEs input, i.e. a classic space-time trade-off.

Collision-free hash has been guaranteed by design as the
unordered_tuple has no collision-avoidance mechanism.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

The template meta-programming madness...
What about the hash?

Generating the seed and denominator, 3/3.
1 Experience indicates that ∀ inputs required, solutions were

always found.
2 The build may fail because generating the hash for the

set of STATEs may fail!
3 Note that the compiler is very unlikely to generate this for us:

1 The set of STATEs are effectively random numbers: the MIT
specifications have been bizarre in this regard.

Oh! Would it be moot if exchanges just used Natural
numbers...

2 Usually the transformation goes something like: if-else to
switch, then analyse the switch to see if a computed-GOTO
may be generated (only simple cases) or use bisection then
cluster then table or recurse otherwise if-else.

3 Avoids “there ain’t no such thing as a general, minimal, and
perfect hash” by “bisection with divide-and-conquer”.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Test 1: Micro-benchmark: methodology.

Implements a cut-down version of the FIX-to-MIT/BIT
Translator (more later) client-to-exchange, meta
state-machine:

Has all of the correct values for the STATEs,
Same number of Transitions, but highly simplified.

A comparison of the performance of if-else vs
computed-GOTO was made.

The selection of the input STATE was randomized to try and
defeat the branch-predictor.

Unless otherwise noted, g++ v12.2.1 and clang++ v15.0.1
were used.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Test 1: Micro-benchmark: methodology.

Implements a cut-down version of the FIX-to-MIT/BIT
Translator (more later) client-to-exchange, meta
state-machine:

Has all of the correct values for the STATEs,
Same number of Transitions, but highly simplified.

A comparison of the performance of if-else vs
computed-GOTO was made.

The selection of the input STATE was randomized to try and
defeat the branch-predictor.

Unless otherwise noted, g++ v12.2.1 and clang++ v15.0.1
were used.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Test 2: A Simple FIX-to-MIT/BIT Translator.

This translator is a heavily-templated library:
listens to socket (the client-side) for FIX-format[13] messages,
sends & receives binary-protocol MIT/BIT-format[9] messages
via a server-side socket.
Two tests:

1 In-order: one sends then receives the response repeatedly.
2 Out-of-order: sends all orders, then waits to receive all the

responses.

Uses Boost.ASIO, but numerous other optimisations, including
the above, used SSE2 & higher instructions.

Neither a Solarflare card nor OpenOnload drivers were used.
Would have reduced context-switches.

Previous presentations have more detail [14].

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Test 2: A Simple FIX-to-MIT/BIT Translator.

This translator is a heavily-templated library:
listens to socket (the client-side) for FIX-format[13] messages,
sends & receives binary-protocol MIT/BIT-format[9] messages
via a server-side socket.
Two tests:

1 In-order: one sends then receives the response repeatedly.
2 Out-of-order: sends all orders, then waits to receive all the

responses.

Uses Boost.ASIO, but numerous other optimisations, including
the above, used SSE2 & higher instructions.

Neither a Solarflare card nor OpenOnload drivers were used.
Would have reduced context-switches.

Previous presentations have more detail [14].

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Test 2: A Simple FIX-to-MIT/BIT Translator.

This translator is a heavily-templated library:
listens to socket (the client-side) for FIX-format[13] messages,
sends & receives binary-protocol MIT/BIT-format[9] messages
via a server-side socket.
Two tests:

1 In-order: one sends then receives the response repeatedly.
2 Out-of-order: sends all orders, then waits to receive all the

responses.

Uses Boost.ASIO, but numerous other optimisations, including
the above, used SSE2 & higher instructions.

Neither a Solarflare card nor OpenOnload drivers were used.
Would have reduced context-switches.

Previous presentations have more detail [14].

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Test 2: More details.

A FIX New Order message is sent to a socket,
translated to MIT/BIT native binary format,

sent over sockets to a basic simulator,
which responds with a fill,

translated back to a FIX fill message.

Sent back to the client.

Computer was quiescent; numactl was not used, threads were
pinned.

Highly optimised kernel, Gentoo/Linux.
Lap-brick: Single AMD Ryzen 9 3900, 12 physical cores,
≥ 4.0GHz, DDR4 RAM & NVMe storage.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Test 2: More details.

A FIX New Order message is sent to a socket,
translated to MIT/BIT native binary format,

sent over sockets to a basic simulator,
which responds with a fill,

translated back to a FIX fill message.

Sent back to the client.

Computer was quiescent; numactl was not used, threads were
pinned.

Highly optimised kernel, Gentoo/Linux.
Lap-brick: Single AMD Ryzen 9 3900, 12 physical cores,
≥ 4.0GHz, DDR4 RAM & NVMe storage.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Test 2: More details.

A FIX New Order message is sent to a socket,
translated to MIT/BIT native binary format,

sent over sockets to a basic simulator,
which responds with a fill,

translated back to a FIX fill message.

Sent back to the client.

Computer was quiescent; numactl was not used, threads were
pinned.

Highly optimised kernel, Gentoo/Linux.
Lap-brick: Single AMD Ryzen 9 3900, 12 physical cores,
≥ 4.0GHz, DDR4 RAM & NVMe storage.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Test 1: Micro-benchmark: results G++ (≤ 2% MAD[15]).

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

2.0e-02

[4.5e-02, 1.1e+01]

0.025 0.03 0.035 0.04

No
. s

am
ple

s.

Latency (microsec).

If-else_using_libjmmcg::cpu_timer::in_order, mean=2.9e-02 (stddev=1e-02).

Computed-GOTO_using_libjmmcg::cpu_timer::in_order, mean=3.1e-02 (stddev=1e-02).

Histograms of the meta state-machine using G++ v12.2.1.

There are only 4 branches: the branch-predictor never gets flooded as the internal code is too simple.

The BTB has ≈ 32 slots - so never flooded, works beautifully.

When used, the predictor was very accurate ≥ 98%: modern predictors also use Markov chains.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Test 1: Micro-benchmark: results Clang++ (≤ 2% MAD).

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

1.0e-02

[4.5e-02, 6.7e+01]

0.015 0.02 0.025 0.03 0.035 0.04

No
. s

am
ple

s.

Latency (microsec).

If-else_using_libjmmcg::cpu_timer::in_order, mean=2.7e-02 (stddev=1e-02).

Computed-GOTO_using_libjmmcg::cpu_timer::in_order, mean=3.0e-02 (stddev=1e-02).

Histograms of the meta state-machine using Clang++ v15.0.1.

Clang++ generates code that appears to be twice as fast as G++!

Some issue in the code-generation by G++?

Pipeline hazards affecting the outcome?
4 conditionals in the Transitions, so can be accommodated by the hardware.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Test 2: if-else: G++ generated code.

405: movzx eax,WORD PTR [rbp-0x2b2] # if-else::msm.process(state, p...);
40c: cmp ax,0x44 # return state==Transition1::start
? transition1.process(p...) : Transition2::process(p...);
410: jne 997
416: call Transition2::process(p...)
997: cmp ax,0x46 # return state==Transition3::start
? transition3.process(p...) : Transition4::process(p...);
99b: jne 9ab
99d: call Transition4::process(p...)
9ab: cmp ax,0x47
9af: jne 9ba
9b5: call Transition1::process(p...)
9ba: call Transition3::process(p...)

The compiler generated the expected jumps.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Test 2: computed-GOTO: G++ generated code.

3c5: movzx eax,WORD PTR [rbp-0x2c6] # hash::msm.process(state, p...);
3cc: mov ecx,0xcccccccd
3d1: mov BYTE PTR [rbp-0x2a8],0x0
3d8: mov DWORD PTR [rbp-0x2a4],0x44 # state
3e2: mov rsi,r15
3e5: vmovdqa xmm3,XMMWORD PTR [rbp-0x330]
3ed: vmovdqa xmm2,XMMWORD PTR [rbp-0x310]
3f5: mov edx,eax
3f7: vmovdqa xmm1,XMMWORD PTR [rbp-0x320]
3ff: vmovdqa xmm0,XMMWORD PTR [rbp-0x340]
407: imul rdx,rcx
40b: shr rdx,0x22
40f: lea edx,[rdx+rdx*4] # Address computations from wrappers?
412: sub eax,edx
414: lea rdx,[rbp-0x2c7] # Address computations from wrappers?
41b: shl rax,0x5 # denominator - strength reduction!
41f: vmovdqa XMMWORD PTR [rbp-0x150],xmm3
427: vmovdqa XMMWORD PTR [rbp-0x1b0],xmm2
42f: lea rdi,[rbx+rax*1+0x40] # Address computations from wrappers?
434: vmovdqa XMMWORD PTR [rbp-0x190],xmm1
43c: vmovdqa XMMWORD PTR [rbp-0x130],xmm0
444: mov rax,QWORD PTR [rdi]
447:

::
call

::::
QWORD

:::
PTR

:::::::
[rax+0x18] # The computed-GOTO! As a virtual-method call...

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Test 2: computed-GOTO: reflections re. generated code.

The compiler generated the expected computed-GOTO:
Disappointing that the code-generation takes so many
assembly instructions.
Lots of code-motion and inlining makes the calls to hashing
and indexing make the assembly complex to decipher...
The multiple lea instructions may be causing AGIs...

Causing pipeline stalls: inadequate de-virtualisation?

Recall we need this to be � 20 clock-cycles, which this is
unlikely to be.
Godbolt[16] could not be used.

Instead objdump -drwCS -Mintel with a lot of editing.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Test 2: if-else vs computed-GOTO: histogram, in-order
G++ (≤ 5% MAD).

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

1.7e+00

[5.0e+00, 5.0e+01]

2 2.5 3 3.5 4 4.5

No
. s

am
ple

s.

Latency (microsec).

If-else_using_libjmmcg::cpu_timer::in_order, mean=2.8e+00 (stddev=7e-01).

Computed-GOTO_using_libjmmcg::cpu_timer::in_order, mean=2.8e+00 (stddev=6e-01).

Histograms of the partial, in-order round-trip for the MIT/BIT exchange links using G++ v12.2.1.

Kurtosis crucial: usual statistics fail us - need the histogram to tell all.

Computed-GOTO out-performs if-else, despite curious assembly generated.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Test 2: if-else vs computed-GOTO: histogram,
out-of-order G++ (≤ 7% MAD).

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

1.4e+00

[7.0e+00, 1.4e+04]

2 3 4 5 6

No
. s

am
ple

s.

Latency (microsec).

If-else_using_libjmmcg::cpu_timer::in_order, mean=3.8e+00 (stddev=7e+00).

Computed-GOTO_using_libjmmcg::cpu_timer::in_order, mean=3.6e+00 (stddev=1e+01).

Histograms of the partial, out-of-order round-trip for the MIT/BIT exchange links using G++ v12.2.1.

Computed-GOTO out-performs if-else, outliers for the latter a serious problem for algos.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Test 2: if-else vs computed-GOTO: histogram, in-order
Clang++ (≤ 4% MAD).

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

1.7e+00

[5.0e+00, 9.1e+01]

2 2.5 3 3.5 4 4.5

No
. s

am
ple

s.

Latency (microsec).

If-else_using_libjmmcg::cpu_timer::in_order, mean=3.0e+00 (stddev=6e-01).

Computed-GOTO_using_libjmmcg::cpu_timer::in_order, mean=3.0e+00 (stddev=5e-01).

Histograms of the partial, in-order round-trip for the MIT/BIT exchange links using Clang++ v15.0.1.

The roughly 750nsec resonance, likely due to hardware hazards, is most curious.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Test 2: if-else vs computed-GOTO: histogram,
out-of-order Clang++ (≤ 5% MAD).

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

5.9e-01

[7.0e+00, 1.7e+04]

1 2 3 4 5 6

No
. s

am
ple

s.

Latency (microsec).

If-else_using_libjmmcg::cpu_timer::in_order, mean=3.7e+00 (stddev=2e+01).

Computed-GOTO_using_libjmmcg::cpu_timer::in_order, mean=3.7e+00 (stddev=1e+01).

Histograms of the partial, out-of-order round-trip for the MIT/BIT exchange links using Clang++ v15.0.1.

Hard to justify performance difference.

The consistent difference between G++ and Clang++ deserves better analysis.

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Test 2: Reflections: Performance differences.

Very small improvements: micro-optimisation “noise floor” hit!

Computed-GOTO: the generated assembly looks suspicious...
Yet it outperforms if-else from evidence in histograms.

The FIX-to-MIT/BIT-Translator test had the same input
STATE, so executed the same Transition:

Ideal for a branch-predictor, as a highly predictable
conditional-jump!
Surprising computed-GOTO beat it!
Researchers at Intel, AMD, etc, etc work very hard to improve
the branch-predictor...

objdump has issues generating the disassembly...

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Reflections: Code complexity, maintainability and
compile-time performance.

The complexity of the code is outrageous:
It looks very much like write-once code: maintainability is lost.
Required: a modern compiler that supports C++ very well.

g++ v12.2.1 & clang++ v15.0.1 used.
The compile-time was not significantly increased...

The translation unit takes over 6 minutes to compile on my
lap-brick.
Less powerful computers could take 10s of minutes...

Over 10Gb of RAM is required to compile the translation unit.
Limits parallelisation of the build...

The build scripts for cmake become much more complex...

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Methodology.
Results: generated code & histograms, reflections.

Reflections: Issues regarding xor_modulo_hash algorithm.
The hash function must be generated first to permit inlining,
which serialises the build.

Requires parallelisation or is excessively slow.
The hash may fail to be generated:

Meta state-machine cannot be generated! Code simply will
not compile!
Critical issue in production code - never rely on luck to
compile one’s code...!
Use if-else or another; � 20 clock cycles to run: more
sophisticated algorithms may have excessive run-times vs
if-else. Common algorithms e.g. std::hash, Hsieh[17] or
Murmur2[18]: too slow for our purpose.

Speculation: more STATEs and their values may make
generation of the algorithm more likely to fail.

Currently STATEs ≤ 7 in any of the meta state-machines.
J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Conclusions. 1/2.

Exorbitant effort taken to achieve little result?
In terms of speed-up: yes.

Suspicious assembly-generation may have reduced the
performance.

Managed to force the compiler to generate the computed-GOTO
with C++:

Heroic effort: implemented library to recover type-information
for Transition::process(...) : minimal intrusiveness for
users.
Madness: implemented a data-parallel algorithm to attempt
(yes, Shannon) to compute minimal, perfect hashes for a
high-performance hash.
An extremely high-performance Template Meta-Progammed
state-machine has been implemented as a library[3].

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Conclusions. 1/2.

Exorbitant effort taken to achieve little result?
In terms of speed-up: yes.

Suspicious assembly-generation may have reduced the
performance.

Managed to force the compiler to generate the computed-GOTO
with C++:

Heroic effort: implemented library to recover type-information
for Transition::process(...) : minimal intrusiveness for
users.
Madness: implemented a data-parallel algorithm to attempt
(yes, Shannon) to compute minimal, perfect hashes for a
high-performance hash.
An extremely high-performance Template Meta-Progammed
state-machine has been implemented as a library[3].

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Conclusions, 2/2.

Choice of micro-optimisation investigated would have been vital:
Premature optimisation is the root of all evil[4]!

The techniques that had to be used may serve as a warning to
others...

I did this so that you would not have to!

My sincere thanks to:
Jon Chesterfield for his patience and tolerance: he listened to
me talk about this since 2017...
My reviewers: Paul Evans & Vladimir Arnost.

For more information on methodology or notes, please contact:
accuconf2023@hussar.me.uk

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

mailto:accuconf2023@hussar.me.uk

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Conclusions, 2/2.

Choice of micro-optimisation investigated would have been vital:
Premature optimisation is the root of all evil[4]!

The techniques that had to be used may serve as a warning to
others...

I did this so that you would not have to!

My sincere thanks to:
Jon Chesterfield for his patience and tolerance: he listened to
me talk about this since 2017...
My reviewers: Paul Evans & Vladimir Arnost.

For more information on methodology or notes, please contact:
accuconf2023@hussar.me.uk

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

mailto:accuconf2023@hussar.me.uk

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

Conclusions, 2/2.

Choice of micro-optimisation investigated would have been vital:
Premature optimisation is the root of all evil[4]!

The techniques that had to be used may serve as a warning to
others...

I did this so that you would not have to!

My sincere thanks to:
Jon Chesterfield for his patience and tolerance: he listened to
me talk about this since 2017...
My reviewers: Paul Evans & Vladimir Arnost.

For more information on methodology or notes, please contact:
accuconf2023@hussar.me.uk

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

mailto:accuconf2023@hussar.me.uk

Introduction: Problem Statement.
The Adventure Begins...

The components in more detail.
Results.

Conclusions.
Epilogue.

An outstanding success: introducing Dr. Cassio Neri &
Prof. Lorenz Schneider...

An outstanding micro-optimisation regarding date-conversions:

“Euclidean affine functions and their application to calendar
algorithms”[19]

Basically optimises the conversion between the Gregorian
calendar and Unix Epoch-based offsets.
Used in all *nix kernels, libc, <chrono>, Microsoft .Net
(including C], etc), Android...

Literally billions of installations...

The most successful micro-optimisation I have ever heard of!

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

For Further Reading

For Further Reading I

Dijkstra, E. W. “Go To statement considered harmful,
Commm.” ACzl/I, ll (3) (1968): 147-148,
https://doi.org/10.1145/988056.988069

https://agner.org/optimize/instruction_tables.ods

http://libjmmcg.sf.net/

https://hans.gerwitz.com/2004/08/12/
premature-optimization-is-the-root-of-all-evil.
html

Gustafson, J.L. (2011). “Amdahl’s Law.” In: Padua, D. (eds)
Encyclopedia of Parallel Computing. Springer, Boston, MA,
https://doi.org/10.1007/978-0-387-09766-4_77

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

https://doi.org/10.1145/988056.988069
https://agner.org/optimize/instruction_tables.ods
http://libjmmcg.sf.net/
https://hans.gerwitz.com/2004/08/12/premature-optimization-is-the-root-of-all-evil.html
https://hans.gerwitz.com/2004/08/12/premature-optimization-is-the-root-of-all-evil.html
https://hans.gerwitz.com/2004/08/12/premature-optimization-is-the-root-of-all-evil.html
https://doi.org/10.1007/978-0-387-09766-4_77

For Further Reading

For Further Reading II

https://www.boost.org/doc/libs/1_81_0/libs/msm/
doc/HTML/index.html

https://www.oreilly.com/library/view/
extended-stl-volume/9780321305503/ch14.html

Bartosz Milewski “Template Metaprogramming Made
Easy (Huh?)”, https://bartoszmilewski.com/2009/09/08/
template-metaprogramming-made-easy-huh/

http://www.borsaitaliana.it/borsaitaliana/
gestione-mercati/migrazionemillenniumit-mit/
mit203nativetradinggatewayspecification.en_pdf.htm

https://www.gnu.org/software/gperf/

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

https://www.boost.org/doc/libs/1_81_0/libs/msm/doc/HTML/index.html
https://www.boost.org/doc/libs/1_81_0/libs/msm/doc/HTML/index.html
https://www.oreilly.com/library/view/extended-stl-volume/9780321305503/ch14.html
https://www.oreilly.com/library/view/extended-stl-volume/9780321305503/ch14.html
https://bartoszmilewski.com/2009/09/08/template-metaprogramming-made-easy-huh/
https://bartoszmilewski.com/2009/09/08/template-metaprogramming-made-easy-huh/
http://www.borsaitaliana.it/borsaitaliana/gestione-mercati/migrazionemillenniumit-mit/mit203nativetradinggatewayspecification.en_pdf.htm
http://www.borsaitaliana.it/borsaitaliana/gestione-mercati/migrazionemillenniumit-mit/mit203nativetradinggatewayspecification.en_pdf.htm
http://www.borsaitaliana.it/borsaitaliana/gestione-mercati/migrazionemillenniumit-mit/mit203nativetradinggatewayspecification.en_pdf.htm
https://www.gnu.org/software/gperf/

For Further Reading

For Further Reading III

https://web.archive.org/web/20221208124607/https:
//thusspakeak.com/

McGuiness, J., Egan, C., “A Domain-Specific Embedded
Language for Programming Parallel Architectures.”, DCABES
2013, https://www.researchgate.net/publication/
340902083_A_Domain-Specific_Embedded_Language_for_
Programming_Parallel_Architectures/references

https://fiximate.fixtrading.org

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

https://web.archive.org/web/20221208124607/https://thusspakeak.com/
https://web.archive.org/web/20221208124607/https://thusspakeak.com/
https://www.researchgate.net/publication/340902083_A_Domain-Specific_Embedded_Language_for_Programming_Parallel_Architectures/references
https://www.researchgate.net/publication/340902083_A_Domain-Specific_Embedded_Language_for_Programming_Parallel_Architectures/references
https://www.researchgate.net/publication/340902083_A_Domain-Specific_Embedded_Language_for_Programming_Parallel_Architectures/references
https://fiximate.fixtrading.org

For Further Reading

For Further Reading IV

McGuiness, J., “A Performance Analysis of a Simple Trading
System...”, CPPNow, Aspen, 2019, https:
//www.researchgate.net/publication/340926245_A_
Performance_Analysis_of_a_Simple_Trading_System

"http://mathbits.com/MathBits/TISection/
Statistics1/MAD.html

https://gcc.godbolt.org

http://www.azillionmonkeys.com/qed/hash.html

https:
//simonhf.wordpress.com/2010/09/25/murmurhash160/

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

https://www.researchgate.net/publication/340926245_A_Performance_Analysis_of_a_Simple_Trading_System
https://www.researchgate.net/publication/340926245_A_Performance_Analysis_of_a_Simple_Trading_System
https://www.researchgate.net/publication/340926245_A_Performance_Analysis_of_a_Simple_Trading_System
"http://mathbits.com/MathBits/TISection/Statistics1/MAD.html
"http://mathbits.com/MathBits/TISection/Statistics1/MAD.html
https://gcc.godbolt.org
http://www.azillionmonkeys.com/qed/hash.html
https://simonhf.wordpress.com/2010/09/25/murmurhash160/
https://simonhf.wordpress.com/2010/09/25/murmurhash160/

For Further Reading

For Further Reading V

Neri, C., Schneider, L., “Euclidean affine functions and their
application to calendar algorithms”, Software Practice and
Experience 53(1), December 2022,
http://dx.doi.org/10.1002/spe.3172,
https://www.researchgate.net/publication/
365981828_Euclidean_affine_functions_and_their_
application_to_calendar_algorithms

J.M.McGuiness Template Meta-State Machines, Shannon, Madness...

http://dx.doi.org/10.1002/spe.3172
https://www.researchgate.net/publication/365981828_Euclidean_affine_functions_and_their_application_to_calendar_algorithms
https://www.researchgate.net/publication/365981828_Euclidean_affine_functions_and_their_application_to_calendar_algorithms
https://www.researchgate.net/publication/365981828_Euclidean_affine_functions_and_their_application_to_calendar_algorithms

	Introduction: Problem Statement.
	Template Meta-State Machines, Shannon, Madness? Eh?
	Methodology: A simple FIX-to-MIT protocol translator.

	The Adventure Begins...
	Reflections on computed-GOTO.

	The components in more detail.
	The template meta-programming madness...
	What about the hash?

	Results.
	Methodology.
	Results: generated code & histograms, reflections.

	Conclusions.
	Epilogue.
	Appendix
	For Further Reading

