

Design Patterns

ACCU 2023 - Bristol, England

Chris Ryan linkedin.com/in/chrisr98008

3

Design Patterns

4

Design Patterns

5

Design Patterns

What are Design Patterns?
• They are a repeatable solution to commonly occurring problems,
• …not architecture, a design, and not code,
• …general descriptions of general solutions to general scenarios,
• …common vocabulary for quickly explaining ideas or design,
• …quickly recognizable in code,

• Design Patterns are not only for C++ or OOP.
– They work in many languages and in many paradigms.

6

Design Patterns
Who am I?

• Chris Ryan, Seattle Metro area, Washington State, U.S.A.

• Classically trained in Software and Hardware engineering,

• Specialize in Modern C++,

• Worked in complex problem spaces,
– Believe in simplification and reducing complexity,

• Projects of many scales, extremely large and small,
– Including Firmware & Embedded,

• Recently joined the ISO C++ Standards Committee,
– Work with the Evolution Working Group (EWG),

• Have no interest in C#/.,Net, Java, js or web-ish tech.

7

Design Patterns

Practice: Design patterns can speed up the development
process by providing tested, proven development paradigms.

Criticism: Misuse and Abuse leads to Anti-Patterns.

Design patterns may just be a sign that some features are
missing in a given programming language.

8

Design Patterns

History
• Personal Toolbox
• A Pattern Language: (1977) Towns, Buildings, Construction.

– Christopher Alexander (Architect)

• Design Patterns: (1994) Elements of Reusable Object-Oriented Software,

– Gamma, Vlissides, Johnson, and Helm (aka “The Gang of Four” / “GoF”)

• Code Complete: (1993 / 2004)

– Steve McConnell

• Pattern-Oriented Software Architecture (POSA)
– 5 Volumes: (1996, 2000, 2004, 2007, 2007)
– Multiple authors

9

Architecture, Patterns & Idioms

10

Design Patterns – Training, Books, Speakers

Klaus Iglberger Rainer Grimm

11

Design Patterns

Pseudo Code / Slideware

ptr<Factory> factory; // smart pointer

factory = make<Factory>(); // constructs object & smart pointer

factory->Method(…);

Godbolt sample links are over-simplified, missing best use of const,
override, reference params &, and move params &&

You Don’t need the latest language features and gadgets.

Most samples are C++11 Modern compliant.

12

Design Patterns

godbolt.org/z/s8cY6WKjz

13

Design Patterns

godbolt.org/z/s8cY6WKjz

14

Design Patterns

godbolt.org/z/s8cY6WKjz

15

Design Patterns
Daisy Chain Filtering: Intercepting vs. Modifying

16

Design Patterns-Dependency Injection

godbolt.org/z/5qE7Was48 godbolt.org/z/KTffoMv56

17

Design Patterns

Classification of Software Design Patterns

• Creational Patterns

• Structural Patterns

• Behavioral Patterns

• Concurrency Patterns

18

Design Patterns
Concurrency Patterns
• Sharing
• Mutation
• Concurrent Architectures

Concurrency
• Processes & Threading (Simultaneous / Procedural)
• Synchronization (Data Protection)
• Inter-Process Communication

19

Design Patterns

• Creational
Patterns

• Structural
Patterns

• Behavioral
Patterns

• Creational
Patterns

• Structural
Patterns

• Behavioral
Patterns

• Creational
Patterns

• Structural
Patterns

• Behavioral
Patterns

• Creational
Patterns

• Structural
Patterns

• Behavioral
Patterns

• Creational
Patterns

• Structural
Patterns

• Behavioral
Patterns

Behavioral Creational Structural Creational Structural Behavioral
• Chain of Responsibility

• Command

• Interpreter

• Iterator

• Mediator

• Memento

• Observer

• State

• Strategy

• Template Method

• Visitor

Creational
• Abstract

• Builder

• Factory

• Prototype

• Singleton

Structural
• Adapter

• Bridge

• Composite

• Decorator

• Facade

• Flyweight

• Proxy

20

• Abstract - Groups object factories that have a common theme.

• Builder - Constructs objects by separating construction and representation.

• Factory - Method creates objects without specifying the exact class to create.

• Prototype - Creates objects by cloning an existing object.

• Singleton - Restricts object creation to only one instance.

Design Patterns-Creational

21

Design Patterns-Structural

• Adapter - An intermediary translating interface.

• Bridge - Decouples an abstraction from its implementation.

• Composite - Dynamic collection of objects manipulated as one object.

• Decorator - Daisy chain of filters extending interface behavior.

• Façade - Provides a simplified interface to a larger body of code.

• Flyweight - Reduces the cost of creating and manipulating of similar objects.

• Proxy - A placeholder for another object to control access, reduce
complexity

22

• Chain of Responsibility - Delegates commands through cascade processing.

• Command - Batching of multiple actions and parameters until executed.

• Interpreter - Implements a specialized language.

• Iterator - Access to the elements of an object hiding its implementation.

• Mediator - Like the Observer pattern but excludes the notifier sender.

• Memento - Provides the ability to restore an object state (undo).

• Observer - A publish/subscribe, all observer objects see event notifications.

• State - An object to alter its behavior when its internal state changes.

• Strategy - Allows switchable algorithms on-the-fly at runtime.

• Template Method - Extends skeleton functionality by providing concrete behavior.

• Visitor - Separation of responsibility applied to an object hierarchy.

Design Patterns-Behavioral

23

Design Patterns-Creational

24

• Abstract - Groups object factories that have a common theme.

• Builder - Constructs objects by separating construction and representation.

• Factory - Method creates objects without specifying the exact class to create.

• Prototype - Creates objects by cloning an existing object.

• Singleton - Restricts object creation to only one instance.

Design Patterns-Creational

25

Focused on the process of object creation

• Flexibility

• Maintainability

• Reusability

• Scalability

• Reduce code duplication

• Performance

Design Patterns-Creational

26

Design Patterns-Creational-Factory
Method creates objects without specifying the exact class to create

godbolt.org/z/bece3fEnj

27

Design Patterns-Creational-Abstract Factory
Groups object factories that have a common theme

godbolt.org/z/8WKzjTn6q

28

Design Patterns-Creational-Builder
Constructs objects by separating construction and representation

godbolt.org/z/frWrvenTj

29

Design Patterns-Creational-Prototype(Clone)
Creates objects by cloning an existing object

godbolt.org/z/oqxbaWjb5

30

Design Patterns-Creational-Singleton (old)
Restricts object creation to only one instance

godbolt.org/z/3G85EzzT9

31

Design Patterns-Creational-Singleton
Restricts object creation to only one instance

godbolt.org/z/76fnsj7Pz

32

Design Patterns-Creational-Monostate
Restricts object creation to only one instance (Variation of Singleton)

godbolt.org/z/1TMj13z8x

33

Design Patterns-Tempetiezed Factory<>

godbolt.org/z/WzoMYcMEY

34

Design Patterns-Tempetiezed Factory<>

godbolt.org/z/WzoMYcMEY

Output:

 ServiceA: doing something!

 ServiceB: using Extra!

 ServiceB: using Data!

36

Design Patterns-Tempetiezed Factory<>

godbolt.org/z/WzoMYcMEY

37

Design Patterns-Structural

38

Design Patterns-Structural

• Adapter - An intermediary translating interface.

• Bridge - Decouples an abstraction from its implementation.

• Composite - Dynamic collection of objects manipulated as one object.

• Decorator - Daisy chain of filters extending interface behavior.

• Façade - Provides a simplified interface to a larger body of code.

• Flyweight - Reduces the cost of creating and manipulating of similar objects.

• Proxy - A placeholder for another object to control access, reduce
complexity

39

Greater flexibility and modularity in for better:

• Abstraction

• Flexibility

• Reduced coupling

• Separation of algorithms from the structure

Used for Improved:

• Extensibility

• Flexibility

• Performance

• Security

Design Patterns-Structural

40

Design Patterns-Structural-Adapter(Basic)
An intermediary translating interface

godbolt.org/z/Geccqhf19

41

Design Patterns-Structural-Adapter(Abstract)
An intermediary translating interface

godbolt.org/z/5q47v4Exd

42

Design Patterns-Structural-Decorator
Daisy chain of filters extending interface behavior

godbolt.org/z/fEhroGsPx

43

Design Patterns-Structural-Decorator
Daisy chain of filters extending interface behavior

godbolt.org/z/fEhroGsPx

44

Design Patterns
Daisy Chain Filtering: Intercepting vs. Modifying

45

Design Patterns-Structural-Bridge
Decouples an abstraction from its implementation

godbolt.org/z/hbxP45qvf

46

Design Patterns-Structural-Proxy
A placeholder for another object to control access, reduce complexity

godbolt.org/z/fG9hnTbPx

47

Design Patterns-Structural-Flyweight
Reduces the cost of creating and manipulating of similar objects

godbolt.org/z/4cMndhn3r

48

Design Patterns-Structural-Facade
Provides a simplified interface to a larger body of code

godbolt.org/z/44M71anMK

49

Design Patterns-Structural-Composite
Dynamic collection of objects manipulated as one object

godbolt.org/z/1x4dKxxhf

50

Design Patterns-Behavioral

51

• Chain of Responsibility - Delegates commands through cascade processing.

• Command - Batching of multiple actions and parameters until executed.

• Interpreter - Implements a specialized language.

• Iterator - Access to the elements of an object hiding its implementation.

• Mediator - Like the Observer pattern but excludes the notifier sender.

• Memento - Provides the ability to restore an object state (undo).

• Observer - A publish/subscribe, all observer objects see event notifications.

• State - An object to alter its behavior when its internal state changes.

• Strategy - Allows switchable algorithms on-the-fly at runtime.

• Template Method - Extends skeleton functionality by providing concrete behavior.

• Visitor - Separation of responsibility applied to an object hierarchy.

Design Patterns-Behavioral

52

Allows for greater flexibility and modularity in the design of the system to improve:
 Extensibility
 Decoupling
 Flexibility
 Maintainability
 Modularity
 Performance
 Reliability
 Scalability
 Security
 Testability
 Usability

Design Patterns-Behavioral

53

Design Patterns-Behavioral-Command
Batching of multiple actions and parameters until executed (Transaction Caching)

godbolt.org/z/hn1e4PW57

54

Design Patterns-Behavioral-Chain of Responsibility
Delegates commands through cascade processing

godbolt.org/z/TMz78qK5W

55

Design Patterns
Daisy Chain Filtering: Intercepting vs. Modifying

56

Design Patterns-Behavioral-Interpreter
Implements a specialized language

godbolt.org/z/ad84qT79x

57

Design Patterns-Behavioral-Iterator
Access to the elements of an object hiding its implementation

godbolt.org/z/e978j3v6G

58

Design Patterns-Behavioral-State
An object to alter its behavior when its internal state changes

godbolt.org/z/97qdP9zf3

59

Design Patterns-Behavioral-Observer
A publish/subscribe, all observer objects see event notifications

godbolt.org/z/xccvs53xo

60

Design Patterns-Behavioral-Mediator
Like the Observer pattern but excludes the notifying the sender

godbolt.org/z/Wc3cndbK8

61

Design Patterns-Behavioral-Memento
Provides the ability to restore an object state (undo)

godbolt.org/z/64nrhT41f

62

Design Patterns-Behavioral-Strategy
Allows switchable algorithms on-the-fly at runtime

godbolt.org/z/97qdP9zf3

63

Design Patterns-Behavioral-Template Method
Extends skeleton functionality by providing concrete behavior

godbolt.org/z/s65Ma6W67

64

Design Patterns-Behavioral-Visitor
Separation of responsibility applied to an object hierarchy

godbolt.org/z/EK6vj7jnf

65

Design Patterns-Behavioral-Visitor
Separation of responsibility applied to an object hierarchy

godbolt.org/z/Pv7jd5cG8

66

Design Patterns

67

Design Patterns

