Standard attributes
in C and C++

Timur Doumler
Y @timur_audio

ACCU Conference

19 April 2023 Uranus' Rings
Image by NASA/Hubble Team/Kevin M. Gill



- \What are standard attributes?
- History of standardisation

- Standard attributes in C++
Classification
Usage
Caveats
Availability in major compilers

- Standard attributes in C

» Are standard attributes "ignorable"?
Syntactic ignorability
Semantic ignorability
Language design rule

» Future work

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio



- What are standard attributes?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio



[dcl.attr.grammar] pl

Attributes specify additional information for various source
constructs such as types, variables, names, blocks, or
translation unaits.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio



Towards support for attributes in C++

(Revision 6)
Jens Maurer, Michael Wong

jens.maurer@gmx.net

michaelw@ca.ibm.com

Document number: N2761
Date: 2008-09-18

Project: Programming Language C++, Core Working Group
Reply-to: Michael Wong (michaelw(@ca.ibm.com)

Revision: 6

General Attributes for C++

1 Overview

The 1dea 1s to be able to annotate some entities in C++ with additional information.
Currently, there 1s no means to do that short of inventing a new keyword and augmenting
the grammar accordingly, thereby reserving yet another name of the user's namespace.
This proposal will survey existing industry practice for extending the C++ syntax, and
presents a general means for such annotations, including its integration into the C++
grammar. Specific attributes are not introduced 1n this proposal. It does not obviate the
ability to add or overload keywords where appropriate, but 1t does reduce such need and

add an ability to extend the language. T!

n1s proposal will allow many C++0x proposals to

move forward. A draft form of this proposal was presented in Oxford and received



Towards support for attributes in C++

(Revision 6)
Jens Maurer, Michael Wong

jens.maurer@gmx.net

michaelw@ca.ibm.com

Document number: N2761

Date: 2008-09-1&

Project: Programming Language C++, Core Working Group
Reply-to: Michael Wong (michaelw(@ca.ibm.com)

Revision: 6

General Attributes for C++

1 Overview

The 1dea 1s to be able to annotate some entities in C++ with additional information.
Currently, there 1s no means to do that short of inventing a new keyword and augmenting
the grammar accordingly, thereby reserving yet another name of the user's namespace.
This proposal will survey existing industry practice for extending the C++ syntax, and
presents a general means for such annotations, including its integration into the C++
grammar. Specific attributes are not introduced 1n this proposal. It does not obviate the
ability to add or overload keywords where appropriate, but 1t does reduce such need and

add an ability to extend the language. T

n1s proposal will allow many C++0x proposals to

move forward. A draft form of this proposal was presented in Oxford and received



Towards support for attributes in C++

(Revision 6)
Jens Maurer, Michael Wong

jens.maurer@gmx.net
michaelw@ca.ibm.com

https://wg21.link/N2761

Date: 2008-09-

Project: Programmmg Language C++, Core Working Group
Reply-to: Michael Wong (michaelw(@ca.ibm.com)
Revision: 6

General Attributes for C++

1 Overview

The 1dea 1s to be able to annotate some entities in C++ with additional information.
Currently, there 1s no means to do that short of inventing a new keyword and augmenting
the grammar accordingly, thereby reserving yet another name of the user's namespace.
This proposal will survey existing industry practice for extending the C++ syntax, and
presents a general means for such annotations, including its integration into the C++
grammar. Specific attributes are not introduced 1n this proposal. It does not obviate the
ability to add or overload keywords where appropriate, but 1t does reduce such need and
add an ability to extend the language. This proposal will allow many C++0x proposals to
move forward. A draft form of this proposal was presented in Oxford and received




Towards support for attributes 1n C++

(Revision 6)
Jens Maurer, Michael Wong

jens.maurer@gmx.net
michaelw@ca.ibm.com

https://wg21.link/N2761

Date: 2008-09-

Project: Programmmg Language C++, Core Working Group
Reply-to: Michael Wong (michaelw@ca.ibm.com)
Revision: 6

General Attributes for C++

1 Overview

The 1dea 1s to be able to annotate some entities in C++ with additional information.
Currently, there 1s no means to do that short of inventing a new keyword and augmenting
the grammar accordingly, thereby reserving yet another name of the user's namespace.
This proposal will survey existing industry practice for extending the C++ syntax, and
presents a general means for such annotations, including its integration into the C++
grammar. Specific attributes are not introduced 1n this proposal. It does not obviate the
ability to add or overload keywords where appropriate, but 1t does reduce such need and
add an ability to extend the language. This proposal will allow many C++0x proposals to
move forward. A draft form of this proposal was presented in Oxford and received




Certainly, we would advise anyone who propose an attribute to consider comments on the
following area which will help guide them 1n making the decision of whether to use
attributes or not:

The feature 1s used 1n declarations or definitions only.

Is the feature 1s of use to a limited audience only (e.g., alignment)?

The feature does not modify the type system (e.g., thread local) and hence does
not require new mangling?

The feature 1s a "minor annotation" to a declaration that does not alter 1ts
semantics significantly. (Test: Take away the annotation. Does the remaining
declaration still make sense?

Is 1t a vendor-specific extension?

Is 1t a language Bindings on C++ that has no other way of tying to a type or
scope(e.g. OpenMP)

How does this change Overload resolution?

What is the effect in typedefs, will it require cloning?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 9



// MSVC pre-C++11

__declspec(noreturn) void terminate() {

// GCC pre-C++11

~attribute ((unused)) void test() {

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

10



Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

11



// MSVC pre-C++11

__declspec(noreturn) void terminate() {

// GCC pre-C++11

~attribute ((unused)) void test() {

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

12



// added in C++11:

[[noreturn]] void terminate() { }
// added in C++17:
[[maybe_unused]] void test() { }
Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 13



[[nodiscard]]
[[fallthrough]]
[[deprecated("Use this other thing instead")]]

[[clang: :always_inline]]

[[gnu::purel]
[[omp: :sequence(directive(parallel), directive(for))]]

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

14



[[nodiscard]]
[[fallthrough]]
[[deprecated("Use this other thing instead")]]

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

15



Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

16



int main() {
int a[2] = {666, 42};
return al[l];

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

17



int main() {
int al2] = {666, 42};
return al[[]l{ return 1: }()]1;

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

18



int main() {
int a[2] = {666, 42};

return al[]{ return 1: }()1;: // Error!

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

19



int main() {
int a[2] = {666, 42};

return al []{ return 1: }(O)1;: // Error!

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

20



int main() {
int a[2] = {666, 42};
return a[([]{ return 1: }())]:

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

21



[dcl.attr.grammar] p3

Each attribute-specifier-seq 1s said to appertain to some
entity or statement, 1dentified by the syntactic context
where 1t appears.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

22



// Attribute appertaining to class template declaration:
template <typename T>
class [[deprecated]] auto_ptr;

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

23



// Attribute appertaining to class template declaration:
template <typename T>

class [[deprecated]] auto_ptr;

// Attribute appertaining to function declaration:
[[nodiscard]] bool empty() const noexcept:

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

24



// Attribute appertaining to class template declaration:
template <typename T>

class [[deprecated]] auto_ptr;

// Attribute appertaining to function declaration:
[[nodiscard]] bool empty() const noexcept:

// Attributes appertaining to statements and labels:
int f(int i) {
switch(i) {
case 1: [[fallthroughl];

[[likely]] case 2: return 1;
1

return 2;

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

25



Towards support for attributes in C++

(Revision 6)
Jens Maurer, Michael Wong

jens.maurer@gmx.net

michaelw@ca.ibm.com

Document number: N2761=08-0271
Date: 2008-09-18

Project: Programming Language C++, Core Working Group
Reply-to: Michael Wong (michaelw(@ca.ibm.com)

Revision: 6

General Attributes for C++

1 Overview

The 1dea 1s to be able to annotate some entities in C++ with additional information.
Currently, there 1s no means to do that short of inventing a new keyword and augmenting
the grammar accordingly, thereby reserving yet another name of the user's namespace.
This proposal will survey existing industry practice for extending the C++ syntax, and
presents a general means for such annotations, including its integration into the C++
grammar. Specific attributes are not introduced 1n this proposal. It does not obviate the
ability to add or overload keywords where appropriate, but 1t does reduce such need and

add an ability to extend the language. T!

n1s proposal will allow many C++0x proposals to

move forward. A draft form of this proposal was presented in Oxford and received



Certainly, we would advise anyone who propose an attribute to consider comments on the
following area which will help guide them 1n making the decision of whether to use
attributes or not:

The feature 1s used 1n declarations or definitions only.
Is the feature 1s of use to a limited audience only (e.g., alignment)?

The feature does not modify the type system (e.g., thread local) and hence does
not require new mangling?

The feature 1s a "minor annotation' to a declaration that does not alter its
semantics significantly. (Test: Take away the annotation. Does the remaining
declaration still make sense?

Is 1t a vendor-specific extension?

Is 1t a language Bindings on C++ that has no other way of tying to a type or
scope(e.g. OpenMP)

How does this change Overload resolution?

What is the effect in typedets, will 1t require cloning?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 27



Certainly, we would advise anyone who propose an attribute to consider comments on the
following area which will help guide them 1n making the decision of whether to use
attributes or not:

The feature 1s used 1n declarations or definitions only.
Is the feature 1s of use to a limited audience only (e.g., alignment)?

The feature does not modify the type system (e.g., thread local) and hence does
not require new mangling?

The feature 1s a "minor annotation' to a declaration that does not alter its
semantics significantly. (Test: Take away the annotation. Does the remaining
declaration still make sense?

Is 1t a vendor-specific extension?

Is 1t a language Bindings on C++ that has no other way of tying to a type or
scope(e.g. OpenMP)

How does this change Overload resolution?

What is the effect in typedets, will 1t require cloning?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 28



Certainly, we would advise anyone who propose an attribute to consider comments on the
following area which will help guide them 1n making the decision of whether to use
attributes or not:

The feature 1s used 1n declarations or definitions only.

Is the feature 1s of use to a limited audience only (e.g., alignment)?

The feature does not modify the type system (e.g., thread local) and hence does
not require new mangling?

The feature 1s a "minor annotation" to a declaration that does not alter 1ts
semantics significantly. (Test: Take away the annotation. Does the remaining
declaration still make sense?

Is 1t a vendor-specific extension?

Is it a language Bindings on C++ that has no other way of tying to a type or
scope(e.g. OpenMP)

How does this change Overload resolution?

What is the effect in typedefs, will it require cloning?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 29



Some guidance for when not to use an attribute and use/reuse a keyword
e The feature 1s used 1n expressions as opposed to declarations.
e The feature 1s of use to a broad audience.

e The feature 1s a central part of the declaration that significantly affects its
requirements/semantics (e€.g., constexpr).

e The feature modifies the type system and/or overload resolution 1n a significant
way (e.g., rvalue references). (However, something like near and far pointers
should probably still be handled by attributes, although those do affect the type
system.)

e The feature 1s used everywhere on every instance of class, or statements

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

30



Some guidance for when not to use an attribute and use/reuse a keyword
e The feature 1s used 1n expressions as opposed to declarations.
e The feature 1s of use to a broad audience.

e The feature 1s a central part of the declaration that significantly affects its
requirements/semantics (e€.g., constexpr).

e The feature modifies the type system and/or overload resolution 1n a significant
way (e.g., rvalue references). (However, something like near and far pointers
should probably still be handled by attributes, although those do affect the type
system.)

e The feature 1s used everywhere on every instance of class, or statements

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

31



Good choices 1n attributes include:
e align(unsigned int)
e pure (promise that a function always returns the same value)
probably(unsigned int) (hint for if, switch, ...)
- 1f [[ probably(true) [] 1==42) { ... }
noreturn (the function never returns)
deprecated (functions)
noalias (promises no other path to the object)
unused (parameter name)
final on virtual function declaration and on a class
not hiding (name of function does not hide something in a base class)
register (1f we had a time machine)
owner (a pointer 1s owned and 1t 1s the owner’s duty to delete it)

Bad choices 1n attributes include:
o (99 restrict (affects the type system)
e huge (really long long type, e.g. 256bits)
e (C++ const

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio



Good choices 1n attributes include:
e align(unsigned int)
e pure (promise that a function always returns the same value)
probably(unsigned int) (hint for if, switch, ...)
- 1f [[ probably(true) ]] (1==42) { ... }
noreturn (the function never returns)
deprecated (functions)
noalias (promises no other path to the object)
unused (parameter name)
final on virtual function declaration and on a class
not hiding (name of function does not hide something in a base class)
register (1f we had a time machine)
owner (a pointer 1s owned and it 1s the owner’s duty to delete it)

Bad choices 1n attributes include:
o (99 restrict (affects the type system)
e huge (really long long type, e.g. 256bits)
e (C++ const

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio



Good choices 1n attributes include:
e align(unsigned int)
e pure (promise thata function always returns the same value)
probably(unsigned int) (hint for if, switch, ...)
- 1f [[ probably(true) |[] 1==42) { ... }
noreturn (the function never returns)
deprecated (functions)
noalias (promises no other path to the object)
unused (parameter name)
final on virtual function declaration and on a class
not hiding (name of function does not hide something in a base class)
register (1f we had a time machine)
owner (a pointer 1s owned and it 1s the owner’s duty to delete it)

Bad choices 1n attributes include:
o (99 restrict (affects the type system)
e huge (really long long type, e.g. 256bits)
e (C++ const

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio



Good choices 1n attributes include:
e align(unsigned int)
e pure (promise that a function always returns the same value)
probably(unsigned int) (hint for if, switch, ...)
- 1f [[ probably(true) ]] (1==42) { ... }
noreturn (the function never returns)
deprecated (functions)
noalias (promises no other path to the object)
unused (parameter name)
final on virtual function declaration and on a class
not hiding (name of function does not hide something in a base class)
register (1f we had a time machine)
owner (a pointer 1s owned and it 1s the owner’s duty to delete it)

Bad choices 1n attributes include:
o (99 restrict (affects the type system)
e huge (really long long type, e.g. 256bits)
e (C++ const

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio



Good choices 1n attributes include:
e align(unsigned int)
e pure (promise that a function always returns the same value)
probably(unsigned int) (hint for if, switch, ...)
- 1f [[ probably(true) ]] (1==42) { ... }
noreturn (the function never returns)
deprecated (functions)
noalias (promises no other path to the object)
unused (parameter name)
final on virtual function declaration and on a class
not hiding (name of function does not hide something in a base class)
register (1f we had a time machine)
owner (a pointer 1s owned and it 1s the owner’s duty to delete it)

Bad choices 1n attributes include:
o (99 restrict (affects the type system)
e huge (really long long type, e.g. 256bits)
e (++ const

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio



- History of standardisation

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

37



[[noreturn]]
[[carries_dependency]]

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

38



[[noreturn]]
[[carries_dependency]]

[[deprecated]]
[[deprecated("reason")]]

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

39



[[noreturn]]
[[carries_dependency]]

[[deprecated]]
[[deprecated("reason")]]

[[fallthrough]]
[[nodiscard]]
[ [maybe_unused] ]

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

40



[[noreturn]]
[[carries_dependency]]

[ [deprecated]]
[[deprecated("reason")]]

[[fallthrough]]
[[nodiscard]]
[ [maybe_unused] ]

[[nodiscard("reason")]]
[[likely]]

[[unlikely]]
[[no_unique_address]]

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

41



[[noreturn]]
[[carries_dependency]]

[ [deprecated]]
[[deprecated("reason")]]

[[fallthrough]]
[[nodiscard]]
[ [maybe_unused] ]

[[nodiscard("reason")]]
[[likely]]

[[unlikely]]
[[no_unique_address]]

[[assume(expression)]]

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

42



[[noreturn]]

[ [deprecated]]
[[deprecated("reason")]]

[[fallthrough]]
[[nodiscard]]
[ [maybe_unused] ]

[[nodiscard("reason")]]

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

43



[[noreturn]]
[[deprecated]]
[[fallthrough]]
[[nodiscard]]

[ [maybe_unused]]

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

44



[[noreturn]]
[[deprecated]]
[[fallthrough]]
[[nodiscard]]

[ [maybe_unused]]
[ [unsequenced]]
[[reproducible]]

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

45



[ [unsequenced]]
[[reproducible]]

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

46



+ Standard attributes in C++

Classification

Usage

Caveats

Availability in major compilers

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

47



[[deprecated]]
[ [maybe_unused]]
[[fallthrough]]
[[nodiscard]]

[[noreturnl]]
[[carries_dependency]]
[[likely]]
[[unlikely]]
[[assume]]

[[no_unique_address]]

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

48



CAUTION




TR
L nlo > ]
. . Yl g
Ads” 4
b 1
fe ”
» L <P <

S0 S |
¥t (L e

S PR e
ol Sy
-

.\
A AT g AR
\'l ’
..;.wuﬁ‘u.\ % ¥
P L

-

(AR T M b

a0 - e T LY .:,,\. >
P Lo R AT TR

ATED te L3

P fism, 2 o T aNae
L e
[ LG T e VR TR

o 5 "y il ; J
AR L .»&m;

——

L !

. w SAGYS e

,~h'fb‘..~\"ﬂ\/ﬂs-

oAy
: R ~ v

R

N
PN




CAUTION

\m‘,‘ -
W
s

Vg , -
:e!’

coer iRy AN AT

§
M

/




CAUTION



| [deprecated]]



template <typename T>

class [[deprecated]]
auto_ptr {

};

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

54



template <typename T>
class [[deprecated]]
auto_ptr {

};

int main() {
auto_ptr<int> ptr;

// Warning: auto_ptr is deprecated

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

59



template <typename T>

class [[deprecated("Use unique_ptr instead!")]]
auto_ptr {

// Implementation...
s

int main() {
avuto_ptr<int> ptr: // Warning: auto_ptr is deprecated:
} // Use unique_ptr instead!

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

56



Navigate Code Refactor Build Run Tools VCS Window Help

_ —

@ ClLion File Edit View

— e

O scratchspace Version control scratchspace T

[(J (€ main.cpp

0 template <typename 1> 3 1 A v
00 —
class [[deprecated("Use unique_ptr instead!")]]
auto_ptr {
// Implementation... «
s y
bt
7 P~ int main() { é
agte—pEr<int> ptr; "3
’"
+ ”,
16
> i
A 3
>_ > 5
A
@ £
tle.
%9 o\
Latchspace > (& main.cpp clang-tidy 10:1 LF UTF-8 ClangFormat C++: scratchspace | Release “.5_'(:
Y4

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio



Tools VCS Window Help

Q’ CLion File Edit View Navigate Code Refactor Build Run
O scratchspace Version control Release scratchspace T !
[(J (€ maincpp : g
o 1 template <typename 1> 3 1T A v
00 —
class [[deprecated("Use unique_ptr instead!")]]
ces auto_ptr {
// Implementation... |
}; \
3
» int main() { 3
avte—ptr<int> ptr; »
’"
r ‘auto_ptr<int>'is deprecated: Use unique_ptr instead! N
|> 10 ‘auto_ptr<int>' has been explicitly marked deprecated here -.;
A Declared in: main.cpp "
o
> template<T> .
= class auto_ptr e
.
®
e
?_9 '.V:'
L.=1tchspace > @ main.cpp .clang-tidy 10:1 LF UTF-8 ClangFormat C++: scratchspace | Release &' a{(:
https://timur.audio 58

Copyright (¢) Timur Doumler | Y @timur_audio |



[ [deprecated] ]

+ Syntax:
» Has optional character literal argument
» Appertains to declarations of a class, typedef, variable, data member,
function, namespace, enum, template, or template specialisation
- Avallabillity:
» since C++14
- MSVC, GCC, Clang, ICC
- Recommendation:
»+ Use In your library when needed
» Always use string argument to tell user what to use instead

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 59



[ (maybe_unused] ]



void didFinishProcessingWidget(const Widget& widget, const Error& error)

{

String errorString = error ? error.description : {};
DEBUG_LOG("didFinishProcessingWidget, error: " + errorString);

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

61



void didFinishProcessingWidget(const Widget& widget, const Error& error)
{
String errorString = error ? error.description : {};
// Warning: unused variable: 'errorString'
DEBUG_LOG("didFinishProcessingWidget, error: " + errorString);

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

62



#define UNUSED(x) (void) (x)

void didFinishProcessingWidget(const Widget& widget, const Error& error)

{

String errorString = error ? error.description : {};
UNUSED(errorString);

DEBUG_LOG("didFinishProcessingWidget, error: " + errorString);

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

63



template <typename... Types>
void ignoreUnused(Types&&...) noexcept {}

void didFinishProcessingWidget(const Widget& widget, const Error& error)
{
String errorString = error ? error.description : {};
ignoreUnused(errorString);
DEBUG_LOG("didFinishProcessingWidget, error: " + errorString);

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

64



void didFinishProcessingWidget(const Widget& widget, const Error& error)

{

[[maybe_unused]] String errorString = error ? error.description : {};
DEBUG_LOG("didFinishProcessingWidget, error: " + errorString);

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

65



[ [(maybe_unused] ]

+ Syntax:
» Appertains to declarations of a class, typedef, variable, data member,
function, enum, or structured binding
- Avallability:
» since C++17
- MSVC, GCC, Clang, ICC
- Recommendation:
+ Use when needed
» Consider replacing your existing solution with [[maybe unused]]

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 66



struct A {};
struct [[maybe_unused]] B {};

int main() A{
A al;
[ [maybe_unused]] A a2;

B bl;
[ [maybe_unused]] B b2;

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

6/



struct A {};
struct [[maybe_unused]] B {};

int main() A{
A al;
[ [maybe_unused]] A a2;

B bl;
[ [maybe_unused]] B b2;

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

68



struct A {};
struct [[maybe_unused]] B {};

int main() A
A al; // MSVC/GCC/Clang: warning: al is unused
[ [maybe_unused]] A a2;: // No warning

B bl; // MSVC: warning: bl is unused; GCC/Clang: no warning
[ [maybe_unused]] B b2;: // No warning

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio



| [fallthroughl]]



void f(int n) {
switch (n) {
case 0:
case 1:
doSomething();
case 2:
doSomethingElse();
break;
default:

assert("Something went wrong");

break:

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

71



void f(int n) {
switch (n) {
case 0:
case 1:
doSomething();
case 2:
doSomethingElse();
break;
default:

assert("Something went wrong");

break:

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

/2



void f(int n) {
switch (n) {
case 0:
case 1:
doSomething();
case 2:
doSomethingElse();
break;
default:

// Warning: implicit fallthrough

assert("Something went wrong");

break:

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

73



void f(int n) {
switch (n) {
case 0:
case 1:
doSomething();
doSomethingElse();
break;
case 2:
doSomethingElse();
break;
default:

assert("Something went wrong");

break:

}

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

4



void f(int n) {
switch (n) {
case 0:
case 1:
doSomething();
[[fallthrough]];
case 2:
doSomethingElse();
break;
default:

assert("Something went wrong");

break:

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

73



[ [fallthrough]]

+ Syntax:
- Can appear only as a single statement: [ [fallthroughl];
("Appertains to a null statement”)
- Only inside a switch statement, just before a case label
- Availability:
» since C++17
- MSVC, GCC, Clang, ICC
- Recommendation:
- Use whenever needed

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

76



switch (n) {
case 1:
case 2:
g();
[[fallthroughl];
case 3: // warning on fallthrough discouraged
do {
[[fallthroughl]; // error: next statement is not part of the same substatement execution
} while (false);
case 6:
do {
[[fallthroughl]; // error: next statement is not part of the same substatement execution
} while (n--);
case 7:
while (false) {
[[fallthroughl]; // error: next statement is not part of the same substatement execution
}
case 5:
h();
case 4: // implementation may warn on fallthrough
i();
[[fallthrough]]; // error
}

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 77



| [nodiscard]]



[[nodiscard]] int () {
return 42;

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

79



[[nodiscard]] int () {
return 42;

int main() {

f();

// Warning: ignoring return value of nodiscard function

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

30



[ [nodiscard]]

- Use when discarding return value would be a wrong use of the API,
that can lead to bugs, for example:
* memory leaks
* race conditions
» undefined behaviour
- wrong functionality

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

81



template <typename T>
class vector {
public:

bool empty() const noexcept;

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

32



template <typename T>
class vector {
public:
bool empty() const noexcept;

};

int main() A
vector<int> v = {1, 2, 3}:
v.empty():

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

33



template <typename T>

class vector {
public:

[[nodiscard]] bool empty() const noexcept:

};

int main() {

vector<int> v = {1, 2, 3}:

v.empty();

// Warning: ignoring return value of nodiscard function

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

34



template <typename T>

class vector {

public:
[[nodiscard("Did you mean to call clear?")]] bool empty() const noexcept;
// Other stuff...

};

int main() {

vector<int> v = {1, 2, 3}:

v.empty();: // Warning: ignoring return value of nodiscard function:
} // Did you mean to call clear?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 85



smartPtr.release():
seqLock.lock();
std: :launder(ptr):

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

36



[ [nodiscard]]

+ Syntax:
» Appertains to a function, enum or class declaration
- Avallabillity:
» since C++17 (without character literal argument)
» since C++20 (with character literal argument)
- MSVC, GCC, Clang, ICC
- Recommendation:
+ Use when discarding return value would be a wrong use of the AP|
(wrong functionality, memory leak, UB, ...)
- |If on C++20 or above, use character literal argument

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

37



N. Josuttis: PO600R1: [[nodiscard]] in the library

Project: ISO JTC1/SC22/WG21: Programming Language C++
Doc No: WG21 P0O600R1

Date: 2017-11-09

Reply to: Nicolai Josuttis (nico@josuttis.de)

Audience: LEWG, LWG

Prev. Version: P0600R0

[Inodiscard]] in the Library, Rev1l

Updates for Version R1:

added empty()

added launder() in wording

no [[nodiscard]] for C functions (removed malloc())
require also to add [[nodiscard]] in the definition
fixed reference paper and section numbering
reason for not having a feature test macro

C++17 introduced the [[nodiscard]] attribute.
The question is, where to apply it now in the standard library.

We suggest a conservative approach:
It should be added where:

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

38



It should be added where:

e Forexisting API's
o not using the return value always is a “huge mistake” (e.g. always resulting in resource

leak)
o not using the return value is a source of trouble and easily can happen (not obvious that

something is wrong)

e Fornew API’s (not been in the C++ standard yet)
o nhot using the return value is usually an error.

It should not be added when:

e Forexisting API's
o nhot using the return value is a possible/common way of programming at least for some
iInput
= for example for realloc(), which acts like free when the new site is O
o nhot using the return value makes no sense but doesn’t hurt and is usually not an error
(e.g., because programmers meant to ask for a state change).
o itis a C function, because their declaration might not be under control of the C++

Implementation

For example:

Function [[nodiscard]] ? | Remark

malloc() no expensive call, usually not using the return value is a resource
leak. However, a C function.

realloc() no realloc() with new size 0 acts like free()

async() yes not using the return value makes the call synchronous, which
might be hard to detect.

launder() yes new API, where not using the return value makes no sense,
hacraiica laiindar/) dnaec nnt whitawach It et tha ratiirn valiia

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

39



CAUTION



e R B .;..-u.l.._ 5., Pty ._.“
- b r» tx < u.\uﬂ(W M.Mn\ l\/ﬂ-ﬂ.w«‘
AN

o ‘mo vk‘mwz.ciuv

(e 7 AR e b

20, S I - gooet B AR .Lvm..\.\... 3
L ....,. é M.Is s .*..%Fg.v.b\ . q

..1..&....». - . . TR ;.... L

[ / E .
q..\.,.”..hb,.,. ’

e e T

'A,o ..\




[ [noreturn]]
[ [carries_dependency]]
[ [likely]]
[ [unlikely]]
[ [assume] ]



[ [noreturn]] void f() A
throw "error";

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

93



[ [noreturn]] in the C++ Standard Library

std: :rethrow_exception
std: :rethrow_nested
std: :throw_with _nested

std: :abort
std: :exit
std::quick_exit
std: :terminate

std: :longjmp

std: :unreachable

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio



[[noreturn]] void f():

int main() {

f();

return 42;

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

95



@ ClLion File Edit View Navigate Code Refactor Build

S scratchspace Version control

[ (€ main.cpp

0 [[noreturn]] void f();

» int main() {
f();

return 42;

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

96



[[noreturn]] void f() {}

int main() {
£(): // Undefined behaviour!
return 42;

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

97



[ [noreturnl]]

+ Syntax:
» Appertains to a function declaration
- Avallabillity:
» since C++11
- MSVC, GCC, Clang, ICC
- Recommendation:
- EXxpert-only usage (should be rare)
- Keep In mind it can introduce UB

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

98



[ [carries_dependency] ]



void print(int* [[carries_dependency]] val);
std: :atomic<int*> p;
int* local = p.load(std::memory_order_consume);

if(local)
print(local);

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 100



void print(int* [[carries_dependency]] val);
std: :atomic<int*> p;
int* local = p.load(std::memory_order_consume);

if(local)
print(local);

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 101



pP0750r1

Consume
Published Proposal, 11 February 2018

This version:
http://wg21.link/P0750

Authors:
JF Bastien (Apple)

Paul E. McKenney (IBM)

Audience:
SG1

Project:
ISO JTC1/SC22/WG21: Programming Language C++

Source:
github.com/jfbastien/papers/blob/master/source/P0750r1.bs

Implementation:
github.com/jfbastien/stdconsume

Abstract

Fixing memory order consume.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 102



[ [carries_dependency]]

+ Syntax:
» Appertains to a function parameter declaration
- Avallabillity:
- since C++11 (but will probably be deprecated/removed)
* no compliler implements it
- Recommendation:
- Never use

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 103



[ [likely]]
[[unlikely]]



if (condition) [[likelyl] {
f();

1
else {

g();

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 105



if (shouldSendOrder) [[likely]]
sendOrder (order):

else
doSomethingElse();

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 106



Caveats

+ Do not influence branch predictor, only code layout!
— no CPU instructions to give hints to branch predictor

- Many caveats when using them
— Aaron Ballman: "Don’t use the [[likely]] or [[unlikely]] attributes”

» Often it does not actually optimise, and sometimes it pessimises!
— Amir Kirsh & Tomer Vromen: "C++20’s [[likely]] Attribute -
Optimizations, Pessimizations, and [[unlikely]] Consequences”

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 107



Don’t use the [[likely]] or [[unlikely]] attributes

Posted on 2020-08-27 by Aaron Ballman

C++20 Introduced the likelihood attributes [[1ikely]] and [[unlikely]] as a way for a
programmer to give an optimization hint to their implementation that a given code path is
more or less likely to be taken. On its face, this seems like a great set of attributes because
you can give hints to the optimizer in a way that is hopefully understood by all
implementations and will result in faster performance. What’s not to love?

The attribute is specified to appertain to arbitrary statements or labels with the
recommended practice “to optimize for the case where paths of execution including it are
arbitrarily more likely|unlikely than any alternative path of execution that does not
include such an attribute on a statement or label.” Pop quiz, what does this code do?

if (something) {
[[likely]];

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 108



Let’s review the rules we’ve got so far:

0) Never allow multiple likelihood attributes to appear in the same path of execution.

1) Only mark the dominating statement or label of the flow control path you want to
optimize for.

2) Assume no two implementations will behave the same way for optimization behaviors
with these attributes.

3) Prefer profile-guided optimization over likelihood attributes.
4) Not all flow control paths can be optimized.

These attributes are starting to look a bit more like some other code constructs we’ve seen
in the past: the register keyword as an optimization hint to put things in registers and the
inline keyword as an optimization hint to inline function bodies into the call site. Using
register or inline for these purposes is often strongly discouraged because experience

has shown that optimizer implementations eventually improved to the point where they

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio

109



Cppcon 20 A“A

The C++ Conference September 12th-16th

int foo(int x)

I
L

switch (x)

Code layout {

case 0:
return

Case S is unlikely case 1:
=> put it further away =

case 2:
return

Case 7 is likely case 3:
=> put it closer return

case 4:
return

Default case is still last!

What if we mark default as [[likely]]? ==

case o

return

return
reiurn

Amir Kirsh & Tomer Vromen case 9:
default: : &
return fé o foo5()

C++20’s [[likely]] Attribute:
Optimizations, Pessimizations,
and [[unlikely]] Consequences

https://qodbolt.ora/z/ceK9ddreb _— jm bar(int)

Video Sponsorship Provided By:
W il | Nl

} B () 11:06/1:03:30 - Code Layout >

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 110



[[likely]], [[unlikelyl]]

+ Syntax:
+ Appertain to labels and statements (other than declarations)
- Avallabillity:
» since C++20
- MSVC, GCC, Clang, ICC
- Recommendation:
» Avoid
» Consider using only if it leads to a measurable perf improvement
+ Keep in mind this might change with a different compiler
»+ Keep in mind non-straightforward semantic rules

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 111



if (shouldSendOrder) [[likely]]
sendOrder (order):

else
doSomethingElse();

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 112



[ [noreturn]]
[ [carries_dependency]]
[ [likely]]
[ [unlikely]]
[ [assume] ]



Portable assumptions

Timur Doumler (papers@timur.audio)

Document #: P1774RS8

Date: 2022-06-14
Project: Programming Language C++
Audience: Core Working Group

Abstract

We propose a standard facility providing the semantics of existing compiler built-ins such as
__builtin_assume (Clang) and __assume (MSVC, ICC). It gives the programmer a way to
allow the compiler to assume that a given C++ expression is true, without evaluating it, and to
optimise based on this assumption. This is very useful for high-performance and low-latency
applications in order to generate both faster and smaller code.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 114



e R B .;..-u.l.._ 5., Pty ._.“
- b r» tx < u.\uﬂ(W M.Mn\ l\/ﬂ-ﬂ.w«‘
AN

o ‘mo vk‘mwz.ciuv

(e 7 AR e b

20, S I - gooet B AR .Lvm..\.\... 3
L ....,. é M.Is s .*..%Fg.v.b\ . q

..1..&....». - . . TR ;.... L

[ / E .
q..\.,.”..hb,.,. ’

e e T

'A,o ..\







[[assume(expr)]];
// assume that expr == true, without checking 1it,
// and optimise based on that assumption.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 117



[[assume(expr)]];

// assume that expr == true, without checking 1it,
// and optimise based on that assumption.

// If expr does not evaluate to true, you get UB.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 118



int divide_by_32(int x) {
return x/32;

mov eax,
sar eax,
shr eax,
add eax,
sar eax,
ret

edl
31
27

edl

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

119



int divide_by_32(int x) {
return x/32;

int divide_by_32(int x) {
[[assume(x >= 0)]];

s return x/32;
}
mov eax, edl mov eax, edl
sar eax, 31 shr eax, b
shr eax, 27 ret
add eax, edil
sar eax, b5
ret
Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 120



void limiter(float* data, size_t size) {
for (size_t 1 = 0; 1 < size; ++i)
data[i] = std::clamp(data[i], -1.0f, 1.0f);

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 121



void limiter(float* data, size_t size) {
[[assume(size > 0)]];
[[assume(size % 32 == 0)]];
for (size_t 1 = 0; i < size; ++1i)
[[assume(std::isfinite(datal[i]))]];
data[i] = std::clamp(data[i], -1.0f, 1.0f);

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 122



int f(int y) {
[[assume(++y == 43)]];
return y;

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 123



int f(int y) {
[[assume(++y == 43)]];
return y;

int f(int) A
return 42;

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 124



[ [assume] ]

+ Syntax:

+  Argument: [[assume(expr)]]; where expr convertible to bool
- Avallabillity:

» since C++23

- GCC13

- MSVC and ICC have __assume, Clang has __builtin_assume

- Recommendation:
»+ Expert-only usage (should be very rare)
- expr == true mustbe an invariant in your code, otherwise UB

+ Consider using only if it leads to a measurable perf improvement

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 125



Document: P2646R0

Date: 2022-0CT-15

Project: Programming Language C++
Audience: EWG

Reply-to: Parsa Amini: me@parsaamini.net

Joshua Berne: jberned4@bloomberg.net
John Lakos: jlakos@bloomberg.net

Explicit Assumption Syntax
Can Reduce Run Time

Abstract

Many compilers provide platform-specific assumption syntax, such as
~ _builtin assume in Clang or idiomatic use of builtin unreachable () in

GCC. This augmented syntax can then indicate to o the compller that it is
allowed but not requlred to assume that some condition — typically a Boolean-
valued expression — is always true. Recently, after due consideration, the

[ [assume] ] attribute was formally adopted into the C++ working draft
(P1774R8) to provide a facility for expressing such assumptions portably in
source code. As is well known and easily demonstrated, the use of such
compiler-accessible assumption constructs can noticeably affect compile times
as well as object-code and overall program sizes. On the other hand, some
members of the C++ Standards Committee have suggested (wrongly) that
modern compilers and CPUs conspire to realize essentially all runtime
performance benefits available on modern architectures, thereby obviating use
of explicit assumption constructs in source code.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 126






[ [no_unique_address]]



struct Empty {}:
static_assert(sizeof(Empty) == 1);

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 129



struct Empty {}:
static_assert(sizeof(Empty) == 1);

struct Derived : Empty {
int 1 = 0;
};

static_assert(sizeof(Derived) == sizeof(int));

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 130



struct Empty {}:
static_assert(sizeof(Empty) == 1);

struct Composed {
Empty e;
int 1 = 0;

};

static_assert(sizeof(Composed) == sizeof(int)); // fail

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 131



struct Empty {}:
static_assert(sizeof(Empty) == 1);

struct Composed {
[[no_unique_address]] Empty e;
int 1 = 0;

s

static_assert(sizeof(Composed) == sizeof(int));

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 132



Why is [[no_unique_address]] odd?

+ Modifies the class layout — but only optionally
- Adding it Is a potential ABl break
+ Not every major compiler supports it (MSVC doesn't)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 133



Why is [[no_unique_address]] odd?

+ Modifies the class layout — but only optionally

- Adding it Is a potential ABl break

+ Not every major compiler supports it (MSVC doesn't)

- "Remove it and declaration still makes sense"” does not work:

struct Empty {};

struct Composed {
[[no_unique_address]] Empty e;
int 1 = 0;

};

static_assert(sizeof(Composed) == sizeof(int));

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 134



[ [no_unique_address]]

+ Syntax:

+ Appertains to a non-static data member
- Avallabillity:

» since C++20

- GCC, Clang, and ICC (not enabled in MSVC by default)
- Recommendation:

+ Use if binary size is critical

- Don't rely on the effects being reliable or portable

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 135



- Standard attributes in C

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 136



[[noreturn]]
[[deprecated]]
[[fallthrough]]
[[nodiscard]]

[ [maybe_unused] ]
[[reproducible]]
[ [unsequenced]]

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 137



[[noreturn]]
[[deprecated]]
[[fallthrough]]
[[nodiscard]]

[ [maybe_unused] ]

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 138



[[reproducible]]
[ [unsequenced]]

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 139



[ [reproducible]]
[ [unsequenced]]



Unsequenced functions

Etienne Alepins (Thales Canada) and Jens Gustedt (INRIA France)

org: ISO/IEC JCT1/SC22/WG14 document: N2887
target: IS 9899:2023 version: 4
date:  2021-12-31 license: CCBY
1. Revision history
Paper number Title Changes
N2477 Const functions Initial version
N2539 Unsequenced functions  Supersedes N2477 WG14 poll: 15-0-1
new wording (extracted from N2522)
no application to the C library
N2825 Unsequenced functions  Supersedes N2539
v3
no attribute verification imposed
support for function pointers
optional text for inclusion of lambdas
N2887 Unsequenced functions  Supersedes N2825 refactoring of the properties
v4

Copyright (¢) Timur Doumler | Y @timur_audio |

regroup properties in general text

attach properties to evaluations instead of syntax

add a sentence to the wording for composite types

editorial adjustments are collected in a note to the editors at the end
emphasize on the relationship with existing implementations

withdraw the special treatment of call once

https://timur.audio

141



[ [reproducible]] = [[gnu::pure]]
[ l[unsequenced]] = [[gnu::const]]



Sub-properties of reproducible & unsequenced

. stateless: function that does not define mutable static or thread-
local objects (nor do functions that are called by it)

+ effectless: function that does not have observable side effects

- Idempotent: repeated evaluation gives the same result (hence
may read global state)

- Independent: does not depend on other state than the
arguments or constants (hence may write to globals)

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 143



Sub-properties of reproducible & unsequenced

. stateless: function that does not define mutable static or thread-
local objects (nor do functions that are called by it)

+ effectless: function that does not have observable side effects

- Idempotent: repeated evaluation gives the same result (hence
may read global state)

- Independent: does not depend on other state than the
arguments or constants (hence may write to globals)

+ reproducible: effectless and idempotent

+ unsequenced: stateless, effectless, idempotent, and independent

Copy'right (c) Timur Doumler | Y @timur_audio | https://timur.audio 144



double cos(double x);

if ((cos(anglel) > cos(angle2)) || (cos(anglel) > cos(angle3))) A{

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 145



double cos(double x) [[unsequenced]];

if ((cos(anglel) > cos(angle2)) || (cos(anglel) > cos(angle3))) A{

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 146



double cos(double x) [[unsequenced]];

if ((cos(anglel) > cos(angle2)) || (cos(anglel) > cos(angle3))) {

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 147



[ [reproducible]], [[unsequenced]]

+ The compiler i1s not required to check the declared property
- In general, it will be assumed and optimised on
- |f the assumption does not hold, you get UB

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 148



[ [reproducible]], [[unsequenced]]

+ Syntax:

» Appertain to function declarations
- Avallabillity:

» since C23 (C only — for now...)

- No implementations yet afaik

- But GCC and Clang have [[gnhu::pure]] and [[gnu::const]]
- Recommendation:

»+ Use Iif you're sure what you're doing

- |f you get it wrong, you get UB

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 149



» Are standard attributes "ignorable"?
Syntactic ignorability
Semantic ignorability
Language design rule

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 150



Towards support for attributes in C++

(Revision 6)
Jens Maurer, Michael Wong

jens.maurer@gmx.net

michaelw@ca.ibm.com

Document number: N2761
Date: 2008-09-18

Project: Programming Language C++, Core Working Group
Reply-to: Michael Wong (michaelw(@ca.ibm.com)

Revision: 6

General Attributes for C++

1 Overview

The 1dea 1s to be able to annotate some entities in C++ with additional information.
Currently, there 1s no means to do that short of inventing a new keyword and augmenting
the grammar accordingly, thereby reserving yet another name of the user's namespace.
This proposal will survey existing industry practice for extending the C++ syntax, and
presents a general means for such annotations, including its integration into the C++
grammar. Specific attributes are not introduced 1n this proposal. It does not obviate the
ability to add or overload keywords where appropriate, but 1t does reduce such need and

add an ability to extend the language. T!

n1s proposal will allow many C++0x proposals to

move forward. A draft form of this proposal was presented in Oxford and received



Certainly, we would advise anyone who propose an attribute to consider comments on the
following area which will help guide them 1n making the decision of whether to use
attributes or not:

The feature 1s used 1n declarations or definitions only.

Is the feature 1s of use to a limited audience only (e.g., alignment)?

The feature does not modify the type system (e.g., thread local) and hence does
not require new mangling?

The feature 1s a "minor annotation" to a declaration that does not alter 1ts
semantics significantly. (Test: Take away the annotation. Does the remaining
declaration still make sense?

Is 1t a vendor-specific extension?

Is it a language Bindings on C++ that has no other way of tying to a type or
scope(e.g. OpenMP)

How does this change Overload resolution?

What is the effect in typedefs, will it require cloning?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 152



On the ignorability of standard attributes

Timur Doumler (papers@timur.audio)

Document #: P2552R1

Date: 2022-11-15
Project: Programming Language C++
Audience: Evolution Working Group, Core Working Group

Abstract

There is a general notion in C++ that standard attributes should be ignorable. However, currently
there does not seem to be a common understanding of what “ignorable” means, and the C
standard itself is ambiguous on this matter. In this paper, we consider three aspects of ignorability:
syntactic ignorability, semantic ignorability, and the behaviour of __has_cpp_attribute. We
discuss where and how the C++ standard is underspecified and why that is problematic, survey
existing implementation practice, and propose different options to resolve existing ambiguities.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 153



Question 1:
Is an implementation allowed to ignore a
standard attribute?

Question 2:

What does it mean to “ignore” a standard
attribute?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 154



C

A strictly conforming program using a standard attribute remains
strictly conforming in the absence of that attribute. [...] Standard
attributes specified by this document can be parsed but 1ignored
by an implementation without changing the semantics of a correct
program; the same 1s not true for attributes not specified by this

document.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 155



C

A strictly conforming program using a standard attribute remains
strictly conforming in the absence of that attribute. [...| Standard
attributes specified by this document can be parsed but 1ignored
by an implementation without changing the semantics of a correct
program; the same 1s not true for attributes not specified by this

document.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 156



[dcl.attr.grammar]/6

For an attribute-token (including an attribute-scoped-token) not
specified 1n this document, the behavior 1s implementation-
defined. Any attribute-token that 1s not recognized by the
implementation 1s 1gnored.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 157


http://eel.is/c++draft/dcl.attr#nt:attribute-token
http://eel.is/c++draft/dcl.attr#nt:attribute-scoped-token
http://eel.is/c++draft/dcl.attr#grammar-6.sentence-1
http://eel.is/c++draft/dcl.attr#nt:attribute-token
http://eel.is/c++draft/dcl.attr#grammar-6.sentence-2

[dcl.attr.grammar]/6

For an attribute-token (including an attribute-scoped-token) not
specified 1n this document, the behavior 1s implementation-
defined. Any attribute-token that 1s not recognized by the
implementation 1s 1gnored.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 158


http://eel.is/c++draft/dcl.attr#nt:attribute-token
http://eel.is/c++draft/dcl.attr#nt:attribute-scoped-token
http://eel.is/c++draft/dcl.attr#grammar-6.sentence-1
http://eel.is/c++draft/dcl.attr#nt:attribute-token
http://eel.is/c++draft/dcl.attr#grammar-6.sentence-2

For an attribute-token (including an attribute-scoped-token) not
specified 1n this document, the behavior 1s implementation-
defined. Any attribute-token that 1s not recognized by the
implementation 1s 1gnored.

— Any attribute-token not specitfied in this document?

— Any attribute-token, including those specified in this document?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 159


http://eel.is/c++draft/dcl.attr#nt:attribute-token
http://eel.is/c++draft/dcl.attr#nt:attribute-scoped-token
http://eel.is/c++draft/dcl.attr#grammar-6.sentence-1
http://eel.is/c++draft/dcl.attr#nt:attribute-token
http://eel.is/c++draft/dcl.attr#grammar-6.sentence-2
http://eel.is/c++draft/dcl.attr#nt:attribute-token
http://eel.is/c++draft/dcl.attr#nt:attribute-token

+  Syntactic ignorability
+  Semantic ignorability

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 160



+  Syntactic ignorability

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 161



int main() {
[[no_unique_address]] int i; // Error or ignorable?

};

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 162



int main() A
[[no_unique_addressl] int i; // Error or ignorable?
[[assume(a %)]1]; // Error or ignorable?

};

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 163



int main() A
[[no_unique_addressl] int i; // Error or ignorable?
[[assume(a %)]1]; // Error or ignorable?

};

template <typename T>

struct X {
static_assert(sizeof(T) > 1);
bool f() { return true; }

};

int main() A
[[assume(X<char>().f())1]; // Error or ignorable?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 164



2538. Can standard attributes be syntactically ignored?

Section: 9.12.1 [dcl.attr.grammar] Status: open Submitter: Jens Maurer Date: 2021-12-02 Liaison: EWG

Subclause 9.12.1 [dcl.attr.grammar] paragraph 6 specifies that an unrecognized attribute-token 1s 1gnored:

For an attribute-token (including an attribute-scoped-token) not specified in this document, the behavior is
implementation-defined. Any attribute-token that 1s not recognized by the implementation 1s ignored.

The 1ntent 1s that only non-standard unrecognized attribute-tokens can be ignored; in particular, an implementation 1s required to
syntax-check all standard attributes, even if the implementation then chooses not to effect any semantics for that attribute.

Proposed resolution (approved by CWG 2022-07-01):

Change 1n 9.12.1 [dcl.attr.grammar]| paragraph 6 as follows:

For an attribute-token (including an attribute-scoped-token) not specified in this document, the behavior 1s
implementation-defined—A#y ; any such attribute-token that 1s not recognized by the implementation 1s ignored. [ Note:
A program is ill-formed if it contains an atfribute specified in 9.12 [dcl.attr] that violates the rules to which entity

or statement the attribute may apply or the syntax rules for the attribute's attribute-argument-clause, if any. --
end note ]

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 165



+  Semantic ignorability?

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 166



Semantic ignorability in C++ today is implicit

Attribute only produces diagnostics ("Recommended practice”)
deprecated, fallthrough, maybe_unused, nodiscanrd

Attribute i1s an optimisation hint ("Recommended practice")
Likely, unlikely, noreturn, assume

Attribute turns well-defined into undefined behaviour
noreturn, assume

Attribute has explicitly optional semantics
("potentially-overlapping subobject")
no_unlque_address

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 167



What is semantic ignorability?

"A program has the same behaviour/semantics
with or without the attribute”

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 168



What is semantic ignorability?

"A program has the same behaviour/semantics
with or without the attribute”
— No!

[[noreturn]] int f() { return 0; }
int main() { return f(); }

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 169



What is semantic ignorability?

"Given a well-formed program with well-defined behaviour,
omitting an attribute does not change the behaviour/semantics”

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 170



What is semantic ignorability?

"Given a well-formed program with well-defined behaviour,
omitting an attribute does not change the behaviour/semantics”
— No!

struct X 1};

struct Y {
[[no_unique_address]] X x;
int 1;

s

int main() { return (sizeof(Y) == sizeof(int)): }

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 171



What is semantic ignorability?

"Given a well-formed program with well-defined behaviour,
omitting an attribute does not change the behaviour/semantics”
— No!

struct X 1};

struct Y {
[[no_unique_address]] X x;
int 1;

s

static_assert(sizeof(Y) == sizeof(int));

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 172



What is semantic ignorability?

"Given a well-formed program with well-defined behaviour,
omitting an attribute does not change the behaviour/semantics”
— No!

struct X 1};

struct Y {
[[no_unique_address]] X x;
int 1;

s

static_assert(sizeof(Y) == sizeof(int));

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 173



Our proposed rule of semantic ignorability

"Given a well-formed program, removing all instances of a
particular attribute results in a program whose observable
behaviour is a conforming realisation of the original program.”

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 174



Our proposed rule of semantic ignorability

"Given a well-formed program, removing all instances of a
particular attribute results in a program whose observable
behaviour is a conforming realisation of the original program.”

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 175



[dcl.attr.grammar]| p6

° For an attribute-token (including an afttribute-scoped-token) not specified in
this document, the behavior 1s implementation-defined; any such attribute-
token that 1s not recognized by the implementation 1s 1ignored.

| Note 4: A program 1s 1ll-formed 1f it contains an aftribute specified in [dcl.attr]
that violates the rules specifying to which entity or statement the attribute can
apply or the syntax rules for the attribute's attribute-argument-clause, if any.
— end note]

[Note 5: The attributes specified in [dcl.attr] have optional semantics: given a
well-formed program, removing all instances of any one of those attributes results
in a program whose set of possible executions ([intro.abstract]) for a given input 1s
a subset of those of the original program for the same input, absent
implementation-defined guarantees with respect to that attribute. — end note]

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 176



Levels of program behaviour

Behaviour exhibited by the program
—_—_—m—m$msm™€™m€m————

Defined behaviour
—_—

Specified behaviour
—

Behaviour specified by the standard
— ]

Mandated behaviour

Implementation-defined behaviour

Unspecified behaviour
Undefined behaviour

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 177



Our proposed rule of semantic ignorability

"Given a well-formed program, removing all instances of a
particular attribute results in a program whose observable
behaviour is a conforming realisation of the original program.”

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 178



Needs to be fixed:

__has_cpp_attribute

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 179



#if __has_cpp_attribute(assume)

#define ASSUME(expr) [[assume(expr)]]
#elif defined(__clang__)

#define ASSUME(expr) __builtin_assume(expr)
#elif defined(_MSC_VER) || defined(__ICC)

#define ASSUME(expr) __assume(expr)
#elif defined(__GNUC__)

#define ASSUME(expr) if (expr) {} else { __builtin_unreachable(); }
Helse

#define ASSUME(expr) if (expr) {} else { *(char*)nullptr; }
#endif

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 180



Should __has_cpp_attribute have a non-zero value

for an "ignored™ attribute?

[cpp.cond]/6

For an attribute specified in this
document, the value of the /as-
attribute-expression 1s given by
Table 22. For other attributes
recognized by the
implementation, the value

1s implementation-defined.

Attribute Value
carriles dependency 200809L
deprecated 201309L
fallthrough 201603L
likely 201803L
maybe unused 201603L
no unique address 201803L
nodiscard 201907L
noreturn 200809L
unlikely 201803L

Copyright (¢) Timur Doumler | Y @timur_audio |

https://timur.audio

181


https://eel.is/c++draft/cpp.cond#nt:has-attribute-expression
https://eel.is/c++draft/cpp.cond#nt:has-attribute-expression
https://eel.is/c++draft/cpp.cond#tab:cpp.cond.ha

Should __has_cpp_attribute have a non-zero value
for an "ignored” attribute?

[cpp.cond]/6 [cpp.cond]/5

For an attribute specified 1n this Each has-attribute-expression 1s
document, the value of the Aas- replaced by a non-zero pp-number
attribute-expression 1s given by matching the form of an integer-

Table 22. For other attributes [iteral 1f the implementation supports
recognized by the an attribute with the name specified by
implementation, the value interpreting the pp-tokens, atter macro
1s implementation-defined. expansion, as an attribute-token, and

by 0 otherwise.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 182


https://eel.is/c++draft/cpp.cond#nt:has-attribute-expression
https://eel.is/c++draft/cpp.cond#nt:has-attribute-expression
https://eel.is/c++draft/cpp.cond#tab:cpp.cond.ha

Does the attribute "do anything"? IS __has_cpp_attribute > 07

Clang GCC ICC MSVC Clang GCC ICC MSVC

carries_dependency carries_dependency

deprecated deprecated
fallthrough ? fallthrough
likely/unlikely ? ? likely/unlikely
maybe_unused maybe_unused
no_unique_address no_unique_address X
nodiscard nodiscard
noreturn noreturn

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 183



Does the attribute "do anything"? IS __has_cpp_attribute > 07

Clang GCC ICC MSVC Clang GCC ICC

<

carries_dependency

carries_dependency

deprecated deprecated
fallthrough ? fallthrough
likely/unlikely ? ? likely/unlikely
maybe_unused maybe_unused
no_unique_address no_unique_address
nodiscard nodiscard
noreturn noreturn

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 184



Does the attribute "do anything"? IS __has_cpp_attribute > 07

Clang GCC ICC MSVC Clang GCC ICC MSVC

carries_dependency .

deprecated

X
S

carries_dependency

<
<

deprecated

fallthrough ? fallthrough

<
<

likely/unlikely ? ? likely/unlikely

<
<

maybe_unused maybe_unused

<
<

no_unique_address no_unique_address

<
<

nodiscard nodiscard

<]
<]
aaxaaaa@

<
<

noreturn noreturn

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 185



#if __has_cpp_attribute(assume)

#define ASSUME(expr) [[assume(expr)]]
#elif defined(__clang__)

#define ASSUME(expr) __builtin_assume(expr)
#elif defined(_MSC_VER) || defined(__ICC)

#define ASSUME(expr) __assume(expr)
#elif defined(__GNUC__)

#define ASSUME(expr) if (expr) {} else { __builtin_unreachable(); }
Helse

#define ASSUME(expr) if (expr) {} else { *(char*)nullptr; }
#endif

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 186



Does the attribute "do anything"? IS __has_cpp_attribute > 07

These should be compiler bugs!
Clang GCC ICC MSVC Clang GCC ICC MSVC

carries_dependency . X '

deprecated 9 4

carries_dependency

<

deprecated

<
<
<
<

fallthrough ? fallthrough

<
<
<
<

likely/unlikely ? ? likely/unlikely

<
<
<
<

maybe_unused maybe_unused

<
<
<
X

no_unique_address

no_unique_address

<
<
<
<

nodiscard nodiscard

<
<
<
<

noreturn noreturn

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 187



On the ignorability of standard attributes

Timur Doumler (papers@timur.audio)

Document #:

Date: 2023-04-19
Project: Programming Language C++
Audience: Evolution Working Group, Core Working Group

Abstract

There is a general notion in C++ that standard attributes should be i¢gnorable. However, currently
there does not seem to be a common understanding of what “ignorable“ means, and the C++
standard itself is ambiguous on this matter. In this paper, we consider three aspects of ignorability:
syntactic ignorability, semantic ignorability, and the behaviour of __has_cpp_attribute. We
discuss where and how the C++ standard is underspecified and why that is problematic, survey
existing implementation practice, and propose different options to resolve existing ambiguities.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 188



P2552R2

will propose that __has_cpp_attribute should have a

positive value only if the attribute is supported in the sense of
"the compiler makes its best effort to provide the optional
semantics”.

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 189



#if __has_cpp_attribute(assume)

#define ASSUME(expr) [[assume(expr)]]
#elif defined(__clang__)

#define ASSUME(expr) __builtin_assume(expr)
#elif defined(_MSC_VER) || defined(__ICC)

#define ASSUME(expr) __assume(expr)
#elif defined(__GNUC__)

#define ASSUME(expr) if (expr) {} else { __builtin_unreachable(); }
Helse

#define ASSUME(expr) if (expr) {} else { *(char*)nullptr; }
#endif

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 190



What are standard attributes?
History of standardisation

Standard attributes in C++
Classification
Usage
Caveats
Availability in major compilers

Standard attributes in C

Are standard attributes "ignorable™?
Syntactic ignorabillity
Semantic ignorability
Language design rule

» Future work

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 191



Future standard committee work

- Fix __has_cpp_attribute (P2552R2)

- Get [[assume]] into C
- Get [[unsequenced]] and [ [reproducible]] into C++26

- Propose [[noalias]] for C++26

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 192



Standard attributes
in C and C++

Timur Doumler
Y @timur_audio

ACCU Conference

19 April 2023 Uranus' Rings
Image by NASA/Hubble Team/Kevin M. Gill



| R - The international

p— p

C++ conference
— in the UK, by the sea

‘-
s

PSS

o“’
» e

news location workshops SPONSOrsS info tickets



news location workshops SPONSOrsS info tickets

C++ and Safety

Timur Doumler

60 minute session

13:45-14:45, Thursday, 29th June 2023

Organisations such as the National Security Angency (NSA) and the National Institute of Standards
and Techology (NIST) are currently urging developers to move away from programming languages
that are not memory safe. C++ is arguably not a "safe" programming language in its current form.
Why is that? And should we do anything about it? If yes, what, and how? Have we arrived at a
crossroads for the future evolution of C++? What does "safety" even mean, and how is it different
from "security" and "correctness"?

In this talk, we attempt to give useful definitions for these terms. For safety in particular, we can
distinguish between functional safety and language safety, and identify different aspects of language
safety (of which memory safety is one). We discuss how and why C++ is considered "unsafe" and
what consequences follow from that for different domains and use cases. We look at how other
programming languages, such as Java, Rust, and Val avoid such safety issues, what tradeoffs are
involved in these strategies, and why we can't easily adopt any of them for C++. We consider the
tooling available today to mitigate safety issues in C++, such as sanitisers and static analysers, and
their limitations. Finally, we look at the future evolution of C++ and discuss the current work on C++
Contracts and other recent proposals targeted at making C++ more safe.




The C++ Undefined Behaviour Survey

+ 3 simple questions (one of which is optional)

*  anonymous

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 196



The C++ Undefined Behaviour Survey

+ 3 simple questions (one of which is optional)

*  anonymous

» https://timur.audio/survey

Copyright (¢) Timur Doumler | Y @timur_audio | https://timur.audio 197


https://timur.audio/survey

