
Prepared for

Abstract

Many different Linux debugging tools are available - as well as the traditional

debuggers (GDB, LLDB) we have checkers (Valgrind, the sanitizers), tracing tools

(strace, ltrace), time-travel debuggers (rr, UDB). They all rely on debug info to

map from the executable back to the source-code. Most of us know to pass the

-g option to gcc to generate debuggable binaries, but there is much more to it

than that.

This talk covers what exactly is in debug info, the different compiler options to

control its generation, and the different kind of object files and why you might

want them (e.g. split dwarf files for quicker loading). We also introduce ways to

manage this information, including the new debuginfod service.

Abstract

Many different Linux debugging tools are available - as well as the traditional

debuggers (GDB, LLDB) we have checkers (Valgrind, the sanitizers), tracing tools

(strace, ltrace), time-travel debuggers (rr, UDB). They all rely on debug info to

map from the executable back to the source-code. Most of us know to pass the

-g option to gcc to generate debuggable binaries, but there is much more to it

than that.

This talk covers what exactly is in debug info, the different compiler options to

control its generation, and the different kind of object files and why you might

want them (e.g. split dwarf files for quicker loading). We also introduce ways to

manage this information, including the new debuginfod service.

Abstract

Many different Linux debugging tools are available - as well as the traditional

debuggers (GDB, LLDB) we have checkers (Valgrind, the sanitizers), tracing tools

(strace, ltrace), time-travel debuggers (rr, UDB). They all rely on debug info to

map from the executable back to the source-code. Most of us know to pass the

-g option to gcc to generate debuggable binaries, but there is much more to it

than that.

This talk covers what exactly is in debug info, the different compiler options to

control its generation, and the different kind of object files and why you might

want them (e.g. split dwarf files for quicker loading). We also introduce ways to

manage this information, including the new debuginfod service.

What does -g mean?

.text (i.e. code)

gcc hello.c

.symtab

.rodata (e.g. strings)

.data (e.g. non-zero globals)

=> a.out

.text (i.e. code)

gcc -g hello.c

.symtab

.debuginfo

.rodata (e.g. strings)

.data (e.g. non-zero globals)

=> a.out

process

GDB

Source code

PROT_READ|
PROT_EXEC

PROT_READ|
PROT_WRITE

PROT_READ

readelf & addr2line
● Symbol tables and relocations

○ .rel.dyn - Dynamic relocations, pairs of integers
○ .rel.plt - Same but for PLT (Program Linkage Table) (DSO linkage)
○ .got - Global Offset Table (another way of doing global relocation)

BSS
Zero-initialised read-write data.
“Block Started By Symbol”
Note the NOBITS type.

What about read-only zero-initialised data?

Debug info is not free
-g doesn’t impact the generated code - at all.

-g doesn’t increase the runtime footprint of your program (much).

-g does impact the size of your binaries - a LOT.

-g can increase your compile and link times.

Wait, link times?
Linker needs to apply relocations to all translation units.

This means the linker needs to parse all debug info of all translation units.

Really?

Split DWARF to the rescue
-gsplit-dwarf means:

In the resulting .dwo file, all debug info related to:
- Types, classes
- Identifiers

And in the .o, just
- Anything relative to a PC address.

DWP files
dwp -e EXE

Good luck!

“Debug symbols” vs “debug info”

Debug symbolsDebug info

So many utilities

readelf eu-readelf
objdump eu-objdump
dwarf-dump
BFD

debuginfod
debuginfod serves debug information over HTTP

(a bit like Microsoft Symbol Server)

sudo apt install debuginfod
debuginfod
DEBUGINFOD_URLS=localhost:8002 gdb a.out

debuginfod servers
https://debuginfod.elfutils.org/
Ubuntu, Debian, OpenSUSE and CentOS run debuginfod servers.
Client support in GDB, Valgrind, SystemTap

https://debuginfod.elfutils.org/

Backtrace
0000119d <foo>:

 119d: 55 push %ebp

 119e: 89 e5 mov %esp,%ebp

...

 11ab: 5d pop %ebp

 11ac: c3 ret

Backtrace
0000119d <foo>:

 119d: 55 push %ebp

 119e: 89 e5 mov %esp,%ebp

...

 11ab: 5d pop %ebp

 11ac: c3 ret

BP

SP

Backtrace
0000119d <foo>:

 119d: 55 push %ebp

 119e: 89 e5 mov %esp,%ebp

...

 11ab: 5d pop %ebp

 11ac: c3 ret

BP

SP

Backtrace
0000119d <foo>:

 119d: 55 push %ebp

 119e: 89 e5 mov %esp,%ebp

...

 11ab: 5d pop %ebp

 11ac: c3 ret

SP & BP

Backtrace
0000119d <foo>:

 119d: 55 push %ebp

 119e: 89 e5 mov %esp,%ebp

...

 11ab: 5d pop %ebp

 11ac: c3 ret

BP

SP

Backtrace
0000119d <foo>:

 119d: 55 push %ebp

 119e: 89 e5 mov %esp,%ebp

...

 11ab: 5d pop %ebp

 11ac: c3 ret

BP

SP

Backtrace
0000119d <foo>:

 119d: 55 push %ebp

 119e: 89 e5 mov %esp,%ebp

...

 11ab: 5d pop %ebp

 11ac: c3 ret

BP

SP

But the compiler knows!
CFI - Call Frame Instructions

Can see this in the assembly generated by gcc

CFI is in both the .debug_frame and the .eh_frame sections.

gcc usually emits only .eh_frame (mandatory on x86-64)
- unless you say -fno-asynchronous-unwind-tables

@gregthelaw

