

Purpose of the talk

Finance? Trading?

■ Finance sounds stuffy or unapproachable
■ Part of the industry is secretive
■ Disconnected from mainstream tech trends

Trading is very tech-driven

■ Systematic and semi-system trading systems
■ Low-latency execution
■ Data analysis and modeling

⇒ Get engineers excited about the trading niche
2 of 70

C++ jobs in Trading

Back-office
■ Core: general infrastructure, microservices, databases, orchestrators, etc.

■ Connectivity: connect to trading venues or partners

■ Modeling: use numerical methods to price assets

Mid-office
■ Treasury: reconciliating and booking all positions, ensuring accounts are provisioned

■ Risk: assess and characterize how much risk is tied to positions

Front-office
■ Pricing: monetize models to nd at which price to buy and sell

■ Execution: place orders to execute trades at the best price

3 of 70

About the author

C++ Developer
■ ∼ 15 years
■ C++ standards committee since 2011

High-performance computing

■ Research in academia, software tools for parallel
architectures

■ Specialization in intra-CPU optimization
■ Former owner of an optimization business (oil,

aerospace, nance)

Trading

■ ∼ 7 years
■ Market-making strategies
■ Index, equity and FI options, cryptocurrencies
■ Start-ups, banks and medium-sized organizations

Low-latency connectivity, execution and
microstructure

4 of 70

Outline

Trading in a nutshell
Exchange assets for prot
Matching
Strategy

Connectivity
Feeds
Protocol considerations

Modeling and pricing
Generalities
Microstructure
Derivatives

Low-Latency Execution
Why speed matters
System architecture

Data analysis and research
Data pipeline
Research platform

4 of 70

What is trading?

Exchanging assets with another party

■ base/quote, often quote is a stable currency, e.g BTC/USD
■ buy/sell base (sell/buy quote)
■ usually done either as an investment or as speculation

Different ecosystems

■ equities (stocks, indices on stocks, ETFs)
■ xed income (government bonds, corporate bonds)
■ commodities (oil, metals, grain)
■ currencies
■ cryptocurrencies

5 of 70

How can I trade?

Financial instruments
■ Trade assets outright (spot)
■ Obtain a loan and trade against that loan (spot with margin account)
■ Enter a contract with trade obligations at term (futures, perp swaps, CFD)
■ Enter a contract with trade optionality at term (options, warrants)
■ Smart contracts (blockchain-based enforcement)
■ Exotic contracts (sophisticated legally-binding agreements)

Different products

■ Listed on public exchanges
■ Broker-dealer products
■ Over-the-Counter only

6 of 70

Why trade?

Price move prediction (alpha)

■ fundamental analysis of product (long term)
■ events, news (medium term)
■ market trends, statistics etc. (short term)

Connecting people

■ arbitrage buy/sell ow
■ collecting fees
■ arbitrage different marketplaces
■ arbitrage derivative instruments on same assets

7 of 70

Why electronically?

Larger pool of participants

■ link venues across the world
■ connect retail and professionals
■ more competition, better prices

Transparency

■ Records of all transactions
■ Enforcement of due process
■ MIFID compliance

Automation
■ Enables looking at small opportunities a

human wouldn’t consider
■ Systematic algorithms to run strategies

consistently
■ Low-touch enables higher volume

8 of 70

Who’s trading?

Investors, buy-side

■ Pension funds, mutual funds
■ Venture capitalists
■ Hedge funds
■ Proprietary trading rms
■ Retail

Trading services, sell-side

■ Exchanges
■ Market-makers
■ Investment banks
■ Brokers

9 of 70

How to interact

Direct, Over-the-Counter

■ voice
■ electronic, Request-for-Quote

Through marketplace/exchange

■ best participant selected (usually
anonymous)

■ small fees
■ multiple platforms

□ continuous, ”the screen”
□ auctions
□ multi-participant OTC-type platforms

Execution on-behalf
■ nds best way to enter large positions over

longer time periods
■ larger fees
■ methodology pre-agreed and/or

performance-tracked
□ Flow traders
□ Algo-driven, vwap/twap

10 of 70

Outline

Trading in a nutshell
Exchange assets for prot
Matching
Strategy

Connectivity
Feeds
Protocol considerations

Modeling and pricing
Generalities
Microstructure
Derivatives

Low-Latency Execution
Why speed matters
System architecture

Data analysis and research
Data pipeline
Research platform

10 of 70

Vocabulary

■ bid: buy order
■ ask: sell order
■ offer: ask
■ side: whether it’s buy or sell
■ tick: increment of prices that are valid to place orders on
■ prices p1 better than p2: p1 > p2 if bid, p1 < p2 if ask
■ BBO: best bid and ask
■ bid-ask spread: best_askprice − best_bidprice
■ bid and ask orders are crossed: bidprice >= askprice
■ liquidity: quantity addressable for trading, implied at good prices
■ touch: liquidity close to the BBO

11 of 70

Continuous matching

Continuous
■ Buyer/seller gets matched with sellers/buyers immediately if possible

□ If triggering match called aggressor, taker or active order
□ Removes matched liquidity, involved parties have traded

■ Otherwise stays in order book and becomes resting, maker or passive
■ Order book is always uncrossed
■ Participants can amend/cancel their open orders

Limit orders
■ Instrument identier and side
■ Maximum quantity (number of lots)
■ Worst price per lot

Orders ags

■ Immediate-or-Cancel
■ Book-or-Cancel
■ Icebergs

12 of 70

Order book, initial state

Order book
■ Steady-state, all bids strictly less than asks
■ Multiple orders per price level, arranged per

insertion order (priority)

Example scenario

■ Tick of 0.50
■ Spread of 1, e.g. two ticks

quantity

15 2012

1011.5

11

6 1010.5

2010

8 14 509.5

price

13 of 70

Insertion example, join

Buy 20@10.50

■ Join the queue on best bid
■ Spread unaffected, two ticks wide

quantity

15 2012

1011.5

11

6 1010.5 20

2010

8 14 509.5

price

14 of 70

Order book, back to initial

quantity

15 2012

1011.5

11

6 1010.5

2010

8 14 509.5

price

15 of 70

Insertion example, improve

Buy 20@11

■ Establish new price level
■ Front of the queue
■ Spread tightened to one tick

11 20

quantity

15 2012

1011.5

6 1010.5

2010

8 14 509.5

price

16 of 70

Order book, back to initial

quantity

15 2012

1011.5

11

6 1010.5

2010

8 14 509.5

price

17 of 70

Insertion example, take and improve

Buy 20@11.50

■ Trade 10@11.50
■ Sell order disappears
■ Establish new price level at 11.50 with

remaining quantity
■ Front of queue
■ Spread unaffected, but market ”ticked up”

quantity

15 2012

1011.5

11

6 1010.5

2010

8 14 509.5

price

18 of 70

Order book, back to initial

quantity

15 2012

1011.5

11

6 1010.5

2010

8 14 509.5

price

19 of 70

Insertion example, take and widen

Buy 20@12

■ Trade 10@11.50
■ Sell order disappears
■ Trade 10@12
■ Buy order fully lled, not entering the book
■ Sell order partially lled
■ Spread widened, two ticks wide

quantity

5 2012

11.5

11

6 1010.5

2010

8 14 509.5

price

20 of 70

Insertion example, pro-rata

Buy 20@12, different matching

■ Pro-rata lls all participants relative to their
participation to the total

■ Different exchanges will provide different
matching algorithms

■ Can be a mix of different approaches

quantity

11 1412

11.5

11

6 1010.5

2010

8 14 509.5

price

21 of 70

Order book, data structures

Index orders by identier

■ Support modify and cancel
■ Hash table

Track priority of orders

■ Linked-list of orders per level
■ Ordered sequence of levels

□ Self-balancing binary tree
□ Circular buffer, dense tick representation

Many updates per second

■ Pre-allocate and pool
■ Hybrid (intrusive) data structures
■ Optimize for operations close to touch
■ Optimize hashing for indexing method of

exchange

22 of 70

Outline

Trading in a nutshell
Exchange assets for prot
Matching
Strategy

Connectivity
Feeds
Protocol considerations

Modeling and pricing
Generalities
Microstructure
Derivatives

Low-Latency Execution
Why speed matters
System architecture

Data analysis and research
Data pipeline
Research platform

22 of 70

Matching conclusions

Active vs Passive
■ Can execute instantly by crossing, but more expensive
■ Can improve execution price by placing passive order, but must wait for other participant to cross

Passive execution probability

■ Depends on queue position
■ Can improve probability by establishing new price level, but worsens execution price

23 of 70

Market-making

Capture the spread

■ Constantly buy and sell both sides passively
■ Capture difference between bid and ask as prot
■ Exposed to market moving before you can close the position

Aim for no risk
■ No assumptions about price trends, do not go either position
■ Bias system more or less aggressively or even cross to get out
■ Build consolidated positions by aggregating cross-venue, statiscally etc.

24 of 70

Asset management

Alpha says whether to go long or short

■ If you believe market will go up, buy before it does
■ If you believe market will go down, sell before it does

Portfolio optimization

■ Aggregate all price predictions across portfolio
■ Find best set of trades to maximize portfolio value

Execution
■ Could just cross, but expensive, and large executions move markets against you
■ Smarter execution improves price, keeping more of the alpha

25 of 70

It’s a spectrum

Alpha is good for best execution

■ Short-term alpha is crucial to make good execution decisions
■ Medium-term alpha is good to avoid toxic ow (systematically one-sided executions)
■ Long-term alpha is good to set target position

Execution is good to monetize alpha

■ Minimize market impact (position maintains expected value)
■ Minimize slippage (cost of execution relative to a given trade decision)

26 of 70

Outline

Trading in a nutshell
Exchange assets for prot
Matching
Strategy

Connectivity
Feeds
Protocol considerations

Modeling and pricing
Generalities
Microstructure
Derivatives

Low-Latency Execution
Why speed matters
System architecture

Data analysis and research
Data pipeline
Research platform

26 of 70

Participant connections

EXCHANGE

Order Add
Oder Modify
Order Cancel

PARTICIPANT 2PARTICIPANT 1

Book Order Add
Book Order Modify
Book Order Cancel
Book Order Execution

Order Ack
Order Execution

Order Add
Oder Modify
Order Cancel Order Ack

Oder Execution

Order entry on private feed

Market data on public feed

27 of 70

Gateways and matching engine
TS SW ASW1

ASW2

ASW3

ASW4

ESW1

ESW2

ESW3

ESW4

OGW1 OGW2

Matching Engine

Market Data
Publisher

Participant 1

Participant 2

TS SW

Interconnect Exchange

Exchange
Switch

Access
Switch

Switch Exchange
Services

Participant
services
 -
Trading
system

28 of 70

Unicast vs Multicast

Unicast
■ Send data for every single participant, bandwidth-hungry
■ Goes through any router, including the open Internet
■ No one gets it at the same time
■ Can use TCP and have tailored per-participant data

Multicast
■ Send data once, switches fan-out, bandwidth-efficient

□ Requires ability to propagate subscribers through network

■ Participants get data at the same time
□ Modulo network congestion and ethernet signal phase

■ UDP-only
29 of 70

Outline

Trading in a nutshell
Exchange assets for prot
Matching
Strategy

Connectivity
Feeds
Protocol considerations

Modeling and pricing
Generalities
Microstructure
Derivatives

Low-Latency Execution
Why speed matters
System architecture

Data analysis and research
Data pipeline
Research platform

29 of 70

Order book delity

Levels
■ Level 1: BBO
■ Level 2: aggregated quantity per price level
■ Level 3: all individual orders

Netting

■ Unnetted
■ Throttled
■ Coalesced

30 of 70

Recovery and reliability

Sequence numbers

■ Out of order
■ Gaps
■ Incremental updates

Recovery

■ Replay since beginning
■ Snapshot

31 of 70

Serialization formats

Binary

■ Flat, reinterpret_cast-friendly formats, e.g. SBE
■ Delta encoding, e.g. FAST

Text
■ FIX, key/value pairs
■ JSON

Fragmentation

■ Nice exchanges avoid it
■ Others whatever IP says goes

32 of 70

Decimal numbers

Problem
■ Often working with non-integral prices and quantities
■ 0.1 cannot be represented exactly with binary oating-point

Find {s,m, e} such that v ≃ (−1)s × m× 2e,with 1 ≤ m < 2

■ Approximations cause all sorts of problems

Decimal oating-point

■ Find {s,m, e} such that v ≃ (−1)s × m× 10e,with 1 ≤ m < 10

■ IEEE754-2008, decimal32, decimal64, decimal128, backed by IBM and Intel
■ Hardware support in POWER, software libraries
■ Remains esoteric and slow

33 of 70

Decimal numbers (2)

Decimal xed-point

■ Fix the exponent and denormalize the mantissa
■ Straightforward implementation, scaled integers
■ Beware of operations that would change the scale
■ No dynamic range/precision trade-off, beware of overows

Fixed-point approaches

■ Compile-time exponent, part of type
■ Runtime exponent, schema that applies to a dataset

□ no redundant storage with all values
□ e.g. time series

34 of 70

Decimal numbers in practice

Exchanges

■ Some use decimal oating-point (rare)
■ Most use decimal xed-point with negative exponent

□ Either same exponent for everything on protocol
□ Or per-instrument exponent

■ Some just use decimal text

Recommendations
■ Store data as integers, keep track of the relevant exponent they use
■ Stick to scale-preserving operations when doing exact computations
■ Switch in-and-out of double whenever doing non-exact numerical computations

35 of 70

Outline

Trading in a nutshell
Exchange assets for prot
Matching
Strategy

Connectivity
Feeds
Protocol considerations

Modeling and pricing
Generalities
Microstructure
Derivatives

Low-Latency Execution
Why speed matters
System architecture

Data analysis and research
Data pipeline
Research platform

35 of 70

Vocabulary

■ theo: theoretical price from model
■ edge: difference between theo and executed price, positive if protable
■ credit: minimum edge that we require to place/maintain orders
■ markout: difference between mid/theo and executed price at different time horizons
■ slippage: difference between the price you expect your execution strategy to be able to get and

the price that you do get, positive if better than expected
■ greeks: sensitivies of risk as a function to a particular price model input
■ hedge: execute a trade on a given instrument to cover part or all of position in another

instrument

36 of 70

Outline

Trading in a nutshell
Exchange assets for prot
Matching
Strategy

Connectivity
Feeds
Protocol considerations

Modeling and pricing
Generalities
Microstructure
Derivatives

Low-Latency Execution
Why speed matters
System architecture

Data analysis and research
Data pipeline
Research platform

36 of 70

Infer price from the order book

Micro-structure of the book
■ Current state, how is liquidity spread
■ Short-term state changes
■ Statistics on state, what’s ”normalcy”

Multiple features

■ Imbalance between buyers and sellers
■ Trends towards buying or selling
■ Predict tick up/down

⇒ Build price at which to buy/sell, model credit
on uncertainty and risk appetite of strategy

Tick size has a huge impact

■ Big tick size, market is thick, one tick wide,
lots of liquidity on BBO

■ Small tick size, market is thin, spread out
over multiple levels

Thin markets can provide better prices, but are
more challenging to price correctly.

Exchanges aim to nd a good balance so that
price improvemnt is possible while still
concentrating large liquidity at the top.

37 of 70

Simple BBO models

Formula
■ Uncertainty is askprice − bidprice
■ Mid price: fair price is

bidprice +
askprice − bidprice

2

■ Reverse-weighted sum: fair price is

bidpriceaskqty + askpricebidqty
bidqty + askqty

Weaknesses
■ Mid price doesn’t account for quantity

unbalance at all
■ RWS behaves badly whenever BBO

widens/tightens

38 of 70

Momentum

Accumulate over a window
■ Find sensible signals that could impact future movements
■ Parameterize them correctly to enable tting
■ Either binary decision or continuous price adjustments
■ Window of effect and decay

Predict the future
■ If you know what’s going to happen, you can react earlier
■ Signals can be driven by shape of network packet, grouping of updates, nature of order book

updates, etc.

39 of 70

Correlations

Beta factor
■ Instrument X value moves by amount
■ Instrument Y value will probably move by βamount, with a certain likelihood, over a certain

window of time

Applications

■ Defend against possible moves, pre-emptively strike
■ Hedge position in one illiquid instrument in a liquid one that it is heavily correlated to

40 of 70

Outline

Trading in a nutshell
Exchange assets for prot
Matching
Strategy

Connectivity
Feeds
Protocol considerations

Modeling and pricing
Generalities
Microstructure
Derivatives

Low-Latency Execution
Why speed matters
System architecture

Data analysis and research
Data pipeline
Research platform

40 of 70

Futures

Continuous-compounding formula

F = Ser(T−t)

Cash ows beyond interest

■ Dividends (equities)
■ Storage costs (commodities)

Rate is unknown
■ Bank rate generally known, but each

participant may have a better rate
■ Infer the rate (or rate offset) from the

market
■ Future vs spot, expiries vs each other

41 of 70

Options

European, call, continuous-compounding

C = N(d1)S− N(d2)Ker(T−t)

d1 =
ln S

K + (r+ σ2

2)(T− t)

σ
√
T− t

d2 = d1 − σ
√
T− t

Fitting

■ Need to infer both r and σ

■ Want to ensure σ has a certain smooth
structure across K and T

■ Fit a smooth model until you minimize error
with observations

Greeks
■ Delta: sensitivity to changes in S
■ Vega (kappa): sensitivity to changes in σ

■ Theta: sensitivity to changes in t
■ Rho: sensitivity to changes in r

42 of 70

Options (2)

American options

∂V
∂t

+
1

2
σ2S2

∂2V
∂S2

+ rS
∂V
∂S

− rV ≤ 0

Use an approximation or solve the PDE

43 of 70

Conicting pricing

Multiple options

■ Price future from spot, price future implicitly
■ Price spot from future, price spot implicitly
■ Blend the two, etc.

Change and arbitrage

■ If markets efficient, all prices agree
■ In practice more/less uncertainty on certain markets
■ Some patterns in who moves rst

44 of 70

Outline

Trading in a nutshell
Exchange assets for prot
Matching
Strategy

Connectivity
Feeds
Protocol considerations

Modeling and pricing
Generalities
Microstructure
Derivatives

Low-Latency Execution
Why speed matters
System architecture

Data analysis and research
Data pipeline
Research platform

44 of 70

Asynchronous change requests

Constant stream of updates

■ Many participants
■ Orders being added/modied/cancelled multiple times per millisecond
■ Exchange has to distribute a lot of data, may be slow
■ May even be throttled on its way to you

Join the queue

■ Observe market in a given state, want to affect a change
■ Change request submitted and queued
■ Exchange drains the queue of changes, eventually processes it
■ Observe market with your change applied, tens of milliseconds might have passed

45 of 70

Fairness

Access to information
■ Preferential access
■ Does network provide information to all participants at the same time

Order processing ordering

■ Does everyone go through the same gateway
■ Is there any reordering on the way to this gateway or internally

Special rules make speed less of a concern

■ Micro-auctions
■ Asymmetric delays
■ Pro-rata matching

46 of 70

Determinism

Deterministic
■ Fastest always wins
■ Clear, fair, efficient
■ Technologically more challenging for exchange
■ Leads to people building FPGAs and ASICs

Non-deterministic
■ Fastest only has an advantage, but semi-random
■ Exchange can have dynamic behaviour based on load
■ Leads to reverse-engineering and nding whatever can be gamied to improve the odds
■ Mostly lots of tricks but no need for hardware

47 of 70

Pick-offs

Theoretical price-driven

■ Only willing to buy for less/sell for more than some price model
■ Market conditions change, theo changes, you cancel
■ Aggressor is faster, bad trade

Risk-driven
■ Have lots of orders on many instruments or different venues
■ Don’t necessarily want them to be lled all at once
■ One order is lled, cancel other ones
■ Aggressor is faster, overtrade

48 of 70

Achieve good priority

Bad priority ⇒ never get to trade

Price improvement opportunities

■ Event-driven and competitive
■ Tied to price move predictions

Proactively place orders where price might move to

■ More load and complexity
■ Additional risk in the book

49 of 70

Everyone wants to take the good stuff

New order crosses theo
■ Spread tightened, new price attractive to your theo
■ Try and send an order to match against it
■ Other participants might do the same, fastest takes it

Event causes theo change

■ Something happens that affects your price model (usually other market)
■ Now you think many existing orders are mispriced
■ Try and send orders to match against all of them
■ Other participants might do the same, may only get some of it

50 of 70

Some metrics

Fill rate
■ How often do I get lled before cancelling
■ Relative to various priority metrics

Hitting rate

■ How often do I get anything when I try to take liquidity
■ Amount of credit/edge
■ Latency of sending the message through

51 of 70

Time on the wire

Trigger to order

■ When was network packet triggering decision received
■ When was network packet with order emitted out

Streaming at 10Gbps

■ MTU of 1500 is 1200ns
■ End of Frame to End of Frame
■ Start of Frame to Start of Frame
■ Start of Trigger to Start of Frame

52 of 70

Software times

Not whole picture

■ Delay between packet received and picked up by software
■ Delay between sending packet and it being serialized out

Low-latency measurements

■ rdtsc(p)
■ rdpmc

53 of 70

Meaningful statistics

Quantiles

■ Min – how fast you can expect to get
■ Median – how fast you are typically
■ 90th percentile – how well are you protected
■ 99th percentile – how bad can it get

Determinism
■ Removing tails is hard, but important
■ Important events happen rarely
■ Control ow divergence increases jitter

54 of 70

Outline

Trading in a nutshell
Exchange assets for prot
Matching
Strategy

Connectivity
Feeds
Protocol considerations

Modeling and pricing
Generalities
Microstructure
Derivatives

Low-Latency Execution
Why speed matters
System architecture

Data analysis and research
Data pipeline
Research platform

54 of 70

Soft real-time constraints

By order of importance

■ No system calls that block non-deterministically
■ Real-time scheduling guarantees and affinity pinning
■ Lock-free synchronization (i.e. no blocking system calls at all)
■ No memory allocations
■ No system calls at all
■ Wait-free synchronization
■ Limited code ow divergence (i.e. deterministic execution time)

55 of 70

Hybrid trading systems

Special-purpose

■ Super fast cancel
□ Better cancel more often than needed
□ The simpler, the easier it is to make it fast

■ Fast hitting
■ Slower quoting, relaxed coding constraints

Integrated

■ More precise cancelling
■ Enhanced capabilities for sophisticated stategies

56 of 70

Ethernet, IP, TCP

TCP – byte stream

■ Handshake
■ Ack window
■ Nagle algorithm
■ Retransmissions

IP – packets

■ Routing
■ MTU and fragmentation

Ethernet – frames
■ Bandwidth
■ Signal phase

57 of 70

Low-latency networking

Kernel-bypass

■ Direct communication with Network Interface Adapter in userland
■ DMA, write-combining memory, PCI-Express
■ Disable interrupts, too slow to read means dropped data

Userland TCP/IP
■ Receive/send ethernet frames or frame fragments in application
■ Re-implement all of TCP and IP without relying on the kernel
■ Shortcuts for reliable networks

58 of 70

Ready-made solutions

Solarare (now Xilinx)

■ OpenOnload, BSD socket compatibility
layer, high conformance

■ EFVI, low-level API
■ Onboard FPGA since Xilinx acquisition

Exablaze (now Cisco)

■ exanic low-level API, pre-loading capabilities
■ Onboard FPGA as core of the system
■ exasock, BSD socket compatiblity layer,

not-quite-conforming

Others
■ Mellanox (now Nvidia), more targeted at HPC and Inniband
■ Myricom, other HPC pioneer, notable for a Windows API, now defunct

59 of 70

Standard approaches

DPDK
■ Linux foundation
■ Large userland framework for kernel-bypass networking
■ Supports traditional NICs (Intel, etc.)
■ Userland TCP implementations

io_uring

■ Linux kernel
■ paradigm shift removing system calls
■ new languages (e.g. Rust) building their networking around it

60 of 70

Threading model

Few threads
■ No reliance on OS thread scheduling
■ Cooperative scheduling intra-thread

Share-nothing

■ Objects local to a given thread
■ Communication via lock-free queues
■ Seq-locks for state sampling

□ recently made compatible with C++
memory model

Some frameworks
■ Asio, not the best t
■ Seastar, good principles

61 of 70

State of the union

Race to the bottom
■ Normal software < 10ms
■ Software with real-time in mind < 100µs – sweet spot?
■ Ultra low-latency software < 3µs
■ Normal FPGA solution < 500ns
■ Ultra low-latency FPGA solution < 50ns
■ ASIC < 30ns
■ Above and beyond < 10ns

62 of 70

Outline

Trading in a nutshell
Exchange assets for prot
Matching
Strategy

Connectivity
Feeds
Protocol considerations

Modeling and pricing
Generalities
Microstructure
Derivatives

Low-Latency Execution
Why speed matters
System architecture

Data analysis and research
Data pipeline
Research platform

62 of 70

Recording time series

Type of inputs

■ Feeds
■ Pricing infromation
■ System internals
■ Trade events

Requirements

■ Hundreds of GBs to TBs per day
■ Must not impact latency of trading
■ Data needs to be available within hours

Serialization and formats
■ Binary for scalability
■ Schema-driven to avoid redundant data
■ Compression for smaller bandwidth usage
■ Streamable for resilience

BSON, no schema, row-by-row

Flatbuffers, SBE, schema, row-by-row

Arrow IPC, schema, batches of rows,
column-by-column

63 of 70

Recording metrics

Type of inputs

■ Amount of data received/processed, load
■ Latency of a sub-path
■ Other statistics

Requirements

■ Don’t need all state transitions
■ Infrequent sampling
■ Moderate amount of data
■ Must not impact latency of trading
■ Data needs to be available within minutes

Interaction model
■ Database polling for new state better than

pushing state changes to database
■ Online stats can be done over polling

window then recorded as a sample in time
series

Prometheus, example of good solution

64 of 70

Ingesting and working with data

Databases
■ Flat arrow/parquet les
■ Spark, Athena
■ KDB
■ InuxDB
■ MongoDB

Data processing at scale

■ Parallelization: Dask, Ray
■ Orchestration: Prefect, Airow

Data manipulation

■ Python with pandas
■ Q
■ R
■ MATLAB

Compute on demand

■ Dedicated cluster
■ Cloud spot instances on-demand

65 of 70

Outline

Trading in a nutshell
Exchange assets for prot
Matching
Strategy

Connectivity
Feeds
Protocol considerations

Modeling and pricing
Generalities
Microstructure
Derivatives

Low-Latency Execution
Why speed matters
System architecture

Data analysis and research
Data pipeline
Research platform

65 of 70

Quality metrics

Price
■ Estimate predictive power at different horizons
■ Assess if systematically biased

⇒ Markouts the main tool.

Execution
■ Taking: mostly a question of speed
■ Making: mostly a question of queue priority

⇒ Simulate, nd what you can take / when your queued orders would eventually get lled

66 of 70

Simulation

Simulation matching

■ Replay historical market data
■ Run trading engine placing fake simulation order
■ Overlay or merge simulated orders on top of historical ones
■ Fill simulated order when would be matched against historical order

Problems
■ Market impact
■ Mismatched historical/simulation order books
■ Modeling exchange delays

67 of 70

Network simulation

Fake exchange

■ Re-implement exchange with same network protocol
■ Hooked up to historical data and simulation matching engine
■ Instrument the network to be able to make it look like it’s the actual exchange

System testing

■ Can run the actual binary that goes into prod
■ Measure actual system latency
■ Thoroughly test the system

68 of 70

Optimization

Simulate all the options

■ Explore the universe of possibles
■ Find what features are signicant
■ Find which combination works best

Offline validation
■ Make sure the system works before going to product
■ Know what performance to expect

69 of 70

Questions?

70 of 70

	Trading in a nutshell
	Exchange assets for profit
	Matching
	Strategy

	Connectivity
	Feeds
	Protocol considerations

	Modeling and pricing
	Generalities
	Microstructure
	Derivatives

	Low-Latency Execution
	Why speed matters
	System architecture

	Data analysis and research
	Data pipeline
	Research platform

