


1



IMPROVING COMPILATION TIMES
Tools & Techniques

ACCU 2023
April 20 2023

Vittorio Romeo
 
 
mail@vittorioromeo.com
@supahvee1234

TechAtBloomberg.com
Careers

2

mailto:mail@vittorioromeo.com
https://twitter.com/supahvee1234
https://www.bloomberg.com/company/stories/category/tech-at-bloomberg/
https://careers.bloomberg.com/job/search?


I’ve been working with C++ for over 10 years
Started thanks to game development 🕹🎮

6+ YoE at Bloomberg
Currently teaching Modern C++

Co-authored “Embracing Modern C++ Safely”
J. Lakos, R. Khlebnikov, A. Meredith, and many other contributors

Participating in ISO C++ standardization
Member of the Italian national body

Many open-source side projects, including:
Modernizing  from C++03 to C++17
Game development: , 
Tools & libraries: , , 
Video tutorials 
Articles on 

A bit about me

SFML
Open Hexagon Quake VR

majsdown ecst scelta
on YouTube

vittorioromeo.com

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 3

https://sfml-dev.org/
https://openhexagon.org/
https://vittorioromeo.com/quakevr
https://github.com/vittorioromeo/majsdown
https://github.com/vittorioromeo/ecst
https://github.com/vittorioromeo/scelta
https://www.youtube.com/channel/UC1XihgHdkNOQd5IBHnIZWbA
https://vittorioromeo.com/


Why should we care about compilation times?

Improving compilation times: a flowchart-based approach
Part 1: Low-hanging fruits

Part 2: Profiling and dealing with bottlenecks

Few remarks on C++20 modules

Benchmarks and examples from SFML 3.x

Goals:
⬜ Understand what can negatively impact build times
⬜ Provide actionable points to improve your compilation times
⬜ Call to action: improve your favorite open-source project’s build
⬜ Spark some interesting discussion!

About this talk

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 4



Assumptions
You are somewhat familiar with C++'s build model
Parallel compilation, header/source files, linking, …

You are somewhat familiar with C++ 🙂
Declarations, definitions, templates, overload resolution, ODR, …

Disclaimer
This talk focuses mostly on CMake and UNIX
100% applicable to GNU/Linux, WSL, MSYS2 + MinGW
Some details not applicable to MSVC or other build systems
Will mostly cover techniques and tools I am familiar with

“There’s no such thing as a stupid question”
Feel free to interrupt me

Measurements and assertions have sources and references 
Slides available at: 

Before we begin…

[src]

https://github.com/vittorioromeo/accu2023

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 5

https://github.com/vittorioromeo/accu2023
https://github.com/vittorioromeo/accu2023


C++ has the reputation to be slow to compile
Especially compared to languages like C
“Zero-cost abstractions” can have a large build time cost

Compilation times matter
“Time is money” – we could do the math
Not only developer time, but also CI time/power usage
Often overlooked: programmer motivation and experimentation
Q: have you ever felt frustrated?

Short iteration times  better products and development experience

Build times can get out of hand easily, even on modern hardware
Chromium takes around ~50min on a very strong setup 
GCC takes on average ~90min 
LLVM takes on average ~30min 

Build times can very often be improved significantly
Especially if you have never cared that much before!

Why care about compilation times?

→

[src]

[src]

[src]

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 6

https://old.reddit.com/r/hardware/comments/rjc2ij/why_arent_there_more_compilebased_benchmarks_done/hp2lgo9/
https://openbenchmarking.org/test/pts/build-gcc&eval=e5cdf34b65dc7457bed0ae825d4643335b220fdf
https://openbenchmarking.org/test/pts/build-llvm


Build model and textual #include  system is archaic

The language itself is complicated
Overload resolution, template instantiation, SFINAE, etc…

Highly generic and abstracted libraries tend to be bulky
Think about Boost or the Standard Library
Many reasons: backwards compatibility, build time not a priority, etc…

Poor “physical design”
E.g. #include  when forward declaration is enough
E.g. templates unnecessarily defined in a header file

Compilation times are often not a priority for low-level libraries
This includes the Standard Library
Needs a “cultural” change

Why can C++ compilation times be poor?

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 7



In short: they will help, but we’re not there yet

Compiler support for modules is still limited 

Libraries and projects need to migrate
It takes considerable effort

Promising compilation time speedups 

Being actively worked on
e.g. Bloomberg sponsoring Kitware 

More information at the end of the talk
Let’s focus on what you have control over today

What about modules?

[src]

[src]

[src]

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 8

https://github.com/royjacobson/modules-report
https://twitter.com/vzverovich/status/1645859369400279041
https://twitter.com/bretbrownjr/status/1646299880212635648


The flowchart

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 9



Sneak peek – complete flowchart

10



Defining “fast enough” is subjective

Possible metrics:
Time/cost analysis, including CI time and developer time
Frustration/motivation
Reputation/marketing for library developers

Building the flowchart (0)

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 11



Low-hanging fruits
Coarse-grained: they affect the entire project
Generally easy to introduce in an existing project
Their impact can be quite significant

Building the flowchart (1)

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 12



Compared to make , alternatives such as ninja  have:
Superior scheduling algorithms
Better dependency tracking 
More robust file change detection 

ninja  is available on all major platforms
Enabling it through CMake is trivial

Invoke ninja  instead of make �jX
By default, ninja  will use all your available cores

Low-hanging fruits – build system (0)

[src]

[src]

cmake -GNinja

❯ ninja
[12/100] Building CXX object src/SFML/Window/CMakeFiles/sfml-window.dir/Win32/InputImpl.cpp.obj
...

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 13

https://aosabook.org/en/posa/ninja.html
https://neugierig.org/software/blog/2020/05/ninja.html


Origin of the name ninja : “quiet and strikes quickly” 

Originally created for Chrome
No-op build (all targets up-to-date) with make  took ~10s, less than ~1s with ninja  

Low-hanging fruits – build system (1)
[src]

[src]

[David Röthlisberger -- Benchmarking the Ninja build system]

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 14

https://aosabook.org/en/posa/ninja.html#fnref12
https://david.rothlis.net/ninja-benchmark/
https://david.rothlis.net/ninja-benchmark/


SFML
“Simple and Fast Multimedia Library”
Fairly small project: around ~225 source files

Build environment
Intel Core i9-9900K @ 3.6GHz base, 5GHz turbo
Corsair C15 32GB DDR4 SDRAM @ 1500MHz, dual channel
Samsung SSD 970 EVO Plus 1TB NVMe drive
MSYS2/MinGW
hyperf�ne  benchmarking tool

Low-hanging fruits – build system (2)

# Using `clang++`, `ccache`, and `make` -- full rebuild
Benchmark 1: mingw32-make clean && mingw32-make -j16
  Time (mean ± σ):      5.951 s ±  0.231 s    [User: 5.990 s, System: 16.748 s]
  Range (min … max):    5.787 s …  6.114 s    2 runs

# Using `clang++`, `ccache`, and `ninja` -- full rebuild
Benchmark 1: ninja clean && ninja
  Time (mean ± σ):     948.7 ms ±  29.2 ms    [User: 1569.1 ms, System: 4458.8 ms]
  Range (min … max):   928.1 ms … 969.3 ms    2 runs

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 15



The default linker ( ld ) and gold  are very slow compared to lld
Inferior threading model, allocation scheme, and data structure choices 

Low-hanging fruits – linker (0)

[src]

[llvm.org -- LLD - The LLVM Linker]

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 16

https://www.phoronix.com/news/LLD-Linker-Why-So-Fast
https://lld.llvm.org/


lld  is a drop-in replacement for ld
Easiest way to enable it is to pass �fuse�ld=lld  to the compiler

Roughly ~3s (~20%) speedup on full unity SFML 3.x rebuild with clang��

However, even lld  is slow when compared to mold…

Low-hanging fruits – linker (1)

cmake -GNinja -DCMAKE_CXX_FLAGS="-fuse-ld=lld"

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 17



mold  is a “modern” open-source linker
by Rui Ueyama, the same author who started the development of lld

Extremely fast due to high parallelization & good choice of algorithms/data structures
In-depth technical comparsion versus lld  available 

Program (linker output size) GNU gold LLVM lld mold 
Chrome 96 (1.89 GiB) 53.86s 11.74s 2.21s

Clang 13 (3.18 GiB) 64.12s 5.82s 2.90s
Firefox 89 libxul (1.64 GiB) 32.95s 6.80s 1.42s

mold  only targets UNIX-like platforms under the AGPL license

, a commercial version of mold  supports MacOS and will support Windows
Licensing: paid on a per-user, per-month/year basis 

Low-hanging fruits – linker (2)

here

[src]

sold
[src]

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 18

https://maskray.me/blog/2021-12-19-why-isnt-ld.lld-faster
https://github.com/rui314/mold
https://github.com/bluewhalesystems/sold
https://github.com/bluewhalesystems/sold


Avoid recompiling unchanged source files
Even in fresh new builds
Map (compiler, flags, f�le_hash) �� .obj

Common tools: , 
Others: , 

ccache.c  benchmark 

Low-hanging fruits – compilation cache (0)

ccache sccache
FASTBuild IncrediBuild

[Von Christoph Erhardt -- The C/C++ Developer’s Guide to Avoiding Office Swordfights]

[src]

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 19

https://www.incredibuild.com/
https://github.com/mozilla/sccache
https://www.fastbuild.org/docs/home.html
https://www.incredibuild.com/
https://www.methodpark.de/blog/the-c-c-developers-guide-to-avoiding-office-swordfights-part-1-ccache/
https://ccache.dev/performance.html


Enabling ccache  in CMake is trivial
SFML PR available 

RULE_LAUNCH_COMPILE  prepends ccache  to compiler invocations

Roughly ~35-50x speedup for SFML 3.x rebuild!
Great when working with multiple builds at the same time

Other notes about ccache :
Supports HTTP and Redis storage backends out of the box 
Supports precompiled headers 

Low-hanging fruits – compilation cache (1)

here

# use ccache if available
find_program(CCACHE_PROGRAM ccache)
if(CCACHE_PROGRAM)
    message(STATUS "Found ccache in ${CCACHE_PROGRAM}")
    set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE "${CCACHE_PROGRAM}")
endif()

[src]

[src]

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 20

https://github.com/SFML/SFML/pull/2032
https://ccache.dev/manual/4.8.html#_remote_storage_backends
https://ccache.dev/manual/4.8.html#_precompiled_headers


Platform-specific
For Linux, check the 
For Windows, look for “gaming optimizations” or specific tools (e.g. )

Building locally on Windows?
Boost your compilation times by 10% with this one easy trick!

Add your build directories as Windows Defender exclusions
Windows Defender can use up to ~20% CPU during compilation
Find offending directories with 

Generally a good idea to look at processes during compilation

Low-hanging fruits – build machine configuration

relevant Arch Linux wiki page
Optimizer

[src] 

procmon

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 21

https://wiki.archlinux.org/title/Improving_performance
https://github.com/hellzerg/optimizer
http://virtuallyrandom.com/c-compilation-whats-slowing-us-down/
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon


For completeness, but yeah – can always throw more hardware at it

Not sure what hardware to purchase?
Phoronix offers CPU compilation benchmarks (e.g. )
TechPowerUp offers 
On YouTube:  &  
Phoronix sometimes also has 

Low-hanging fruits – build machine hardware

[Channel 4 -- The IT Crowd [Tenor.com]]

Godot, LLVM, Linux
some as well

Hardware Unboxed GamersNexus [src]

NVMe drive benchmarks

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 22

https://tenor.com/en-GB/view/it-crowd-moss-computer-throw-gif-5404468
https://www.phoronix.com/review/intel-12600k-12900k/6
https://www.techpowerup.com/review/intel-core-i7-12700k-alder-lake-12th-gen/7.html
https://youtu.be/WWsMYHHC6j4?t=481
https://youtu.be/fhI9tLOg-6I?t=680
https://old.reddit.com/r/hardware/comments/rjc2ij/why_arent_there_more_compilebased_benchmarks_done/hp2lgo9/
https://www.phoronix.com/review/sabrent-rocket4-linux/3


The same header x.hpp  is usually processed anew in every source files that uses it
Very wasteful work: preprocessing, tokenizing, parsing, etc…

Compilers can preprocess some commonly used headers of our choice
They are translated to some intermediate representation once
That IR is then prepended to every compiled source file

Time savings can be massive!

SFML results: 
34.032s - baseline
28.787s - PCH (without reuse – 5 targets, 5 PCHs)
19.381s - PCH (with reuse – 5 targets, 1 PCH)

“Reuse”: using the same PCH for multiple targets built in the same project
A bit of extra work required to set it up, but usually worth it

Low-hanging fruits – precompiled headers (0)

[PR #1895] [PR #2488]

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 23

https://github.com/SFML/SFML/pull/1895
https://github.com/SFML/SFML/pull/2488


Using PCH with CMake:
�. Create PCH.hpp  file with commonly used includes
�. Use target_precompile_headers(<target> PRIVATE "PCH.hpp")

For reuse:
�. Pick (or create) a target that all other targets depend from
�. target_precompile_headers(<base_target> PRIVATE "PCH.hpp")
�. target_precompile_headers(<other_target> REUSE_FROM <base_target>)

“Reuse” caveats:
Compiler flags have to perfectly match, or PCHs will be ignored
Sometimes this means having to pass flags/defines nonsensical for a target
Or ugly hacks, such as manually renaming PDB files 

Good idea: make PCHs toggleable through a flag

Low-hanging fruits – precompiled headers (1)

[src]

option(SFML_ENABLE_PCH FALSE BOOL
       "TRUE to enable precompiled headers for SFML builds")

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 24

https://github.com/SFML/SFML/pull/1895/files#diff-5abab6689b64d865aa825522d3227d2ba7f3d44490181e7594bd97fcff37d293R185-R188


What to put in PCH.hpp ?

Low-hanging fruits – precompiled headers (2)

// PCH.hpp
#pragma once

// Commonly-used first-party headers (e.g. logging, assertions, basic components)
#include <SFML/System/Err.hpp>
#include <SFML/System/String.hpp>
#include <SFML/System/Time.hpp>
#include <SFML/System/Vector2.hpp>

// Expensive headers, like `windows.h`
#ifdef SFML_SYSTEM_WINDOWS
#include <SFML/System/Win32/WindowsHeader.hpp>
#endif

// Commonly used Standard Library or third-party headers
#include <algorithm>
#include <filesystem>
#include <iostream>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
/* ... */

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 25



When to use PCHs?
They scale well with a lot of source files and frequently used expensive headers
Any change to PCH.hpp  requires a full recompilation
Avoid putting in headers that might change

PCHs growing too large might hit diminishing returns
Remember that the PCH IR gets included in every source file

How to determine what headers are used frequently?
grep , sort , and wc  worked well for me
Tools such as  work well – good CMake integration

How to determine what headers are expensive?
 – we will cover it soon

Header hygiene
Do not remove existing headers from source files! (i.e. don’t rely on PCHs for correctness)
Build with PCHs disabled from time to time (or have a CI job) to catch missing includes

Low-hanging fruits – precompiled headers (3)

include�what�you�use

ClangBuildAnalyzer

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 26

https://github.com/include-what-you-use/include-what-you-use
https://github.com/aras-p/ClangBuildAnalyzer


Coalesce multiple source files into fewer larger ones
Imagine a sort of automatic #include , but for .cpp  files

Surprisingly large amount of benefits!
Commonly included headers are parsed/compiled fewer times
Fewer redundant template instantiations
Much less work for the linker (e.g. less symbol de-duplication and stiching)
Incremental builds might actually be faster because of that

Fewer invocations of the compiler and creation of .obj  files
More optimization opportunities – the wish.com version of LTO
Catch ODR violations at compile-time (example later)
Enforce header hygiene best practices such as #pragma once  (example later)

Low-hanging fruits – unity builds (0)

// unity_0_cxx.cxx (generated by CMake)

#include "my_source0.cpp"
#include "my_source1.cpp"
#include "my_source2.cpp"
/* ... */

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 27



Enabling unity builds in CMake:

Enabling on a per-target basis is also easy:

Can also skip a problematic file via SKIP_UNITY_BUILD_INCLUSION

Various knobs to tweak and related utilities:
set(UNITY_BUILD_BATCH_SIZE <n_sources>)
set(UNITY_BUILD_CODE_BEFORE_INCLUDE <code>)
set(UNITY_BUILD_CODE_AFTER_INCLUDE <code>)

Recommendations:
Enable file-by-file with small batch size, fix any arising issue
Keep a non-unity CI build to catch issues (e.g. missing header)

Low-hanging fruits – unity builds (1)

cmake -GNinja -DCMAKE_UNITY_BUILD=ON -DCMAKE_CXX_FLAGS="-fuse-ld=lld"

set_target_properties(<target> PROPERTIES UNITY_BUILD ON)

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 28



Many possible drawbacks:
Symbols having internal linkage and same name will clash (example later)
Source-scope using namespace  can cause collisions (*)
Preprocessor defines in .cpp  files can clash – must use #undef  (*)
Smaller one-source changes can slow down iteration times
Some files can be excluded from the unity build (or it can be disabled during development)

Loss of parallelism if the choice of  for UNITY_BUILD_BATCH_SIZE  is poor
Generally higher memory usage
Possible behavior change (e.g. introducing an overload that is a better match) (*)
Can’t always apply to third-party libraries
And maintainers might not be willing to make changes to support unity builds…

Arguably, drawbacks marked with (*) promote good practices

Roughly ~3-4s (~29%) speedup on SFML 3.x full rebuild (with clang��  and lld )
SFML PR 

Also massive ~3x speedup on our clang�tidy  CI job 🤷
SFML PR  (by Chris Thrasher)

Low-hanging fruits – unity builds (2)

N

here

here

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 29

https://github.com/SFML/SFML/pull/1788
https://github.com/SFML/SFML/pull/2437


Example: clashing symbols

If source0.cpp  and source1.cpp  end up in the same unity build chunk…
…the program will fail to compile, because f  will be defined twice

The fix is easy, but manual:
Rename one function to f0 , the other to f1 , and update usages

Annoying requirement: all static  symbols must be uniquely named
In the same namespace , at least…

Low-hanging fruits – unity builds (3)

// source0.cpp

namespace
{
    void f() { /* ... */ }
}

// source1.cpp

namespace
{
    void f() { /* ... */ }
}

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 30



Example: catching ODR violations

The behavior of the program above is undefined

If source0.cpp  and source1.cpp  end up in the same unity build chunk…
…the program will fail to compile, revealing a nasty ODR violation!

This is very good 🙂

Low-hanging fruits – unity builds (4)

// source0.cpp

inline int f() { return 0; }
int call_f();

int main() { return f() + call_f(); }

// source1.cpp

inline int f() { return 1; }
int call_f() { return f(); }

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 31



Example: enforcing header guards

If source0.cpp  and source1.cpp  end up in the same unity build chunk…
…the program will fail to compile, revealing the missing header guard

This is also good 🙂

Low-hanging fruits – unity builds (5)

// bad_header.hpp
/* ...missing include guard or `#pragma once`... */

inline void foo() { /* ... */ }

// source0.cpp
#include "bad_header.hpp"
/* ... */

// source1.cpp
#include "bad_header.hpp"
/* ... */

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 32



How can we profile compilation?

Building the flowchart (2)

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 33



Free & open-source tool developed by 
Parses Clang’s �ftime�trace  output and produces a human-friendly report
The report provides actionable information

�ftime�trace
Developed by Aras himself, merged upstream since Clang 9 
Produces Chrome Tracing .json  files for each compiled object file
No equivalent in GCC or MSVC

How to use
Use clang��  as your compiler, passing �ftime�trace  to your compiler flags
Compile everything you want to profile
Run ClangBuildAnalyzer  in the build directory

Profiling compilation –  (0)ClangBuildAnalyzer
Aras Pranckevičius

[src]

cmake -GNinja -DCMAKE_UNITY_BUILD=ON -DCMAKE_CXX_COMPILER=clang++
      -DCMAKE_CXX_FLAGS="-fuse-ld=lld -ftime-trace"

./ClangBuildAnalyzer.exe --all . analysis.bin

./ClangBuildAnalyzer.exe --analyze analysis.bin > analysis.txt && explorer analysis.txt

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 34

https://github.com/aras-p/ClangBuildAnalyzer/
https://aras-p.info/
https://aras-p.info/blog/2019/01/16/time-trace-timeline-flame-chart-profiler-for-Clang/


Profiling compilation –  (1)ClangBuildAnalyzer
Analyzing build trace from 'analysis.bin'...
**** Time summary:
Compilation (171 times):
  Parsing (frontend):          128.9 s
  Codegen & opts (backend):     29.9 s

**** Files that took longest to parse (compiler frontend):
  3320 ms: ./src/SFML/Window/CMakeFiles/sfml-window.dir/WindowImpl.cpp.obj
  3239 ms: ./src/SFML/Window/CMakeFiles/sfml-window.dir/Win32/JoystickImpl.cpp.obj
  2912 ms: ./src/SFML/Window/CMakeFiles/sfml-window.dir/Win32/WindowImplWin32.cpp.obj
  2826 ms: ./src/SFML/Window/CMakeFiles/sfml-window.dir/GlContext.cpp.obj
  2710 ms: ./src/SFML/Window/CMakeFiles/sfml-window.dir/Win32/WglContext.cpp.obj
  2458 ms: ./src/SFML/Graphics/CMakeFiles/sfml-graphics.dir/Font.cpp.obj
  ...

**** Files that took longest to codegen (compiler backend):
  5623 ms: ./src/SFML/Graphics/CMakeFiles/sfml-graphics.dir/ImageLoader.cpp.obj
  2562 ms: ./src/SFML/Graphics/CMakeFiles/sfml-graphics.dir/GLExtensions.cpp.obj
  1356 ms: ./src/SFML/Graphics/CMakeFiles/sfml-graphics.dir/Font.cpp.obj
  1326 ms: ./src/SFML/Audio/CMakeFiles/sfml-audio.dir/SoundFileReaderMp3.cpp.obj
  1197 ms: ./src/SFML/Graphics/CMakeFiles/sfml-graphics.dir/Shader.cpp.obj
  1032 ms: ./src/SFML/Network/CMakeFiles/sfml-network.dir/Ftp.cpp.obj
  ...

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 35

https://github.com/aras-p/ClangBuildAnalyzer/


Profiling compilation –  (2)ClangBuildAnalyzer
**** Templates that took longest to instantiate:
   693 ms: std::unique_ptr<std::filesystem::path::_List::_Impl, std:... (34 times, avg 20 ms)
   582 ms: std::__uniq_ptr_data<std::filesystem::path::_List::_Impl,... (34 times, avg 17 ms)
   576 ms: std::__uniq_ptr_impl<std::filesystem::path::_List::_Impl,... (34 times, avg 16 ms)
   495 ms: std::basic_string<char> (65 times, avg 7 ms)
   458 ms: __gnu_cxx::__to_xstring<std::basic_string<wchar_t>, wchar_t> (65 times, avg 7 ms)
   428 ms: std::basic_string<char32_t> (65 times, avg 6 ms)
   424 ms: std::basic_string<char16_t> (65 times, avg 6 ms)
   380 ms: std::basic_string<wchar_t> (65 times, avg 5 ms)
   368 ms: std::basic_string<char16_t>::basic_string (85 times, avg 4 ms)
   363 ms: std::basic_string<char32_t>::basic_string (85 times, avg 4 ms)
   353 ms: std::filesystem::path::string<char32_t, std::char_traits<... (34 times, avg 10 ms)
   ...

**** Template sets that took longest to instantiate:
  3393 ms: std::__and_<$> (2185 times, avg 1 ms)
  2332 ms: std::unique_ptr<$> (109 times, avg 21 ms)
  1893 ms: std::__uniq_ptr_data<$> (109 times, avg 17 ms)
  1874 ms: std::__uniq_ptr_impl<$> (109 times, avg 17 ms)
  1735 ms: std::basic_string<$> (261 times, avg 6 ms)
  1430 ms: std::is_convertible<$> (1555 times, avg 0 ms)
  1096 ms: std::chrono::duration<$> (632 times, avg 1 ms)
  1028 ms: std::basic_string<$>::basic_string (414 times, avg 2 ms)
  998 ms: std::basic_string<$>::_M_construct<$> (394 times, avg 2 ms)
  ...

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 36

https://github.com/aras-p/ClangBuildAnalyzer/


Profiling compilation –  (3)ClangBuildAnalyzer
**** Functions that took longest to compile:
   489 ms: gladLoadGLUserPtr(void (* (*)(void*, char const*))(), void*) cpp)
   431 ms: sf_glad_gl_find_extensions_gl(int)
   156 ms: mp3dec_decode_frame
   111 ms: stbi__create_png_image_raw(stbi__png*, unsigned char*, unsigned int,...
    86 ms: stbi__load_main(stbi__context*, int*, int*, int*, int, stbi__result_...
    78 ms: sf::Ftp::getResponse()
    72 ms: stbi__jpeg_load(stbi__context*, int*, int*, int*, int, stbi__result_...
    60 ms: sf::priv::WglContext::createContext(sf::priv::WglContext*) cpp)
    60 ms: stbi__do_zlib(stbi__zbuf*, char*, int, int, int)
    57 ms: sf::priv::JoystickImpl::openDInput(unsigned int)
    ...

**** Function sets that took longest to compile / optimize:
   107 ms: std::vector<$>::_M_default_append(unsigned long long) (11 times, avg 9 ms)
    91 ms: std::basic_ostream<char, std::char_traits<char> >& std::__de... (10 times, avg 9 ms)
    69 ms: bool std::__do_str_codecvt<$>(wchar_t const*, wchar_t const*... (10 times, avg 6 ms)
    56 ms: std::_Hashtable<$>::_M_rehash_aux(unsigned long long, std::i... (9 times, avg 6 ms)
    52 ms: std::_Hashtable<$>::_M_insert_unique_node(unsigned long long... (9 times, avg 5 ms)
    43 ms: std::__cxx11::basic_string<$> std::filesystem::__cxx11::path... (10 times, avg 4 ms)
    37 ms: void std::_Hashtable<$>::_M_assign<$>(std::_Hashtable<$> con... (3 times, avg 12 ms)
    29 ms: sf::priv::RenderTextureImplFBO::create(sf::Vector2<$> const&... (1 times, avg 29 ms)
    28 ms: sf::Ftp::upload(std::__cxx11::basic_string<$> const&, std::_... (1 times, avg 28 ms)
    ...

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 37

https://github.com/aras-p/ClangBuildAnalyzer/


Profiling compilation –  (4)ClangBuildAnalyzer
**** Expensive headers:
26760 ms: SFML/System/Win32/WindowsHeader.hpp (included 22 times, avg 1216 ms), included via:
  UdpSocket.cpp.obj SocketImpl.hpp SocketImpl.hpp  (1321 ms)
  Packet.cpp.obj SocketImpl.hpp SocketImpl.hpp  (1296 ms)
  IpAddress.cpp.obj SocketImpl.hpp SocketImpl.hpp  (1294 ms)
  VideoModeImpl.cpp.obj  (1292 ms)
  Joystick.cpp.obj JoystickManager.hpp JoystickImpl.hpp JoystickImpl.hpp  (1291 ms)
  ...

10748 ms: SFML/Network/Win32/SocketImpl.hpp (included 8 times, avg 1343 ms), included via:
  SocketImpl.cpp.obj  (1466 ms)
  TcpListener.cpp.obj SocketImpl.hpp  (1456 ms)
  UdpSocket.cpp.obj SocketImpl.hpp  (1377 ms)
  Packet.cpp.obj SocketImpl.hpp  (1366 ms)
  IpAddress.cpp.obj SocketImpl.hpp  (1323 ms)
  ...

10713 ms: SFML/Graphics/GLCheck.hpp (included 10 times, avg 1071 ms), included via:
  RenderTextureImplFBO.cpp.obj  (1262 ms)
  RenderTarget.cpp.obj  (1218 ms)
  TextureSaver.cpp.obj TextureSaver.hpp  (1210 ms)
  GLCheck.cpp.obj  (1209 ms)
  Texture.cpp.obj  (1182 ms)
  ...

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 38

https://github.com/aras-p/ClangBuildAnalyzer/


Visual Studio extension based on clang�cl ’s �ftime�trace
Developed by 

Many features:
Profile compilation
Text highlights on include costs
Complation flamegraph
Include graph

Profiling compilation – CompileScore

Ramon Viladomat

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 39

https://github.com/Viladoman/CompileScore
https://github.com/Viladoman


Building the flowchart (3)

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 40



Split your software into physically self-contained components
Component: header + source (along with an associated standalone test driver)
Limit dependencies among components (no cyclic physical dependencies)

 (Sec. 3.5) provides 9 levelization techniques for removing design cycles

Levelization
Components reside in levels due to their relative physical dependencies
(Local) leaf components are defined to be at level 1
Components at level  depend on components at levels  (and lower)
With proper testing  new components need depend on only tested ones
Group components together into packages (and packages into groups)

John Lakos’s work on physical design is a fantastic reference
Amazon: 
YouTube: 
YouTube: 
YouTube : 

Improving physical design – components and levelization

Lakos20

N N − 1

→

Large-Scale C++ Software Design
“Advanced Levelization Techniques” - John Lakos [CppCon 2016]
“C++ Modules and Large-Scale Development” - John Lakos [ACCU 2019]
“Lakos’20: The “Dam” Book is Done!” - John Lakos [ACCU 2021]

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 41

https://www.amazon.co.uk/Large-Scale-Architecture-Component-Addison-Wesley-Professional/dp/0201717069
https://www.amazon.com/Books-John-Lakos/s?rh=n%3A283155%2Cp_27%3AJohn+Lakos
https://www.youtube.com/watch?v=QjFpKJ8Xx78
https://www.youtube.com/watch?v=lGZzN7WZ6EA
https://www.youtube.com/watch?v=yFZcfIfJUdg


Basic advice, but always good to be reminded of it

Always put the definition of a function in a .cpp  file
Unless you intentionally want to inline  the function

Did you know you can also put = default  in the source file?

For more information, check out 
Section 1.1. “Defaulted Functions”

Improving physical design – declarations and definitions

// component.h
#pragma once
class component { void f(); };

// component.cpp
#include <component.h>
void component::f() { /* ... */ }

// example.h
#pragma once
class example { example(); };

// example.cpp
#include <example.h>
example::example() = default;

Embracing Modern C++ Safely

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 42

https://emcpps.com/


For first-party types, prefer forward declarations rather than headers
They can be used in more places than you might expect! 

Q: is the code above valid?

Improving physical design – forward declarations (0)

[src]

// zoo.h
#pragma once

class animal;

class zoo
{
public:
    animal get_random_animal();
    void add_animal(animal);

private:
    std::vector<animal> _animals;
};

// zoo.cpp
#pragma once
#include "zoo.h"
#include "animal.h"

animal zoo::get_random_animal() { /* ... */ }

void zoo::add_animal(animal x)
{
    _animals.push_back(x);
}

ERROR: 'std::is_complete_or_unbounded(std::type_identity<animal>{})':
       template argument must be a complete class or an unbounded array

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 43

https://stackoverflow.com/a/553869/598696


The code above is now completely valid!
animal.h  is only included in zoo.cpp

Using forward declarations can greatly reduce header dependencies
Libraries should provide “forward headers” for their users

Improving physical design – forward declarations (1)
// zoo.h
#pragma once

class animal;

class zoo
{
public:
    animal get_random_animal();
    void add_animal(animal);

    zoo();  // <==
    ~zoo(); // <==

private:
    std::vector<animal> _animals;
};

// zoo.cpp
#pragma once
#include "zoo.h"
#include "animal.h"

animal zoo::get_random_animal() { /* ... */ }

void zoo::add_animal(animal x)
{
    _animals.push_back(x);
}

zoo() = default;  // <==
~zoo() = default; // <==

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 44



The same trick can be used for std��unique_ptr
Allows safe memory management of forward-declared polymorphic types

Careful!
The user of subsystem.h  will often have to include dependency.h  themselves
Error messages might be unintuitive, like on the previous slides
Problematic for a public-facing header, but possibly worthwhile for an implementation one

Improving physical design – forward declarations (2)

// subsystem.h
#pragma once

class dependency;

class subsystem
{
public:
    subsystem(std::unique_ptr<dependency>&&); // defined or defaulted in `.cpp`
    ~subsystem();                             //    "    "      "     "    "

private:
    std::unique_ptr<dependency> _dependency;
};

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 45



Common technique, still very useful
Completely isolates implementation in a .cpp  file
Can use a forward declaration + std��unique_ptr  🙂

Example from 

Improving physical design – PImpl (0)

// steam_manager.hpp
#pragma once
#include <memory>

class steam_manager
{
private:
    struct impl;
    std::unique_ptr<impl> _impl;

public:
    steam_manager();
    ~steam_manager();

    void api0();
    void api1();
};

Open Hexagon

// steam_manager.cpp
#include "steam_manager.hpp"
#include "steam_api.hpp" // possibly expensive
#include "windows.h"     // very expensive

struct steam_manager::impl
{
    void impl0() { /* ... */ }
    void impl1() { /* ... */ }
};

steam_manager::steam_manager()
    : _impl(std::make_unique<impl>()) { }

steam_manager::~steam_manager() = default;
    // ^ must be in the source file!

void steam_manager::api0() { _impl->impl0(); }
void steam_manager::api1() { _impl->impl1(); }

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 46

https://github.com/vittorioromeo/SSVOpenHexagon/blob/master/include/SSVOpenHexagon/Core/Steam.hpp


When to use?
PImpl should be a default for components used infrequently or outside of the hot path
Don’t use for anything that must be cache-friendly or invoked in a hot loop

Drawbacks:
SO. MUCH. BOILERPLATE.
Cost of pointer indirection (suprisingly avoidable)

Avoiding indirection:
Aligned array of std��byte  as a buffer with a max size instead of std��unique_ptr
static_assert  that impl  fits in the buffer in the .cpp
Create the impl  via placement- new  in the buffer
Only do this if you can prove that you needed to via profiling

Improving physical design – PImpl (1)

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 47



Good practices for header hygiene:
Do not rely on transitive inclusion
Do not rely on header inclusion order
Group headers together logically
Sort header groups by dependency levels
Sort headers in groups alphabetically
Include fine-grained headers, not catch-all ones 

Improving physical design – header hygiene

[SFML PR #2489]

#include <SFML/Window/Event.hpp> // First-party headers (level 1)
#include <SFML/Window/Keyboard.hpp>

#include <SFML/System/Clock.hpp> // First-party headers (level 2 -- Window depends on System)
#include <SFML/System/Time.hpp>

#include <boost/stacktrace.hpp> // Third-party headers
#include <glad/gl.h>

#include <filesystem> // C++ Standard Library
#include <vector>

#include <cstdlib> // C Standard Library
#include <cstdio>

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 48

https://github.com/SFML/SFML/pull/2489


How to figure out what includes are unnecessary?
 – clang -based tool 

Native support in CMake
Point CMAKE_CXX_INCLUDE_WHAT_YOU_USE  to the IWYU executable
Can also just use compilation database via CMAKE_EXPORT_COMPILE_COMMANDS

Improving physical design – unnecessary includes

include�what�you�use
[SFML PR #1917] [SFML PR #2002] [SFML PR #2013] [SFML PR #2021] [SFML PR #2425]

cmake -GNinja -DCMAKE_UNITY_BUILD=OFF # remember to turn unity builds off
      -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_CXX_FLAGS="-fuse-ld=lld"
      -DCMAKE_CXX_INCLUDE_WHAT_YOU_USE=include-what-you-use

[3/100] Building CXX object src/SFML/System/CMakeFiles/sfml-system.dir/Sleep.cpp.obj

C:/OHW/SFML/src/SFML/System/Sleep.cpp should add these lines:
#include "SFML/Config.hpp"                  // for SFML_SYSTEM_WINDOWS
#include "SFML/System/Time.inl"             // for operator>=, Time::Zero

C:/OHW/SFML/src/SFML/System/Sleep.cpp should remove these lines:

The full include-list for C:/OHW/SFML/src/SFML/System/Sleep.cpp:
#include <SFML/System/Sleep.hpp>
#include <SFML/System/Time.hpp>             // for Time
#include <SFML/System/Win32/SleepImpl.hpp>  // for sleepImpl
...

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 49

https://github.com/include-what-you-use/include-what-you-use
https://github.com/SFML/SFML/pull/1917
https://github.com/SFML/SFML/pull/2002
https://github.com/SFML/SFML/pull/2013
https://github.com/SFML/SFML/pull/2021
https://github.com/SFML/SFML/pull/2425


Building the flowchart (4)

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 50



Physical design considerations and PCH apply
Don’t #include  unnecessarily
Consider PImpl or isolating in .cpp  (e.g.  in )
Consider forward-declaring or check if the library provides a fwd  header

Pick your libraries carefully
Libraries fast to compile often advertise it 🙂
e.g.  or  

3rd-party libraries – general tips

sqlite_orm Open Hexagon

doctest boost�ext.ut
[SFML PR #1921]

[boost.ut -- 10000 tests, 20000 asserts, 100 cpp files]

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 51

https://github.com/fnc12/sqlite_orm
https://github.com/vittorioromeo/SSVOpenHexagon/blob/master/src/SSVOpenHexagon/Online/Database.cpp
https://github.com/doctest/doctest
https://github.com/boost-ext/ut
https://github.com/SFML/SFML/pull/1921
https://github.com/boost-ext/ut


If a library that you need doesnt care much about compilation times…
Consider complaining
Considering politely requesting improvements

Do you know what’s better than a request…?

Call to action!
If you learned something from this talk, contribute to an open-source project!
Example: 
Example: 
Example: 

🙋�����

Alternatively, consider competing
Fast-to-compile lightweight libraries are sought after, especially in game development

3rd-party libraries – complaining, contributing, competing

SFML PRs
R.E.L.I.V.E. project PRs
sqlite_orm  PR

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 52

https://github.com/SFML/SFML/pulls?q=is%3Apr+is%3Aclosed+author%3Avittorioromeo
https://github.com/AliveTeam/alive_reversing/pulls?q=is%3Apr+is%3Aclosed+author%3Avittorioromeo
https://github.com/fnc12/sqlite_orm/pull/1161


Building the flowchart (5)

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 53



 by Philip Trettner
Let’s take a look together!

Example: the cost of <algorithm>
Removing it and hardcoding min  resulted in ~260ms speedup on a .cpp  (MSVC) 
Similar improvements in SFML, but  initially rejected!
Sneaked it in as part of  😉

<algorithm>  gets bigger and slower with every standard 
C++14: 0.09s
C++17: 0.29s (~3x slower)
C++20: 0.70s (~7.5x slower than C++14!)

Every time you #include  a Standard Header, you may be paying a big price – why?
Compilation speed not a priority for Standard Library implementers
Headers are implemented with backwards-compatibility in mind
The C++ Standard Library is heavily templated and overly complicated at times
Check it out yourself – look at libstdc�� , libc�� , or Microsoft headers

Standard Library – per-header cost and impact
C++ Compile Health Watchdog

[src]

PR #1783
PR #1909

[src]

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 54

https://artificial-mind.net/projects/compile-health/
https://twitter.com/SheriefFYI/status/1627955769911164928
https://github.com/SFML/SFML/pull/1783
https://github.com/SFML/SFML/pull/1909
https://build-bench.com/b/WfuR5KZvB6PPHgAZrEYU9dTDYp8


Physical design considerations and PCH apply here as well
E.g. prefer <iosfwd>  to <iostream> ; place heavy-hitters in PCH
…can you forward-declare Standard Library types? (covered in next slides)

Requesting improvements in this area is difficult
Standard Library implementers are mostly volunteers
Massive backlog for features and bug fixes – build time takes low priority 😔
Keeping backwards compatibility is important and extremely difficult

Even contributing improvements is very difficult!
I tried removing <tuple>  from <memory>  for libstdc��  

std��tuple<T*, TDeleter>  is used to store the state of std��unique_ptr
I changed it to a custom pair

Dreams crushed by :
“No, it would be a ABI break. It would change the layout for a deleter with the f�nal  specifier.”
GDB pretty-printers might also stop working
Generally opposed to small compilation time optimizations

“Competing” suprisingly often makes sense (covered in next slides)

Standard Library – tips, complaining, contributing, competing

[diff]

Jonathan Wakely

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 55

https://github.com/gcc-mirror/gcc/pull/67/files?diff=split&w=1
https://twitter.com/wakomeup


⚠  ENTERING UNDEFINED BEHAVIOR TERRITORY ⚠ 

It is UB to add declarations to std  unless explicitly permitted by the C++ Standard
“Rules are made to be broken” 😎
It is quite hard to get the forward declarations right!

To the rescue: Standard Library forward declaration libraries
 by Philip Trettner – outdated, but started the idea

 by Oleh Fedorenko – successor fork, supports all of C++17 – see also: 

Standard Library – forwarding headers

cpp�std�fwd
stdfwd C++Now 2021 lightning talk

#include <stdfwd/string> // <== use `stdfwd/XXX`
#include <stdfwd/vector>

struct Conference
{
    virtual std::string getName() const = 0;
    virtual stdfwd::vector<Person> getParticipants() const = 0;
        //  ^~~~~~~~~~~~~~~~~~~~~~
        // for classes with default template arguments, use `stdfwd::XXX`
};

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 56

https://github.com/Philip-Trettner/cpp-std-fwd
https://github.com/olegpublicprofile/stdfwd
https://www.youtube.com/watch?v=lv6Q5P3v-tg


In certain situations, writing your own replacement makes sense

Example: std��unique_ptr
Fairly easy to write a replacement that exposes only what you need
Save ~92-166ms per source file including <memory>  
Zero-dependency barebones implementation in Open Hexagon 

Consider using 3rd-party alternatives written by compile-time–aware people
 by Vladimír Vondruš

Provides self-contained single-header replacements for std��unique_ptr , std��optional , and more…
Excellent blog post with in-depth benchmarks 
Pointer.h  is around ~3x faster than <memory>  ( std��unique_ptr )
Reference.h  is around ~5x faster than <functional>  ( std��reference_wrapper )

 by Vladimír Vondruš
Multiplatform utility and container library
“complementing STL features with focus on compilation speed, ease of use and performance” 
Another great article on why his libraries compile quickly 

Standard Library – hand-written replacements

[src]

here

magnum�singles

here

corrade

[src]

here

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 57

https://artificial-mind.net/projects/compile-health/
https://github.com/vittorioromeo/SSVOpenHexagon/blob/master/include/SSVOpenHexagon/Utils/UniquePtr.hpp
https://github.com/mosra/magnum-singles
https://blog.magnum.graphics/backstage/lightweight-stl-compatible-unique-pointer/
https://github.com/mosra/corrade
https://github.com/mosra/corrade#features
https://blog.magnum.graphics/backstage/reducing-cpp-compilation-time-in-magnum-code-optimizations/


Building the flowchart (6)

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 58



Wrap the inclusion of windows.h  in a separate header 
The header will define a few preprocessor symbols before including windows.h

NOMINMAX  prevents min  and max  macros from escaping

WIN32_LEAN_AND_MEAN

Excludes less common APIs such as Cryptography, DDE, RPC, Shell, and Windows Sockets 

windows.h  – wrapper header
[SFML PR #1896]

// WindowsHeader.hpp (from SFML)
#pragma once

#ifndef NOMINMAX
#define NOMINMAX
#endif

#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif

// ...

#include <windows.h>

[src]

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 59

https://github.com/SFML/SFML/pull/1896
https://learn.microsoft.com/en-gb/windows/win32/winprog/using-the-windows-headers?redirectedfrom=MSDN


It is technically possible to forward-declare windows.h  types
See Stefan Reinalter’s tweet ( )
See Sebastian Aaltonen’s tweet ( )

Portable?
Probably, these defines have never changed on Windows
Might need #if  for 32-bit support or weird targets like ReactOS

windows.h  – forwarding declarations

@molecularmusing
@SebAaltonen

using HANDLE = void*;
using WPARAM = unsigned long long;
using LPARAM = long long;
using LRESULT = long long;

#define FORWARD_DECLARE_HANDLE(name) struct name##__; using name = name#__*

FORWARD_DECLARE_HANDLE(HINSTANCE);
FORWARD_DECLARE_HANDLE(HWND);
FORWARD_DECLARE_HANDLE(HDC);
FORWARD_DECLARE_HANDLE(HGLRC);

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 60

https://twitter.com/molecularmusing/status/1624001173974929408
https://twitter.com/SebAaltonen/status/1647204939473485824


Free and open-source modular replacement for windows.h
 by 

Caveats:
Not officially supported by Microsoft
Still work-in-progress: some APIs missing (contributions welcome)
Unicode/ASCII functions missing generic macro (must use A  or W  suffix explicitly)

Might try using this for SFML 3.x and measure impact in the future

windows.h  – modular replacement

WindowsHModular Arvid Gerstmann

windows_base.h  file.h  process.h
atomic.h        gdi.h   sysinfo.h
dbghelp.h       io.h    threads.h
dds.h           misc.h  window.h

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 61

https://github.com/Leandros/WindowsHModular
https://arvid.io/


Building the flowchart (7)

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 62



Some guidelines:
Prefer constexpr  functions to template metaprogramming
Consider run-time polymorphism (e.g. type erasure) instead 
Avoid recursive variadic template instantiation, prefer ���  or fold tricks 
Used a fold over =  to optimize sqlite_orm  reverse tuple iteration 

Prefer if constexpr  to SFINAE whenever possible
Define templates in source files whenever possible

Factor out non-dependent code:

Templates – general tips

[src]

[src]

[src]

template <typename T>
class my_optional
{
private:
    alignas(T) std::byte _buf[sizeof(T)];
    bool _has_value;

public:
    bool has_value() const;
    // ...
};  

struct my_optional_base
{
    bool _has_value;
    bool has_value() const;
};

template <typename T>
class my_optional : my_optional_base
{
    /* ... */ 
};

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 63

https://www.zverovich.net/2017/12/09/improving-compile-times.html
https://www.foonathan.net/2020/05/fold-tricks/
https://github.com/fnc12/sqlite_orm/pull/1161/files


“Explicit instantiation declaration”
Suppresses implicit generation of object code for a particular template specialization in a TU
Must be paired with “explicit instantiation definitions”

“Explicit instantiation definition”
Forces generation of object code for a particular template specialization in a TU

Templates – extern template  (0)

// vec3_util.hpp

template <typename T>
vec3<T> cross(const vec3<T>& lhs, const vec3<T>& rhs) { /* ... */ }

extern template vec3<float> cross(const vec3<float>&, const vec3<float>&);
extern template vec3<double> cross(const vec3<double>&, const vec3<double>&);

// vec3_util.cpp
#include "vec3_util.hpp"

template vec3<float> cross(const vec3<float>&, const vec3<float>&);
template vec3<double> cross(const vec3<double>&, const vec3<double>&);

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 64



What happens?
Each source file gets an extern template  by including vec3_util.hpp
If we don’t link against vec3_util.o , linking will fail!
If we do, none of the sourceX.cpp  files trigger an instantiation of cross
They simply link against the instantiations forced in vec3_util.cpp

What’s the benefit?
No extern template   4 duplicate instantiations of cross , coalesced by linker
With extern template   1 single instantiation of cross , no extra work by linker

Templates – extern template  (1)

// source0.cpp
#include "vec3_util.hpp"
void f0() { cross(vec3{...}, vec3{...}); }

// source1.cpp
#include "vec3_util.hpp"
void f1() { cross(vec3{...}, vec3{...}); }

// source2.cpp
#include "vec3_util.hpp"
void f2() { cross(vec3{...}, vec3{...}); }

// source3.cpp
#include "vec3_util.hpp"
void f3() { cross(vec3{...}, vec3{...}); }

→

→

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 65



General strategy 
In the header, place template definition + extern template  for common specializations
In the source, place explicit template  instantiations for those same specializations

One of my experiences
I measured glm  template instantiations being a bottleneck 

Q: how much was my compilation time speedup?
A: 0% 😩

Templates – extern template  (2)
[src]

[src]

// glmwrapper.h
#pragma once
#include <glm.hpp>
extern template struct glm::vec<4, float, glm::packed_highp>;

// glmwrapper.cpp
#include "glmwrapper.hpp"
template struct glm::vec<4, float, glm::packed_highp>;

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 66

https://arne-mertz.de/2019/02/extern-template-reduce-compile-times/
https://stackoverflow.com/questions/61477486/using-extern-template-with-third-party-header-only-library


Quotes by Davis Herring (ISO C++ Committee): 

In short:
extern template  helps a lot with non-inline functions expensive to instantiate
Doesn’t help much if the bottleneck is the instantiation of a class template itself

Modules will help!

Templates – extern template  (3)
[src]

“explicit instantiation declaration of a class template doesn’t prevent (implicit) instantiation of that template; it
merely prevents instantiating its non-inline, non-template member functions”

“code which requires that the class be complete still needs to know its layout and member function declarations (for
overload resolution), and in general there’s no way to know those short of instantiating the class”

“an explicit instantiation definition in a module interface allows caching the instantiation in the module data,
avoiding both parsing and instantiation in importing translation units”

“modules remove the implicit inline  on class members and friends defined in the class increasing the number of
functions for which extern template  prevents implicit instantiation”

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 67

https://stackoverflow.com/a/61765991/598696


More pain points:
Easy to get puzzling linker errors
Easy to not get any benefit
Still a few bugs around… 
Syntax can be verbose and unintuitive 
Duplicate explicit instantiations cause linker errors 
Very annoying with platform-specific type aliases!

Attempts to simplify the features were shut down by EWGI in 2019 
Want to support all platforms + MinGW + older MSVC versions? Good luck! 

Worth it?
As always, measure!
Minor ~0.6s (~5.4%) speedup in SFML test suite 

Templates – extern template  (4)

[GCC #109387] [GCC #109380]

[src]

[src]

[src]

[SFML PR #2496]

[SFML PR #2424]

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 68

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=109387
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=109380
https://stackoverflow.com/questions/75763172
https://stackoverflow.com/questions/17175078
https://github.com/cplusplus/papers/issues/299
https://github.com/SFML/SFML/pull/2496
https://github.com/SFML/SFML/pull/2424


Rule of Chiel
Named after Chiel Douwes 
Presented by Odin Holmes

From most expensive to least expensive:
SFINAE
Instantiating a function template
Instantiating a type
Calling an alias
Adding a parameter to a type
Adding a parameter to an alias call
Looking up a memorized type

Let’s put it in practice!
Reimplementing std��conditional_t  (example from Odin Holmes )

Templates – metaprogramming (0)

[src]

[@chieltbest]

[src] 

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 69

https://www.youtube.com/watch?v=EtU4RDCCsiU&t=491s
https://twitter.com/chieltbest
https://www.youtube.com/watch?v=EtU4RDCCsiU


Templates – metaprogramming (1)
template <bool B, typename T, typename F>
struct conditional { using type = T; };

template <class T, typename F>
struct conditional<false, T, F> { using type = F; };

template <bool B, typename T, typename F>
using conditional_t = typename conditional<B, T, F>::type;

template <bool B>
struct conditional 
{ 
    template <typename T, typename F> using f = T; 
};

template <>
struct conditional<false> 
{ 
    template <typename T, typename F> using f = F; 
};

template <bool B, typename T, typename F>
using conditional_t = typename conditional<B>::template f<T, F>;

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 70



This metaprogramming style can be chained (“zero-cost composition”)

Incredibly fast –  blows the competition away
Check out 

Templates – metaprogramming (2)

[Odin Holmes -- "Type Based Template Metaprogramming is Not Dead" [C++Now 2017]]

kvasir
http://metaben.ch/

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 71

https://www.youtube.com/watch?v=EtU4RDCCsiU&t=491s
https://github.com/kvasir-io/mpl
http://metaben.ch/


The completed flowchart

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 72



⬜ Pick a better build system (e.g. use ninja )

⬜ Pick a better linker (e.g. use lld  or mold / sold )

⬜ Use a compilation cache (e.g. use ccache )

⬜ Check your build machine configuration and running processes (e.g. anti-virus)

⬜ Improve the hardware of your build machine (e.g. CPU, RAM, NVMe drives)

⬜ Enable precompiled headers (e.g. PCH.hpp  + target_precompile_headers )

⬜ Enable unity builds (e.g. -DCMAKE_UNITY_BUILD=ON )

⬜ Prefer dynamic linking to static linking (e.g. -DBUILD_SHARED_LIBS=ON ) – see Extras

Low-hanging fruits – checklist

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 73



Conclusion

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 74



Goals:
☑  Understand what can negatively impact build times
☑  Provide actionable points to improve your compilation times
☑  Call to action: improve your favorite open-source project’s build
⬜ Spark some interesting discussion!

Detailed analysis of Modern C++ features: EMC++S!
📕 
No opinions: just facts, use cases, pitfalls, and annoyances

SFML 3.x – “Simple and Fast Multimedia Library”

Open Hexagon – open-source arcade game made with SFML

Let’s keep in touch!

Thanks!
🙋 Questions? � Comments? 🤦 Criticism? � Stories?

 |  |  | 

Thank you for attending!

https://emcpps.com

https://sfml-dev.org/

https://openhexagon.org/

mail@vittorioromeo.com

https://vittorioromeo.com @supahvee1234 https://github.com/vittorioromeo mail@vittorioromeo.com 75

https://emcpps.com/
https://sfml-dev.org/
https://openhexagon.org/
mailto:mail@vittorioromeo.com
https://vittorioromeo.com/
https://twitter.com/supahvee1234
https://github.com/vittorioromeo
mailto:mail@vittorioromeo.com


References

76



References and further reading/viewing material
magnum  blog - “Forward-declaring STL container types”
magnum  blog - “Lightweight but still STL-compatible unique pointer”
“The Hitchhiker’s Guide to Faster Builds” - Viktor Kirilov - CoreHard Spring 2019
Tobias Hieta: “Compiling C++ is slow - let’s go faster” - SwedenCpp
Arne Mertz - “Reduce Compilation Times With extern template”
Annileen Devlog #2 - “C++20 and Modules”
Arthur O’Dwyer - “SCARY metafunctions”
QT Blog - “Precompiled Headers and Unity (Jumbo) Builds in upcoming CMake”
Christoph Heindl - “Reducing Compilation Time: Unity Builds”
virtuallyrandom - “C++ Compilation: What’s Slowing Us Down?”
Roy Jacobson - “C++20 Modules Status Report”
David Röthlisberger - “Benchmarking the Ninja build system”
Viktor Kirilov - “CMake 3.16 added support for precompiled headers & unity builds - what you need to know”
Viktor Kirilov - “A guide to unity builds”
methodpark - “The C/C++ Developer’s Guide to Avoiding Office Swordfights – Part 1: ccache”
Philip Trettner - “C++ Compile Health Watchdog”
Aras Pranckevičius - “Investigating compile times, and Clang -ftime-report”
Aras Pranckevičius - “time-trace: timeline / flame chart profiler for Clang”
Aras Pranckevičius - Clang Build Analyzer
CppCon 2016: John Lakos “Advanced Levelization Techniques”
“C++ Modules and Large-Scale Development” - John Lakos [ACCU 2019]
J. Lakos, V. Romeo, R. Khlebnikov, A. Meredith - “Embracing Modern C++ Safely”
Jonathan Müller - “Nifty Fold Expression Tricks”

77

https://blog.magnum.graphics/backstage/forward-declaring-stl-container-types/
https://blog.magnum.graphics/backstage/lightweight-stl-compatible-unique-pointer/
https://www.slideshare.net/corehard_by/the-hitchhikers-guide-to-faster-builds-viktor-kirilov-corehard-spring-2019
https://www.youtube.com/watch?v=X4pyOtawqjg
https://arne-mertz.de/2019/02/extern-template-reduce-compile-times/
https://teodutra.com/annileen/annileen-devlog/game-engine/graphics-programming/cpp/cpp20/2023/02/27/Annileen-Devlog-2/
https://quuxplusone.github.io/blog/2018/07/09/scary-metafunctions/
https://www.qt.io/blog/2019/08/01/precompiled-headers-and-unity-jumbo-builds-in-upcoming-cmake
https://cheind.wordpress.com/2009/12/10/reducing-compilation-time-unity-builds/
http://virtuallyrandom.com/c-compilation-whats-slowing-us-down/
https://github.com/royjacobson/modules-report
https://david.rothlis.net/ninja-benchmark/
https://onqtam.github.io/programming/2019-12-20-pch-unity-cmake-3-16/
https://onqtam.github.io/programming/2018-07-07-unity-builds/
https://www.methodpark.de/blog/the-c-c-developers-guide-to-avoiding-office-swordfights-part-1-ccache/
https://artificial-mind.net/projects/compile-health/
https://aras-p.info/blog/2019/01/12/Investigating-compile-times-and-Clang-ftime-report/
https://aras-p.info/blog/2019/01/16/time-trace-timeline-flame-chart-profiler-for-Clang/
https://aras-p.info/blog/2019/09/28/Clang-Build-Analyzer/
https://www.youtube.com/watch?v=QjFpKJ8Xx78
https://www.youtube.com/watch?v=lGZzN7WZ6EA
https://emcpps.com/
https://www.foonathan.net/2020/05/fold-tricks/


Extras

78



From Roy Jacobson’s 

MSVC has a complete implementation since VS2022 17.5
Many open bug reports

GCC still has an incomplete implementation
Many open bug reports
Progress stalled until September 2022
Module scanning protocol ( ) ETA: 2024 

Clang still has an incomplete implementation
Many open bug reports

CMake has experimental support via magic flag
Relies on the module scanning protocol from P1689 – GCC unsupported
Many open bug reports

Extras – More information on modules (0)
C++20 Modules Status Report

P1689R5 [src]

set(CMAKE_EXPERIMENTAL_CXX_MODULE_CMAKE_API "2182bf5c-ef0d-489a-91da-49dbc3090d2a")

79

https://github.com/royjacobson/modules-report
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1689r5.html
https://github.com/royjacobson/modules-report


Victor Zverovich achieved 4x speedup with modules for  
Not compared against PCH
Of course, issues with extern template  

Nice blog posts on the subject:

Modules are being actively worked on
E.g. Bloomberg is sponsoring Kitware to work on CMake support 

Full support for modules + CMake on Matt Godbolt’s Compiler Explorer
Example: 
by Bill Hoffman and Kitware

My opinion:
As with most other things in C++, headers will never truly disappear
Compilation speed optimization techniques will not become obsolete due to modules
Modules will eventually make our lives easier

Extras – More information on modules (1)
fmtlib

[src]

[src]

Kitware - “import CMake; C++20 Modules”
Victor Zverovich - “Simple usage of C++20 modules”

[src]

https://godbolt.org/z/aTr8crhcE

80

https://github.com/fmtlib/fmt
https://twitter.com/vzverovich/status/1645859369400279041
https://twitter.com/vzverovich/status/1645516406736457730
https://www.kitware.com/import-cmake-c20-modules/
https://www.zverovich.net/2023/04/17/simple-cxx20-modules.html
https://twitter.com/bretbrownjr/status/1646299880212635648
https://godbolt.org/z/aTr8crhcE


Dynamic linking is usually faster than static linking
Especially due to symbol visiblity

Enable globally in CMake via -DBUILD_SHARED_LIBS=ON
Alternatively, select on a per-case basis with add_library

Symbol visibility:
On Windows, only marked symbols are exported in .dll  files
Use portable macros to export/import symbols

On UNIX, all symbols are exported (poor default!)
Use �fvisibility=hidden  to change the default, or CMake

No measurable difference on SFML 3.x full rebuild 😕
SFML does use hidden visibility by default
YMMV – significantly helps in some cases (e.g. a lot of template-generated symbols) 

Extras – Low-hanging fruits – dynamic linking (0)

set_target_properties(${target} PROPERTIES
                        CXX_VISIBILITY_PRESET hidden
                        VISIBILITY_INLINES_HIDDEN YES)

[src]

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 81

https://gcc.gnu.org/wiki/Visibility


Example: portable macro-based symbol visibility API

Extras – Low-hanging fruits – dynamic linking (1)

#if defined(SFML_STATIC)
    #define SFML_API_EXPORT
    #define SFML_API_IMPORT
#else
    #if defined(SFML_SYSTEM_WINDOWS)
        #define SFML_API_EXPORT __declspec(dllexport)
        #define SFML_API_IMPORT __declspec(dllimport)
    #else // Linux, FreeBSD, Mac OS X
        #define SFML_API_EXPORT __attribute__((__visibility__("default")))
        #define SFML_API_IMPORT __attribute__((__visibility__("default")))
    #endif
#endif

#if defined(SFML_SYSTEM_EXPORTS)
    #define SFML_SYSTEM_API SFML_API_EXPORT
#else
    #define SFML_SYSTEM_API SFML_API_IMPORT
#endif

set_target_properties(${NAME} PROPERTIES DEFINE_SYMBOL ${NAME_UPPER}_EXPORTS)

vittorioromeo.com | mail@vittorioromeo.com | vromeo5@bloomberg.net | @supahvee1234 | github.com/vittorioromeo/accu2023 | (C) 2023 Bloomberg Finance L.P. All rights reserved. 82



83




