

INTRODUCTION TO
SECURE MULTI-PARTY
COMPUTATION

AHTO TRUU
SOFTWARE ARCHITECT, GUARDTIME

ACCU CONFERENCE, 21-APR-2023

+121412527

+3BF25278

+7181412527

-A81412DE7

+

ABOUT GUARDTIME

+ Systems engineering company

focusing on data security solutions

+ Founded in 2007 in Tallinn, Estonia

+ Global HQ in Lausanne, Switzerland

+ Offices in EU, US, Middle East

+ 150 employees

+ 80% engineers and researchers

+ https://guardtime.com/

https://guardtime.com/

+

SECURE MULTI-PARTY COMPUTATION: WHAT?

• Multiple parties each have some confidential data

• Need to jointly compute a function on these as inputs

• Without revealing anything about the inputs

• Anything beyond what can be inferred from the output

+

SECURE MULTI-PARTY COMPUTATION: WHY?

• Classical example (Yao, 1982):

• Two millionaires want to find out who is richer,

but without revealing their actual wealth

• A more practical problem:

• Tracking the stock levels of medicines across

multiple wholesalers in a country

+

SECURE MULTI-PARTY COMPUTATION: HOW?

• Low-tech solution:

• Find a trusted external party

• Send all the inputs to that party

• Have that party run the computation and announce the results

• But what if no such trusted party is available?

• Homomorphic encryption

• Garbled circuits

• Secret sharing

+

HOMOMORPHIC ENCRYPTION

• Encryption: Enc(k, m) → c, Dec(k, c) →m

• Homomorphic: Add(Enc(k, m1), Enc(k, m2)) → Enc(k, m1+m2)

• Partially homomorphic: addition or multiplication

• Fully homomorphic: addition and multiplication

+

GARBLED CIRCUITS

• Function represented as a Boolean circuit

• First party generates encrypted values for 0 and 1 on each wire

• Circuit transferred to second party

•

•

• Second party evaluates the circuit and reveals the encrypted output

• First party decrypts the result

+

SECRET SHARING

• Each input split into shares

• Shares distributed among parties

• Computation protocol yields shares of the result

• Shares of the result combined to reveal it

+

SECURITY LEVELS AND MODELS

• Computational security

• Breaking computationally infeasible

• Information-theoretic security

• Secure against any amount of computational power

• Passive adversary

• Observes, but does not interfere

• Active adversary

• May forge and suppress messages

+

ADDITIVE SECRET SHARING

• To split value V into N shares:

• Pick V1 N-1 -1

• Pick VN such that (V1+V2 N) mod M = V

• Only works for V < M, so must use sufficiently large M

• Information-theoretically secure with any set of K < N shares

+

ADDING WITH ADDITIVE SECRET SHARING

• Shares of V1 and V2:

• V1 = V1,1+V1,2+V1,3; V2 = V2,1+V2,2+V2,3

• Adding component-wise:

• S1 = V1,1+V2,1; S2 = V1,2+V2,2; S3 = V1,3+V2,3

• Recovering sum

• S1+ S2+ S3 = (V1,1+V2,1) + (V1,2+V2,2) + (V1,2+V2,2) =

(V1,1+V1,2+V1,3) + (V2,1+V2,2+V2,3) = V1+V2

+

SUMMING WITH ADDITIVE SECRET SHARING

V1,1

V1,2

V1,3

V2,1

V2,2

V2,3

V3,1

V3,2

V3,3

V1

V2

V3

S1 = V1,1+V2,1+V3,1

S2 = V1,2+V2,2+V3,2

S3 = V1,3+V2,3+V3,3

S = S1+S2+S3

S1

S2

S3

+

MULTIPLYING WITH ADDITIVE SECRET SHARING

• Shares of X and Y: X = X1+X2+X3, Y = Y1+Y2+Y3

• Product Z = XY = (X1+X2+X3)(Y1+Y2+Y3) =

X1Y1+X1Y2+X1Y3 +

X2Y1+X2Y2+X2Y3 +

X3Y1+X3Y2+X3Y3

+

MULTIPLYING (SHAREMIND)

•

• P1 generates r12 → P2; P2: r23 → P3; P3: r31 → P1

• P1 1 = X1+r12-r31; P2 2 = X2+r23-r12; P3 3 = X3+r31-r23

• 1 2 3 = (X1+r12-r31) + (X2+r23-r12) + (X3+r31-r23) = X

• Multiplication XY

•

• P1 1 1 → P2; P2 2 2 → P3; P3 3 3 → P1

• P1 1 1 1 1 3 3 1; P2 2 2 2 2 1 1 2;

P3 3 3 3 3 2 2 3

• 1+ 2+ 3

•

+

SHAREMIND

• Product of Cybernetica: https://sharemind.cyber.ee/

• 3-node multi-party computation protocol

• Programmed in SecreC: an MPC-enhanced dialect of C

https://sharemind.cyber.ee/

+

SPDZ

• Another protocol based on additive secret sharing

• Improves multiplication speed by pre-computing

• Adds more cryptography, obtains active security

• Original paper: https://eprint.iacr.org/2011/535

• FRESCO: https://github.com/aicis/fresco

• MP-SPDZ: https://github.com/data61/MP-SPDZ

• SCALE-MAMBA: https://github.com/KULeuven-COSIC/SCALE-MAMBA

https://eprint.iacr.org/2011/535
https://github.com/aicis/fresco
https://github.com/data61/MP-SPDZ
https://github.com/KULeuven-COSIC/SCALE-MAMBA

+

SHAMIR SECRET SHARING

• To split value V into N shares:

• Pick a polynomial P(x) = AK-1·x
K-1+ AK-2·xK-2

1·x+V

•

• Any K shares can be used to recover P and compute V = P(0)

• K linear equations on K unknowns

• More efficient recovery of V via Lagrange interpolation

• 𝑉 = σ𝑖=1..𝑘 𝑦𝑖ς𝑗=1..𝑖−1,𝑖+1..𝑘
𝑥𝑗

𝑥𝑗−𝑥𝑖

• Provides redundancy

• Recovery possible even with some shares missing

• Error checking and recovery with >K shares available

+

COMPUTING WITH SHAMIR SECRET SHARING

• Suppose X is shared as P(x) and Y is shared as Q(x)

• Adding is trivial: Z = X+Y can be shared as R(x) = P(x)+Q(x)

• And shares can be computed locally: R(i) = P(i)+Q(i)

• Multiplication looks trivial: Z = X·Y can be shared as R(x) = P(x)·Q(x), but:

• P(x)·Q(x) is not a (K-1)-degree polynomial

• Coefficients of P(x)·Q(x) not uniformly distributed

•

• Virtual Data Lake, product of Roseman Labs: https://rosemanlabs.com/

https://rosemanlabs.com/

+

PRIVATE SET INTERSECTION

• Each party has a list of values

• Need to compute the union or intersection of those lists

• Outcome-based pricing

• List of patients treated with drug X

• List of patients seen in ER with diagnosis Y

• Reimbursement for those patients who ended up in ER

+

REAL-WORLD DATA ENGINE

• Product of Guardtime: https://guardtime.com/health

• Based on commutative encryption: Enc(k2, Enc(k1, m)) = Enc(k1, Enc(k2, m))

• Each party encrypts the patient IDs in its list with its key

• Sends the encrypted list to the other party

• The other party re-encrypts the encrypted IDs with its own key

• The double-encrypted IDs are comparable due to commutativity

• Distributed auditing capability

• Each party posts an audit trail to a shared message board

• Each party separately auditable relative to the board

• Audits of all parties imply correctness of the complete process

https://guardtime.com/health

+

VERIFIABLE MULTI-PARTY COMPUTATION

• Verifiable computation

• Tools to check that an untrusted party executed a computation correctly

• See my ACCU 2022 talk for more background

• In the context of multi-party computation

• Each party can verify that others did their parts correctly

• An outside recipient can verify the whole computation

• MPyC with passive security: https://github.com/lschoe/mpyc

• MPyCsnark: private research prototype, ask for intro to author

https://github.com/lschoe/mpyc

++ + +

+

++ + +

++ + +

++ + +

++ + ++

+

THANK YOU

QUESTIONS?
AHTO.TRUU@GUARDTIME.COM
@AHTOTRUU

	Slide 1
	Slide 2: Introduction to Secure Multi-Party Computation
	Slide 3: About GuardTime
	Slide 4: Secure Multi-Party Computation: What?
	Slide 5: Secure Multi-Party Computation: Why?
	Slide 6: Secure Multi-Party Computation: How?
	Slide 7: Homomorphic Encryption
	Slide 8: Garbled Circuits
	Slide 9: Secret Sharing
	Slide 10: Security Levels and Models
	Slide 11: Additive Secret Sharing
	Slide 12: Adding With Additive Secret Sharing
	Slide 13: Summing With Additive Secret Sharing
	Slide 14: Multiplying With Additive Secret Sharing
	Slide 15: Multiplying (Sharemind)
	Slide 16: ShareMind
	Slide 17: SPDZ
	Slide 18: Shamir Secret Sharing
	Slide 19: Computing with Shamir Secret Sharing
	Slide 20: Private Set Intersection
	Slide 21: Real-World Data Engine
	Slide 22: Verifiable Multi-Party Computation
	Slide 23: Thank You Questions?

