INTRODUCTION TO SECURE
MULTI-PARTY COMPUTATION

AHTO TRUU

guardtime =

INTRODUCTION TO
SECURE MULTI-PARTY =
COMPUTATION

222222222

AHTO TRUU
SOFTWARE ARCHITECT, GUARDTIME

ACCU CONFERENCE, 21-APR-2023

1111111111

ABOUT GUARDTIME

+ Systems engineering company
focusing on data security solutions

+ Founded in 2007 in Tallinn, Estonia
+ Global HQ in Lausanne, Switzerland
+ Offices In EU, US, Middle East

+ 150 employees

+ 80% engineers and researchers
+ https://quardtime.com/

https://guardtime.com/

SECURE MULTI-PARTY COMPUTATION: WHAT?

« Multiple parties each have some confidential data
* Need to jointly compute a function on these as inputs
« Without revealing anything about the inputs
* Anything beyond what can be inferred from the output

SECURE MULTI-PARTY COMPUTATION: WHY? +

)}

guardtime

» Classical example (Yao, 1982): e T
— i _ . “Patientsiikerheten hotas nir
« Two millionaires want to find out who is richer, allt fler Eikemedel restnoteras”

but without revealing their actual wealth

Antalet restnoterade likemedel har 6kat sedan apotekets monopol
upphorde 2009. Tiotusentals svenskar kan inte Jangre himea ut

. . forskriven medicin, med risk fqr allvar!h_m ha!syeﬂ’gk(er som foljd. Kraven
° A more p ractl Cal p ro b | em: pé likemedelsforetagen bor skirpas for att sakerstalla atc lakemedel finns

tillgdngliga, skriver dverlakarna Jan Calissendorff och Mikael Lehtihet.

* Tracking the stock levels of medicines across
multiple wholesalers in a country

SECURE MULTI-PARTY COMPUTATION: HOW?

* Low-tech solution:

* Find a trusted external party

« Send all the inputs to that party

« Have that party run the computation and announce the results
« But what if no such trusted party is available?

« Homomorphic encryption
» Garbled circuits
« Secret sharing

HOMOMORPHIC ENCRYPTION

* Encryption: Enc(k, m) = ¢, Dec(k,c) 2> m
» Homomorphic: Add(Enc(k, m,), Enc(k, m,)) = Enc(k, m;+m,)
 Partially homomorphic: addition or multiplication

* Fully homomorphic: addition and multiplication

GARBLED CIRCUITS

* Function represented as a Boolean circuit

* First party generates encrypted values for O and 1 on each wire
 Circuit transferred to second party

« Encryptions of first party's inputs transferred to second party

« Encryptions of second party's inputs transferred obliviously

« Second party evaluates the circuit and reveals the encrypted output
 First party decrypts the result

SECRET SHARING

Each input split into shares

Shares distributed among parties

Computation protocol yields shares of the result

Shares of the result combined to reveal it

SECURITY LEVELS AND MODELS

Computational security
« Breaking computationally infeasible

Information-theoretic security

« Secure against any amount of computational power

Passive adversary
* Observes, but does not interfere

Active adversary
« May forge and suppress messages

ADDITIVE SECRET SHARING

* To split value V into N shares:
« PickV, ..,V randomly from 0...M-1
* Pick V such that (V+V,+..+V) mod M =V
* Only works for V <M, so must use sufficiently large M

 Information-theoretically secure with any set of K <N shares

ADDING WITH ADDITIVE SECRET SHARING

« Shares of V, and V,:

© V=V itV +Vi g V=V, #V, 54V, 5
« Adding component-wise:

© S =VtVo S = VotVo, S3= VgtV ,
* Recovering sum

© S;+S,+S3= (Vi +Vy) + (ViotV,,) + (VistV,,) =
(VitViotV5) +(V, 1V, 51V, o) =V +V,

SUMMING WITH ADDITIVE SECRET SHARING

Sy =V itV V5

o

S=S,4S,4S,

Sz =V 3tV,3tVs3

MULTIPLYING WITH ADDITIVE SECRET SHARING

« Sharesof Xand Y: X = X +X,+ X5, Y = Y, +Y,+Y,

Product Z = XY = (X, +X,+X3)(Y,+Y,+Y5) =
XY +X Yot X Ya +
KoY+ XY o+ X, 5 4
X3Y 1+ X3Y 1 X3Y 3

MULTIPLYING (SHAREMIND)

* Resharing of X as X’
* P,generatesr,, 2> P,; P,ir,3=2> Pg Pjirg 2P
« P,computes X'; = X;+r5-T3; Poi X' = Xotrya-ro; Pgi X'g = Xgtrg-hg
* Now X'= X' #X'5+X '3 = (Xp#rpp-Tgy) + (Xotro57T1p) + (Xgtrgy-rag) = X
« Multiplication XY
e Reshare Xas X, YasY’
P,sends X', Y, 2> P,; P, X, Y,>P; PXy5 Y;2>P,
« P,ycomputes Z', = XY #X Y3+ XY, Py Z, = XLY L+ XLY +X Y
Py Z'5 = XY 3+ XY+ XL Y
« NowZ'=Z'+Z,+Z,=XY =XY

e ReshareZ' asZ

rdtime S

gua

<
—

SHAREMIND

rdtime

gua

 Product of Cybernetica: https://sharemind.cyber.ee/

« 3-node multi-party computation protocol

« Programmed in SecreC: an MPC-enhanced dialect of C

void main() {
uint64 threshold = arguments("threshold"); // Arguments can be public
pd_shared3p uint64[[1]] values = arguments("values"); // ...or private!

// Computation results are also private.
// SIMD-style operations are preferred for parallelisation.
pd_shared3p bool[[1]] result = values <= threshold;

OooO~NOOULLE WN -

// Results may be published to the client,
10 // computation nodes do not learn these values.
11 publish(result, "result");

https://sharemind.cyber.ee/

SPDZ

* Another protocol based on additive secret sharing

* Improves multiplication speed by pre-computing

- Adds more cryptography, obtains active security

« Original paper: https://eprint.iacr.org/2011/535

« FRESCO: https://github.com/aicis/fresco

« MP-SPDZ: https://qgithub.com/data61/MP-SPDZ

e SCALE-MAMBA: https://github.com/KULeuven-COSIC/SCALE-MAMBA

rdtime S

gua

https://eprint.iacr.org/2011/535
https://github.com/aicis/fresco
https://github.com/data61/MP-SPDZ
https://github.com/KULeuven-COSIC/SCALE-MAMBA

SHAMIR SECRET SHARING

« To split value V into N shares:
 Pick a polynomial P(x) = A, XK+ A 5 X824+ +A X+V
 Distribute P(1), P(2), ..., P(N) as shares

* Any K shares can be used to recover P and compute V = P(0)

« Klinear equations on K unknowns

* More efficient recovery of V via Lagrange interpolation
Xj

* V=2imiaYilljm1icniv1k x—x;

* Provides redundancy
* Recovery possible even with some shares missing

* Error checking and recovery with >K shares available

COMPUTING WITH SHAMIR SECRET SHARING

« Suppose X is shared as P(x) and Y is shared as Q(x)
* Adding is trivial: Z = X+Y can be shared as R(x) = P(x)+Q(x)
* And shares can be computed locally: R(i) = P(i)+Q(i)
« Multiplication looks trivial: Z = X'Y can be shared as R(x) = P(x):Q(x), but:

* P(x)Q(x) is not a (K-1)-degree polynomial
« Coefficients of P(x):Q(x) not uniformly distributed

* Need to execute a “degree reduction” protocol
 Virtual Data Lake, product of Roseman Labs: https://rosemanlabs.com/

https://rosemanlabs.com/

PRIVATE SET INTERSECTION

« Each party has a list of values

* Need to compute the union or intersection of those lists
« Qutcome-based pricing

 List of patients treated with drug X
* List of patients seen in ER with diagnosis Y

* Reimbursement for those patients who ended up in ER

REAL-WORLD DATA ENGINE

* Product of Guardtime: https.//quardtime.com/health
« Based on commutative encryption: Enc(k,, Enc(k,, m)) = Enc(k,, Enc(k,, m))
« Each party encrypts the patient IDs in its list with its key
« Sends the encrypted list to the other party
* The other party re-encrypts the encrypted IDs with its own key
* The double-encrypted IDs are comparable due to commutativity
 Distributed auditing capability
« Each party posts an audit trail to a shared message board
« Each party separately auditable relative to the board
 Audits of all parties imply correctness of the complete process

https://guardtime.com/health

VERIFIABLE MULTI-PARTY COMPUTATION

Verifiable computation
« Tools to check that an untrusted party executed a computation correctly
« See my ACCU 2022 talk for more background
In the context of multi-party computation
« Each party can verify that others did their parts correctly
« An outside recipient can verify the whole computation
MPyC with passive security: https://qgithub.com/Ischoe/mpyc

MPyCsnark: private research prototype, ask for intro to author

https://github.com/lschoe/mpyc

guardtime &

THANK YOU
QUESTIONS?

O.TRUU@GUARDTIME.COM

	Slide 1
	Slide 2: Introduction to Secure Multi-Party Computation
	Slide 3: About GuardTime
	Slide 4: Secure Multi-Party Computation: What?
	Slide 5: Secure Multi-Party Computation: Why?
	Slide 6: Secure Multi-Party Computation: How?
	Slide 7: Homomorphic Encryption
	Slide 8: Garbled Circuits
	Slide 9: Secret Sharing
	Slide 10: Security Levels and Models
	Slide 11: Additive Secret Sharing
	Slide 12: Adding With Additive Secret Sharing
	Slide 13: Summing With Additive Secret Sharing
	Slide 14: Multiplying With Additive Secret Sharing
	Slide 15: Multiplying (Sharemind)
	Slide 16: ShareMind
	Slide 17: SPDZ
	Slide 18: Shamir Secret Sharing
	Slide 19: Computing with Shamir Secret Sharing
	Slide 20: Private Set Intersection
	Slide 21: Real-World Data Engine
	Slide 22: Verifiable Multi-Party Computation
	Slide 23: Thank You Questions?

