

Topics

▶ Code coverage - overview and taxonomy

▶ Introduction to modified condition/decision coverage (MC/DC)

▶ Some example programs

▶ A (thorough) description of the algorithm in gcc (notation warning)

By the end you will ...

▶ Be familiar with {line, branch, condition} coverage
▶ Know about different kinds of MC/DC

▶ Understand masked conditions

▶ Be able to measure MC/DC with gcc and gcov

▶ Have seen some cool maths

There will also be some nuggets, words of wisdom, from smart people

Code coverage

Code coverage is a collection of metrics for different properties of your test suite.
Programs are instrumented to record run-time information. This is sensitive to
inputs and results are usually aggregated over multiple runs.

Nugget

Any coverage metric should not be a goal, but a measurement of how well the
requirement tests exercise the structure of the program.

Hayhurst (2001): A Practical Tutorial on Modified Condition/ Decision Coverage.

Silly example:

bool maybe_record(double a) {

if (round(a) >= a) {

update_counter ();

return true;

} else {

return false;

}

}

maybe_record (0.6); // should round up

maybe_record (6.0); // should not round up

2: 9:bool maybe_round(double x) {

2: 10: if (round(x) >= x) {

2: 11: update_counter ();

2: 12: return true;

-: 13: } else {

#####: 14: return false;

-: 15: }

-: 16:}

-: 17:

1: 18: int main() {

1: 19: maybe_round (0.6);

1: 20: maybe_round (6.0);

1: 21:}

Oops, else-block not exercised.

A taxonomy of coverage metrics

Line/Statement Has every line of the source been executed?
Branch/Decision Has every control flow structure been evaluated to both true and

false?
Condition Has every boolean sub-expression been evaluated to both true

and false?

Even line coverage can require a lot of effort

A taxonomy of coverage metrics

Line/Statement Has every line of the source been executed?
Branch/Decision Has every control flow structure been evaluated to both true and

false?
Condition Has every boolean sub-expression been evaluated to both true

and false?

Even line coverage can require a lot of effort

Line/Statement coverage

Has every line of the source been executed?

int badadder(int x, int y) {

int tmp = x;

tmp = tmp + (y - 5);

return tmp;

tmp += 5; // dead as a do -do

}

Obviously cannot achieve 100% line coverage.

Line/Statement coverage

Has every line of the source been executed?

int fn(T* x) {

if (precondition1(x))

return -1;

if (precondition2(x))

return -1;

work(x);

return 0;

}

Branch/Decision coverage

Has every control flow structure been evaluated to both true and false?

if (x) {

// at least once

first ();

} else {

// at least once

second ();

}

How is this different from statement coverage?

Branch/Decision coverage

Has every control flow structure been evaluated to both true and false?

if (x) {

// at least once

first ();

} else {

// at least once

second ();

}

How is this different from statement coverage?

if (x) {

first ();

}

next ();

When x is true this has 100% statement coverage and 50% decision coverage.

if (always_true ()) {

first ();

}

next ();

When x is true this has 100% statement coverage and 50% decision coverage.

every control flow [...]

for and while are ifs with fake beards

while (cond) {

f(); g();

}

reset ();

loop:

if (!cond) goto endloop;

f(); g();

goto loop;

endloop: ;

1: 6:int main() {

2: 7: while (cond) {

branch 0 taken 50%

branch 1 taken 50% (fallthrough)

1: 8: f(); g();

-: 9: }

1: 10: reset ();

2: 11: loop:

2: 12: if (!cond) goto endloop;

branch 0 taken 50% (fallthrough)

branch 1 taken 50%

1: 13: f(); g();

1: 14: goto loop;

1: 15: endloop: ;

-: 16:}

every control flow [...]

for and while are ifs with fake beards

while (cond) {

f(); g();

}

reset ();

loop:

if (!cond) goto endloop;

f(); g();

goto loop;

endloop: ;

1: 6:int main() {

2: 7: while (cond) {

branch 0 taken 50%

branch 1 taken 50% (fallthrough)

1: 8: f(); g();

-: 9: }

1: 10: reset ();

2: 11: loop:

2: 12: if (!cond) goto endloop;

branch 0 taken 50% (fallthrough)

branch 1 taken 50%

1: 13: f(); g();

1: 14: goto loop;

1: 15: endloop: ;

-: 16:}

Condition coverage

Has every boolean sub-expression been evaluated to both true and false?

if (x && y) {

both ();

}

x y %

0 0 25
1 0 75
1 1 100

More statement vs decision coverage

while (accidently_always_true ()) {

f();

if (g()) break;

h();

}

The loop always terminates, but only because of the break. Could have 100%
statement coverage, but not decision coverage.

More statement vs decision coverage

while (accidently_always_true ()) {

f();

if (g()) break;

h();

}

The loop always terminates, but only because of the break. Could have 100%
statement coverage, but not decision coverage.

More condition coverage

if (x && accidently_always_true(y)) {

both ();

} else {

htob ();

}

fn(0, 0); // 25%

fn(1, 0); // 75%

fn(1, 1); // 100%

Condition coverage is clearly insufficient.

$ gcov -b program

3: 5:void fn(int x, int y) {

3: 6: if (x && accidently_always_true(y)) {

branch 0 taken 67% (fallthrough)

branch 1 taken 33%

branch 3 taken 100% (fallthrough)

branch 4 taken 0%

2: 7: both ();

-: 8: } else {

1: 9: htob ();

-: 10: }

3: 11:}

-: 12:

1: 13:int main() {

1: 14: fn(0, 0);

1: 15: fn(1, 0);

1: 16: fn(1, 1);

-: 17:}

struct C {

C() { ... }

C(const C&) { ... }

C(C&&) { ... }

C& operator = (const C&) { ... }

C& operator = (C&&) { ... }

};

Does your test suite actually call the move constructor?

struct C {

C() { ... }

C(const C&) { ... }

C(C&&) { ... }

C& operator = (const C&) { ... }

C& operator = (C&&) { ... }

};

Does your test suite actually call the move constructor?

Nugget

C++ is the only language I know that lets you specify a custom copy function and
then do its best to not call it.

Tony van Eerd

gcc

gcc emits .gcno files (source annotation) and runs create or update .gcda files
(counters)

Quick start

▶ Build with gcc --coverage

▶ Run program, test suite

▶ Generate report with gcov <program> or gcov <source>

▶ Read the manual

General advice
▶ lcov is very useful

▶ Results (particularly source mapping) only reliable without optimizations

▶ Apply common sense and good engineering

Modified condition/decision coverage

▶ How is it different from condition coverage?

▶ Why even care?

Why even care?

▶ DO-178B/C (Level A)

▶ ISO26262 (ASIL D)

Why even care?

▶ It is a good metric

▶ Can detect unintended data dependence

▶ Can detect classes of bad expressions

▶ Requires testing more interactions in your program

▶ Drives robustness

The problem with decision coverage:

if ((a && b) || c) {

//

} else {

//

}

a b c

F F F F
F F T T
F T F F
F T T T
T F F F
T F T T
T T F T
T T T T

Metric not very sensitive to the conditions and their interaction, only need two tests
for three parameters.

Modified condition/decision coverage satisfied if:

▶ every entry and exit point has been invoked

▶ every basic condition has taken on all possible outcomes

▶ each basic condition has been shown to independently affect the decision’s
outcome

if ((a && b) || c) {

//

} else {

//

}

▶ every entry and exit point has been invoked

Branch coverage

a b c

F F F F
F F T T
F T F F
F T T T
T F F F
T F T T
T T F T
T T T T

if ((a && b) || c) {

//

} else {

//

}

▶ every basic condition has taken on all possible outcomes

Condition coverage

a b c

F F F F
F F T T
F T F F
F T T T
T F F F
T F T T
T T F T
T T T T

if ((a && b) || c) {

//

} else {

//

}

▶ each basic condition has been shown to independently
affect the decision’s outcome

Modified condition/decision coverage

a b c

F F F F
F F T T
F T F F
F T T T
T F F F
T F T T
T T F T
T T T T

▶ Testing all 2N inputs would not reliably catch more defects

▶ N + 1 test cases is sufficient (for coverage)

The problem with MC/DC

▶ Only tests implementation, not the spec

▶ Possible to cheat

▶ Needs many test cases in maybe uninteresting places

▶ Awful to determine without tooling

▶ Can be expensive and at odds with fuzzing

▶ Can lead to Metric Driven Development (MDD)

Nugget

This is because MC/DC testing discourages defensive code with unreachable branches,
but without defensive code, a fuzzer is more likely to find a path that causes problems.

Nugget

MC/DC testing seems to work well for building code that is robust during normal use,
whereas fuzz testing is good for building code that is robust against malicious attack.

https://www.sqlite.org/testing.html

A taxonomy of coverage metrics

Line/Statement Has every line of the source been executed?
Branch/Decision Has every control flow structure been eval-

uated to both true and false?
Condition Has every boolean sub-expression been

evaluated to both true and false?
Modified Condition/Decision coverage Has every control flow structure been eval-

uated to both true and false and every con-
dition been shown to affect the decision out-
come independently?

Unique-cause MC/DC

Only one condition may change between a test vector pair, and the resulting decision
must be different for the two test vectors.

if ((a && b) || (c && d))

a b c d

0 1 0 1 0
1 1 0 1 1
1 0 0 1 0
1 0 1 1 1
1 0 1 0 0

▶ Need N + 1 specific test cases to
achieve coverage.

▶ No coverage set if strongly coupled
conditions.

Unique-cause MC/DC

Only one condition may change between a test vector pair, and the resulting decision
must be different for the two test vectors.

if ((a && b) || (c && d))

a b c d

0 1 0 1 0
1 1 0 1 1
1 0 0 1 0
1 0 1 1 1
1 0 1 0 0

▶ Need N + 1 specific test cases to
achieve coverage.

▶ No coverage set if strongly coupled
conditions.

Masking MC/DC

Only one condition having an influence on the outcome may change between a test
vector pair.

if ((a && b) || (c && d))

a b c d

0 1 0 1 0
1 1 0 1 1
1 0 1 1 1
1 0 1 0 0

▶ Need
⌈
2
√
N
⌉
test cases to achieve

coverage.

▶ Multiple test vector sets to choose
from, some tests may map better to
the requirements.

Masking MC/DC

Only one condition having an influence on the outcome may change between a test
vector pair.

if ((a && b) || (c && d))

a b c d

0 1 0 1 0
1 1 0 1 1
1 0 1 1 1
1 0 1 0 0

▶ Need
⌈
2
√
N
⌉
test cases to achieve

coverage.

▶ Multiple test vector sets to choose
from, some tests may map better to
the requirements.

1 8 16 24 32 40 48 56 64

0

10

20

30

40

50

60

70

Conditions

M
in
im

u
m

te
st

ca
se
s

Masking
Unique-cause

N + 1 ≈
⌈
2
√
N
⌉
for small N

1 8 16 24 32 40 48 56 64

0

10

20

30

40

50

60

70

Conditions

M
in
im

u
m

te
st

ca
se
s

Masking
Unique-cause

N + 1 ≈
⌈
2
√
N
⌉
for small N

Nugget

Masking MC/DC generally require fewer test cases than unique-cause MC/DC, but is
as good at detecting errors.

Chilenski (2001): An Investigation of Three Forms of the Modified Condition Decision
Coverage (MCDC) Criterion.

I wrote a patch for gcc

$ git log -n 1 --format=short --shortstat

Author: Jørgen Kvalsvik <jorgen.kvalsvik@woven-planet.global>

Add condition coverage profiling

21 files changed, 2952 insertions(+), 27 deletions(-)

gcc/tree-profile.cc | +978

Quick start
gcc --coverage -fprofile-conditions

Demo

$ gcc --coverage -fprofile -conditions

demo.c -o demo

$./demo 0 0 0

$./demo 0 0 1

$./demo 1 0 0

$ gcov --conditions demo

$ cat demo.c.gcov

if ((a && b) || c) {

condition outcomes covered 4/6

condition 0 not covered (true)

condition 1 not covered (true)

Question
Why is a = 1 not covered?

Note
This section covers masking MC/DC

Requirement

Each basic condition has been shown to independently affect the decision’s outcome.

Definition
A condition independently affects the outcome if changing it while keeping the other
values constant changes the outcome.

if ((a && b) || c) {

//

} else {

//

}

a b c

F F F F
F F T T
F T F F
F T T T
T F F F
T F T T
T T F T
T T T T

Observation
Changing a does not change the decision

This effect is called masking

▶ * || true

▶ * && false

Commutation
Reversing a boolean expression does not change its truth table

(P ∧ Q) ≡ (Q ∧ P)

(P ∨ Q) ≡ (Q ∨ P)

Observation
Masked conditions are short circuited in the reversed expression

(a && b) || c
a b c

F * F F
F * T T
F * F F
F * T T
T F F F
T F T T
T T * T
T T * T

c || (b && a)
c b a

F F - F
F F - F
F T F F
F T T T
T - - T
T - - T
T - - T
T - - T

Short circuiting for the expression * and the reverse -

(a && b) || c
a b c

F * F F
F * T T
F * F F
F * T T
T F F F
T F T T
T T * T
T T * T

c || (b && a)
c b a

F F - F
T - - T
F T F F
T - - T
F F - F
T - - T
F T T T
T - - T

(a && b) || c
a b c

F * F F
- - T T
F * F F
- - T T
T F F F
- - T T
T T * T
T T * T

Note
Row order in c || (b && a) changed

(a && b) || c

a b c

1 F * F F
2 - - T T
3 F * F F
4 - - T T
5 T F F F
6 - - T T
7 T T * T
8 T T * T

•

a = { 5, 7, 8 }

•

¬a = { 1, 3 }

•

b = { 7, 8 }

•

¬b = { 5 }

•

c = { 2, 4, 6 }

•

¬c = { 1, 3, 5 }

Test sets for cases for masking MC/DC.

(a && b) || c

a b c

1 F * F F
2 - - T T
3 F * F F
4 - - T T
5 T F F F
6 - - T T
7 T T * T
8 T T * T

• a = { 5, 7, 8 }
• ¬a = { 1, 3 }

•

b = { 7, 8 }

•

¬b = { 5 }

•

c = { 2, 4, 6 }

•

¬c = { 1, 3, 5 }

Test sets for cases for masking MC/DC.

(a && b) || c

a b c

1 F * F F
2 - - T T
3 F * F F
4 - - T T
5 T F F F
6 - - T T
7 T T * T
8 T T * T

•

a = { 5, 7, 8 }

•

¬a = { 1, 3 }
• b = { 7, 8 }
• ¬b = { 5 }

•

c = { 2, 4, 6 }

•

¬c = { 1, 3, 5 }

Test sets for cases for masking MC/DC.

(a && b) || c

a b c

1 F * F F
2 - - T T
3 F * F F
4 - - T T
5 T F F F
6 - - T T
7 T T * T
8 T T * T

•

a = { 5, 7, 8 }

•

¬a = { 1, 3 }

•

b = { 7, 8 }

•

¬b = { 5 }
• c = { 2, 4, 6 }
• ¬c = { 1, 3, 5 }

Test sets for cases for masking MC/DC.

(a && b) || c

a b c

1 F * F F
2 - - T T
3 F * F F
4 - - T T
5 T F F F
6 - - T T
7 T T * T
8 T T * T

•

a = { 5, 7, 8 }

•

¬a = { 1, 3 }

•

b = { 7, 8 }

•

¬b = { 5 }

•

c = { 2, 4, 6 }

•

¬c = { 1, 3, 5 }

Test sets for cases for masking MC/DC.

Detecting errors
Specification (a && b) || c

Implementation (a && !c) || c

Masking table
a b c

F * F F
- - T T
F * F F
- - T T
T F F F
- - T T
T T * T
T T * T

(a && !c) || c
a !c c

F * F F
- - T T
F * F F
- - T T
T T * T
- - T T
T T * T
T T * T

Masking table
a b c

F * F F
- - T T
F * F F
- - T T
T F F F
- - T T
T T * T
T T * T

(a && !c) || c
a !c c

F * F F
- - T T
F * F F
- - T T
T T * T
- - T T
T T * T
T T * T

Note
Some strong coupled conditions cannot be detected by masking MC/DC

(a && b) || (a && c)

a b a c

0 * 0 * 0
0 * 0 * 0
- 0 - 0 0
- 0 1 1 1
0 * - 0 0
0 * 0 * 0
1 1 * * 1
1 1 * * 1

Full unique-cause coverage is not possible
(a repeated)

Cheating MC/DC

if ((a && b) || c) {

//

} else {

//

}

int ab = a && b;

if (ab || c) {

//

} else {

//

}

a b c

F F F F
F F T T
F T F F
F T T T
T F F F
T F T T
T T F T
T T T T

ab c

F F
F T
T F
T T

Programs

If computers had blood, we would be considered butchers

gcc does control flow graph analysis for coverage

if (a && b && c)

x = 1;

if (a)

if (b)

if (c)

x = 1;

#####: 2: if (a && b && c)

condition outcomes covered 6/6

#####: 3: x = 1;

#####: 2: if (a)

#####: 3: if (b)

#####: 4: if (c)

#####: 5: x = 1;

condition outcomes covered 6/6

gcc does control flow graph analysis for coverage

if (a && b && c)

x = 1;

if (a)

if (b)

if (c)

x = 1;

#####: 2: if (a && b && c)

condition outcomes covered 6/6

#####: 3: x = 1;

#####: 2: if (a)

#####: 3: if (b)

#####: 4: if (c)

#####: 5: x = 1;

condition outcomes covered 6/6

gcc does control flow graph analysis for coverage

if (a && b && c)

x = 1;

if (a)

if (b)

if (c)

x = 1;

#####: 2: if (a && b && c)

condition outcomes covered 6/6

#####: 3: x = 1;

#####: 2: if (a)

#####: 3: if (b)

#####: 4: if (c)

#####: 5: x = 1;

condition outcomes covered 6/6

Rust #1

fn f(a: bool , b: bool , c: bool) -> bool {

a || (b && c)

}

fn main() {

f(true , true , false);

f(false , true , false);

}

Rust #1

$ gccrs --coverage -fprofile -conditions prog.rs -o prog \

-frust -incomplete -and -experimental -compiler -do-not -use

$./prog

$ gcov --conditions prog

File ’prog.rs’

Lines executed :100.00% of 5

Condition outcomes covered :50.00% of 6

Creating ’prog.rs.gcov’

Rust #1

2: 1:fn f(a: bool , b: bool , c: bool) -> bool {

2: 2: a || (b && c)

condition outcomes covered 3/6

condition 1 not covered (true false)

condition 2 not covered (true)

-: 3:}

-: 4:

1: 5:fn main() {

1: 6: f(true , true , false);

1: 7: f(false , true , false);

-: 8:}

Rust #1

2: 1:fn f(a: bool , b: bool , c: bool) -> bool {

2: 2: a || (b && c)

condition outcomes covered 3/6

condition 1 not covered (true false)

condition 2 not covered (true)

-: 3:}

-: 4:

1: 5:fn main() {

1: 6: f(true , true , false);

1: 7: f(false , true , false);

-: 8:}

Summary

Rust #1

2: 1:fn f(a: bool , b: bool , c: bool) -> bool {

2: 2: a || (b && c)

condition outcomes covered 3/6

condition 1 not covered (true false)

condition 2 not covered (true)

-: 3:}

-: 4:

1: 5:fn main() {

1: 6: f(true , true , false);

1: 7: f(false , true , false);

-: 8:}

Condition index

Rust #1

2: 1:fn f(a: bool , b: bool , c: bool) -> bool {

2: 2: a || (b && c)

condition outcomes covered 3/6

condition 1 not covered (true false)

condition 2 not covered (true)

-: 3:}

-: 4:

1: 5:fn main() {

1: 6: f(true , true , false);

1: 7: f(false , true , false);

-: 8:}

Quiet if fully covered

Rust #1

2: 1:fn f(a: bool , b: bool , c: bool) -> bool {

2: 2: a || (b && c)

condition outcomes covered 3/6

condition 1 not covered (true false)

condition 2 not covered (true)

-: 3:}

-: 4:

1: 5:fn main() {

1: 6: f(true , true , false);

1: 7: f(false , true , false);

-: 8:}

Conditions not shown to be independent

Rust #2

fn loops(init: i32) -> i32 {

let mut i = init;

let mut x = 0;

while true {

x *= i;

i += 1;

if i > 5 { break }

}

while i < 20 {

x -= i;

i *= 2;

}

x

}

fn main() {

loops (0);

loops (5);

}

Rust #2
2: 1:fn loops(init: i32) -> i32 {

2: 2: let mut i = init;

2: 3: let mut x = 0;

5: 4: while true {

7*: 5: x *= i;

condition outcomes covered 1/2

condition 0 not covered (true)

7*: 6: i += 1;

condition outcomes covered 1/2

condition 0 not covered (true)

7: 7: if i > 5 { break }

condition outcomes covered 2/2

-: 8: }

6: 9: while i < 20 {

condition outcomes covered 2/2

4*: 10: x -= i;

condition outcomes covered 1/2

condition 0 not covered (true)

4*: 11: i *= 2;

condition outcomes covered 1/2

condition 0 not covered (true)

-: 12: }

2: 13: x

-: 14:}

C++ #1

class C {

public:

explicit C(int c) noexcept (true) : v(c) {}

bool operator < (const C& o) const noexcept (true) {

return this ->v < o.v;

}

private:

int v;

};

int main() {

C one(1), two (2);

int three = 3, four = 4;

int x = 0;

if (one < two && four < three)

x = 1;

}

gcc uses a temporary for the if

C++ #1

1: 9:int main() {

1: 10: C one(1), two (2);

1: 11: int three(3), four (4);

1: 12: int x = 0;

1*: 13: if (one < two && four < three)

condition outcomes covered 1/4

condition 0 not covered (true false)

condition 1 not covered (true)

condition outcomes covered 1/2

condition 0 not covered (true)

#####: 14: x = 1;

1: 15:}

gcc uses a temporary for the if

C++ #1

1: 9:int main() {

1: 10: C one(1), two (2);

1: 11: int three(3), four (4);

1: 12: int x = 0;

1*: 13: if (one < two && four < three)

condition outcomes covered 1/4

condition 0 not covered (true false)

condition 1 not covered (true)

condition outcomes covered 1/2

condition 0 not covered (true)

#####: 14: x = 1;

1: 15:}

gcc uses a temporary for the if

D #1

1: 3:void main()

-: 4:{

1: 5: stdin

-: 6: .byLineCopy

-: 7: .array

3: 8: .sort !((a, b) => a > b)

1: 9: .each!writeln;

-: 10:}

string.d.gcov:

-: 251: {

-: 252: import core.stdc.string : memcmp;

-: 253:

5: 254: const ret = memcmp(s1.ptr , s2.ptr , len);

5: 255: if (ret)

condition outcomes covered 1/2

condition 0 not covered (true)

#####: 256: return ret;

-: 257: }

5: 258: return (s1.length > s2.length) - (s1.length < s2.length);

D #1

1: 3:void main()

-: 4:{

1: 5: stdin

-: 6: .byLineCopy

-: 7: .array

3: 8: .sort !((a, b) => a > b)

1: 9: .each!writeln;

-: 10:}

string.d.gcov:

-: 251: {

-: 252: import core.stdc.string : memcmp;

-: 253:

5: 254: const ret = memcmp(s1.ptr , s2.ptr , len);

5: 255: if (ret)

condition outcomes covered 1/2

condition 0 not covered (true)

#####: 256: return ret;

-: 257: }

5: 258: return (s1.length > s2.length) - (s1.length < s2.length);

C #1

2: 1:int lt(int x, int y) {

2: 2: return x < y;

-: 3:}

-: 4:

1: 5:int main() {

1: 6: int one = 1, two = 2;

1: 7: int three = 3, four = 4;

1: 8: int x = 0;

1: 9: if (lt(one , two) && lt(four , three))

condition outcomes covered 1/4

condition 0 not covered (true false)

condition 1 not covered (true)

#####: 10: x = 1;

-: 11:}

C #2

1: 1:int main() {

1: 2: int one = 1, two = 2;

1: 3: int three = 3, four = 4;

1: 4: int x = 0;

1*: 5: int v = one < two && three < four;

condition outcomes covered 2/4

condition 0 not covered (false)

condition 1 not covered (false)

1: 6: if (v)

condition outcomes covered 1/2

condition 0 not covered (false)

1: 7: x = 1;

-: 8: else

#####: 9: x = -1;

-: 10:}

C #3

1: 1:int ternary(int a, int b) {

1*: 2: int x = (a || b) ? f() : g();

condition outcomes covered 1/4

condition 0 not covered (false)

condition 1 not covered (true false)

-: 3:}

C #4

1: 1:int main() {

1: 2: int a = 0, b = 3, c = 2;

1: 3: int x = 0;

1*: 4: if ((a && b) || (c && a))

condition outcomes covered 2/8

condition 0 not covered (true)

condition 1 not covered (true false)

condition 2 not covered (true false)

condition 3 not covered (true)

#####: 5: x = 1;

Current status

▶ Condition profiling is currently pending review

▶ Inferring conditionals from the CFG is accurate, but sometimes surprising

▶ Approach is sensitive to frontend decisions

▶ Reports can be unwieldy; see lcov

▶ No integration with build systems and testing frameworks

Algorithm

if ((a && b) || c) {

// t

} else {

// f

}

// e

_a:

if (a) goto _b

else goto _c

_b:

if (b) goto _t

else goto _c

_c:

if (c) goto _t

else goto _f

_t:

goto _e

_f:

goto _e

_e:

if ((a && b) || c) {

// t

} else {

// f

}

// e

a

b

c

tf

e

Control flow graph

▶ Directed graph

▶ Nodes are an uninterruptible sequence of instructions

▶ Edges are next possible paths of execution

▶ Edges are labelled fallthrough, true/false (conditional), complex

▶ Fallthrough and conditional are mutually exclusive

Act I: Inferring decisions

if ((a && b) || c) {

// t

} else {

// f

}

// e

a

b

c

tf

0

e

Observation ⋃
{ Succ(v) | v ∈ B } = N[B]

N[B] = B ∪ OB

B is a decision (boolean expression)
OB is the outcome of B
N(B) is the open neighborhood of B
N[B] is the closed neighborhood of B

if ((a && b) || c) {

} else {

}

uninterruptible

outcome

⋃
{ Succ(v) | v ∈ B }

a

b

c

tf

e

if ((a && b) || c) {

} else {

}

uninterruptible

outcome

E (B) = { (u, v) ∈ E | u ∈ B, v ∈ N[B] }

All edges in E (B) are conditional

a

b

c

tf

e

if ((a && b) || c) {

} else {

}

uninterruptible

outcome

Succ(BΩ) = OB

a

b

c

tf

e

if ((a && b) || c) {

} else {

}

uninterruptible

outcome

Can not goto to/from the middle of an expression

no goto

a

b

c

tf

e

Reachable-by-condition-edge (BFS)

if ((a && b) || c) {

// t

} else {

// f

}

a

b

c

tf

e

if ((a && b) || c) {

// t

} else {

// f

}

a

b

c

tf

e

if ((a && b) || c) {

// t

} else {

// f

}

a

b

c

tf

e

if ((a && b) || c) {

// t

} else {

// f

}

a

b

c

tf

e

if ((a && b) || c) {

// t

} else {

// f

}

a

b

c

tf

e

if ((a && b) || c) {

// t

} else {

// f

}

a

b

c

tf

e

if ((a && b) || c) {

// t

} else {

// f

}

a

b

c

tf

e

if ((a && b) || c) {

// t

} else {

// f

}

a

b

c

tf

e

if ((a && b) || c) {

// t

} else {

// f

}

a

b

c

tf

e

if ((a && b) || c) {

// t

} else {

// f

}

a

b

c

tf

e

if ((a && b) || c) {

// t

} else {

// f

}

a

b

c

tf

e

1: function reach(v0, vp)
2: R ← { }
3: Q ← queue(v0)
4: repeat
5: v ← pop(Q)
6: for s in Succs(v) do
7: skip if s ∈ R
8: skip if is-same(s, vp)
9: skip if is-back-edge(v , s)

10: skip if ¬ dominated-by(s, v0)
11: skip if ¬ is-conditional(s)
12: enqueue(Q, s)
13: add(R, s)

14: until empty(Q)
15: return R

if (a && b) {

if (c) {

// p

} else {

// q

}

} else {

// r

}

a

b

r c

e

p q

if (a && b) {

if (c) {

// p

} else {

// q

}

} else {

// r

}

a

b

r c

e

p q

if (a && b) {

if (c) {

// p

} else {

// q

}

} else {

// r

}

a

b

r c

e

p q

if (a && b) {

if (c) {

// p

} else {

// q

}

} else {

// r

}

a

b

r c

e

p q

if (a && b) {

if (c) {

// p

} else {

// q

}

} else {

// r

}

a

b

r c

e

p q

if (a && b) {

if (c) {

// p

} else {

// q

}

} else {

// r

}

C = (G ,G ′)

∀e ∈ E (G) • cond(e)
⇒OB ⊂ N[G]

⇒B ⊆ G

a

b

r c

e

p q

if (a && b) {

if (c) {

// p

} else {

// q

}

} else {

// r

}

No path from then to else

a

b

r c

e

p q

if (a && b) {

if (c) {

// p

} else {

// q

}

} else {

// r

}

outcome

∀v ∈ then(B) • B ⊂ A(v)

∀v ∈ else(B) • B ⊂ A(v)

where A(v) are the ancestors of v

a

b

r c

e

p q

if (a && b) {

if (c) {

// p

} else {

// q

}

} else {

// r

}

outcome

∀v ∈ then(B) • B ⊂ A(v)

∀v ∈ else(B) • B ⊂ A(v)

where A(v) are the ancestors of v

a

b

r c

e

p q

if (a && b) {

if (c) // p

else // q

} else {

// r

}

a

b

r c

e

p q

if (a && b) {

if (c) // p

else // q

} else {

// r

}

A(q) = { c , b, a }

a

b

r c

e

p q

if (a && b) {

if (c) // p

else // q

} else {

// r

}

A(q) = { c , b, a }
A(p) = { c , b, a }

a

b

r c

e

p q

if (a && b) {

if (c) // p

else // q

} else {

// r

}

A(q) = { c , b, a }
A(p) = { c , b, a }
A(r) = { b, a }

a

b

r c

e

p q

if (a && b) {

if (c) // p

else // q

} else {

// r

}

A(q) = { c , b, a }
A(p) = { c , b, a }
A(r) = { b, a }

B =
⋂
{A(q),A(p),A(r) }

= { a, b }
OB = { r , c }

a

b

r c

e

p q

Problem
BFS needs to start at left-most term B0

Solution
Process program depth-first, mark when processed

▶ If v is fallthrough ⇒ mark and continue

▶ If v is conditional ⇒ is B0 and B are marked

▶ If v is marked ⇒ continue

Note
May lead to expressions being processed ”out of order”

1: function find-decision(v0, vp)
2: G ← reach(v0, vp)
3: if |G | = 1 then
4: return G
5: B ← G
6: for n in N(G) do
7: P ← { }
8: for v in Preds(n) do
9: P ← P ∪ AG (v)

10: B ← B ∩ P
11: return B

cond_reachable_from (p, post , reachable , G);

if (G.length () == 1) {

out.safe_push (p);

return;

}

neighborhood (G, reachable , NG);

bitmap_copy (expr , reachable);

for (const basic_block neighbor : NG) {

bitmap_clear (ancestors);

for (edge e : neighbor ->preds)

ancestors_of (e->src , p, reachable , ancestors);

bitmap_and (expr , expr , ancestors);

}

for (const basic_block b : G)

if (bitmap_bit_p (expr , b->index))

out.safe_push (b);

out.sort (cmp_index_map , &ctx.index_map);

1: function find-all-decisions(G)
2: R ← { }
3: for v0 ← depth-first(G) do
4: skip if marked(v0)
5: if is-conditional(v0) then
6: vp ← get-post-dominator(v0)
7: B ← find-decision(v0, vp)
8: add(R,B)
9: mark(B)

10: else
11: mark(v0)

12: return R

Act II: The masking vector

When masking happens

* || true

* && false

Observation
Boolean expression are are isomorphic under the operator

a

t

t

b

f

t

f

f

a || b

a

b

t

f

f

f

t

t

a && b

Proposition

Boolean expression are are isomorphic under the operator

Proof
De Morgan’s Laws

¬(P ∧ Q) ≡ ¬P ∨ ¬Q
¬(P ∨ Q) ≡ ¬P ∧ ¬Q

Implication

We don’t need to know the operator, only the graph shape

When masking happens (in CFG)

When a value c is changed (taking a different edge at vc) and we still end in the same
outcome node

f = a || b

a

t

b

f

f 1 0

a

t

b

f

f 1 1

a

t

b

f

f 0 1

Observation
Masking happens at nodes with multiple predecessors

Implication

Multiple predecessors means short circuiting edge

Implication

We know where to start searching

Association

P ∧ (Q ∧ R) ≡ (P ∧ Q) ∧ R

P ∨ (Q ∨ R) ≡ (P ∨ Q) ∨ R

Implication

We can re-write expressions to an alternating form

(A ∨ B) ∨ ((C ∧ D) ∨ E)

A ∨ B ∨ (C ∧ D) ∨ E

Observation
Masking propagates until the operator changes

A ∧ (B ∨ C ∨ D)

D = t masks B, C , but not A

Subexpressions can mask

A ∧ (B ∨ C)

C = f masks A, but not B

F = B ∨ C

A ∧ F

Observation
The last term SΩ in a subexpression can short circuit the superexpression

a ∧ b ∧ (c ∨ d) ∧ e ∧ f ∧ (g ∨ (h ∧ i) ∨ j) ∧ k

∧

∨

∧

a b

c d

e f

g

h i

j

k

a ∧ b ∧ (c ∨ d) ∧ e ∧ f ∧ (g ∨ (h ∧ i) ∨ j) ∧ k

∧

∨

∧

a b

c d

e f

g

h i

j

k

c = true, h = true

a ∧ b ∧ (c ∨ d) ∧ e ∧ f ∧ (g ∨ (h ∧ i) ∨ j) ∧ k

∧

∨

∧

a b

c d

e f

g

h i

j

k

d = true

a ∧ b ∧ (c ∨ d) ∧ e ∧ f ∧ (g ∨ (h ∧ i) ∨ j) ∧ k

∧

∨

∧

a b

c d

e f

g

h i

j

k

d = false

a ∧ b ∧ (c ∨ d) ∧ e ∧ f ∧ (g ∨ (h ∧ i) ∨ j) ∧ k

∧

∨

∧

a b

c d

e f

g

h i

j

k

d = false

Succ(BΩ) = OB

Observation
On evaluating a condition; either

▶ Short-circuit right operands

▶ Evaluate next operand

Implication

If one edge is a short circuiting edge, the other must be a masking edge

Problem
Given a pair of incoming edges, which is masking and which is short circuting?

Proposition

An ordering vn < vm if vn is a left operand and vm is a right operand in the same
expression

Solution
Topological sort

Problem
Given a pair of incoming edges, which is masking and which is short circuting?

Proposition

An ordering vn < vm if vn is a left operand and vm is a right operand in the same
expression

Solution
Topological sort

Given { vn, vm } = Preds(v), vn < vm then

vn = SΩ

OS = Succ(vn)

where S is a subexpression of B (S ⊂ B)

Implication

When (vm, v) is taken, S are masked

vn, vm = Preds(v)

vn = SΩ

OS = Succ(vn)

Remember

N[B] =
⋃
{Succ(v) | v ∈ B }

N(B) = OB

Everything that applies to the
superexpression B applies to the
subexpression S

Problem
Given a node v with |Preds(v)| ≥ 2, find the nodes masked when taking an edge to v

Intermediate problem

There can be more than one masking edge

Solution

{ (vn, vm) ∈ Preds(v)× Preds(v) | vn < vm }

{ (vn, vm) ∈ Preds(v)2 | vn < vm }

a && b && c

a

b

f

c

t

{ (vn, vm) ∈ Preds(v)2 | vn < vm }

a && b && c

a

b

f

c

t

{ (vn, vm) ∈ Preds(v)2 | vn < vm }

a && b && c

a

b

f

c

t

{ (vn, vm) ∈ Preds(v)2 | vn < vm }

a && b && c

a

b

f

c

t

Remember

N[S] =
⋃
{ Succ(v) | v ∈ S }

N(S) = OS

Implication

Succs(vk) ⊂ Sn ⇒ Sn+1 = Sn ∪ { vk }
S0 = OS

S = S f − S0

where S f is the fixed point Sn+1 = Sn

A && ((B && C) || D)

(c , t) short circuits
(d , t) masks
c < d

a

b

f

c

d

t

A && ((B && C) || D)

(c , t) short circuits
(d , t) masks
c < d

a

b

f

c

d

t

A && ((B && C) || D)

(c , t) short circuits
(d , t) masks
c < d

a

b

f

c

d

t

A && ((B && C) || D)

(c , t) short circuits
(d , t) masks
c < d

SΩ = c

OS = Succ(c) = { d , t }

a

b

f

c

d

t

A && ((B && C) || D)

(c , t) short circuits
(d , t) masks
c < d

SΩ = c

OS = Succ(c) = { d , t }
S0 = d , t

a

b

f

c

d

t

A && ((B && C) || D)

(c , t) short circuits
(d , t) masks
c < d

SΩ = c

OS = Succ(c) = { d , t }
S0 = d , t

S1 = S0 + c = { d , t, c }

a

b

f

c

d

t

A && ((B && C) || D)

(c , t) short circuits
(d , t) masks
c < d

SΩ = c

OS = Succ(c) = { d , t }
S0 = d , t

S1 = S0 + c = { d , t, c }
S2 = S1 + b = { d , t, c , b }
S f = S2

a

b

f

c

d

t

A && ((B && C) || D)

(c , t) short circuits
(d , t) masks
c < d

SΩ = c

OS = Succ(c) = { d , t }
S0 = d , t

S1 = S0 + c = { d , t, c }
S2 = S1 + b = { d , t, c , b }
S f = S2

S = S f − OS

S = { b, c }

a

b

f

c

d

t

1: function masking-vector(B)
2: M ← { }
3: for b in B ∪ OB do
4: for (u, v) in { (u, v) | Pred(b)2, u < v } do
5: Q ← queue(u)
6: mark(Succ(u))
7: repeat
8: q ← pop(Q)
9: skip if marked(Succ(q))

10: mark(q)
11: add(M(v , b), q)
12: for p in Pred(q) do
13: skip if ¬ is-conditional(p)
14: skip if is-back-edge(q, p)
15: skip if marked(p)
16: skip if p ̸∈ B
17: enqueue(Q, p)

18: until empty(Q)

19: return M

Act III: Instrumentation

Instrumentation must be fast

Remember
There is an ordering vn < vm if vn is a left operand and vm is a right operand in the
same expression

Implication

We can sort B

Implication

There is a bijection f : B → N

Global accumulators

0 0 0 0true

0 0 0 0false

(a and b) or c

f 0 0 1

f 0 0 0

f 1 0 0

Global accumulators

0 0 0 0true

0 0 0 0false

(a and b) or c

f 0 0 1

f 0 0 0

f 1 0 0

Global accumulators

0 0 0 1true

0 1 0 0false

(a and b) or c

f 0 0 1

f 0 0 0

f 1 0 0

Global accumulators

0 0 0 1true

0 1 0 1false

(a and b) or c

f 0 0 1

f 0 0 0

f 1 0 0

Global accumulators

0 1 0 1true

0 1 1 1false

(a and b) or c

f 0 0 1

f 0 0 0

f 1 0 0

Local accumulators

acc ← acc ∪ B(E (u, v))

acc ← acc ∩M(E (u, v))

where E (u, v) is the edge taken and M(E) are nodes masked for E

Remember
There is bijection f : B → N

a || b

_prelude_fn:

_t = {0}

_f = {0}

_a:

if (a)

_t |= 0x01

goto _T

else

_f |= 0x01

goto _b

_b:

if (b)

_t &= 0x01

_f &= 0x01

_t |= 0x02

goto _T

else

_f |= 0x02

goto _F

_T:

goto _E

_F:

goto _E

_E:

_fn_t |= _t

_fn_f |= _f

Local accumulators are flushed (bitwise-or)
on edge-to-outcome

a

b

c

tf

e

Thank you

Me

Who Jørgen Kvalsvik

How <j@lambda.is>

Where Woven by Toyota in Tokyo,
Japan

Resources

Hayhurst (2001) A Practical Tutorial on
Modified Condition/ Decision
Coverage.

Chilenski (2001) An Investigation of Three
Forms of the Modified
Condition Decision Coverage
(MCDC) Criterion.

	Code coverage
	gcc
	Modified condition/decision coverage
	Programs
	Current status
	Algorithm
	Act I: Inferring decisions
	Act II: The masking vector
	Act III: Instrumentation

