
Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

• Build times

• Managing CMake projects

• Debugging issues in my code

• Parallelism support

• Memory safety

• Managing Makefiles

• Managing MSBuild projects

• Setting up a CI pipeline from scratch

• Security issues

• Type safety

• Managing libraries my application

depends on

• Moving existing code to the latest

language standard

• Setting up a development

environment from scratch

Which of these do you find frustrating about C++ development?

2020 2021 2022

Question from recent ISO C++ surveys

https://isocpp.org/files/papers/CppDevSurvey-2020-04-summary.pdf
https://isocpp.org/files/papers/CppDevSurvey-2021-04-summary.pdf
https://isocpp.org/files/papers/CppDevSurvey-2022-summary.pdf

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

Which of these do you find frustrating about C++ development?

Answer: Managing libraries my application depends on

47% 48% 48%

39%

35% 35%

15% 16%
18%

2020 2021 2022

2020 2021 2022

https://isocpp.org/files/papers/CppDevSurvey-2020-04-summary.pdf
https://isocpp.org/files/papers/CppDevSurvey-2021-04-summary.pdf
https://isocpp.org/files/papers/CppDevSurvey-2022-summary.pdf

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

How do you manage your C++ 1st and 3rd party libraries? (Check all that apply)

0% 10% 20% 30% 40% 50% 60% 70% 80%

LIBRARY SOURCE PART OF MAIN BUILD

COMPILE LIBS SEPARATELY

SYSTEM PACKAGE MANAGERS

DOWNLOAD PREBUILT BINARIES

VCPKG

CONAN

NUGET

OTHER

NO DEPENDENCIES

% OF RESPONDENTS

% of respondents 2022

https://isocpp.org/files/papers/CppDevSurvey-2022-summary.pdf

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

ISO C++ 2023 Survey Is Open!

Please take the survey to give feedback to the C++ community

https://isocpp.org/blog/2023/04/2023-annual-cpp-developer-survey-lite

Summary results will be publicly posted to isocpp.org.

Survey closes on April 25, 2023

https://isocpp.org/blog/2023/04/2023-annual-cpp-developer-survey-lite

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

A common C++ problem

uncommon in other programming languages

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

How to break the ABI and your builds

Change the

compiler

Change the

compiler version

Change the

target OS

Change the

target

architecture

Internal library

changes

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

The diamond problem of dependency management

Example

Project

Dependency on C @v2 Dependency on C @v3

Library A
version 1.1

Library B
version 2.2

Library C
version ?

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

The diamond problem of dependency management

Example Resolved

Project

Dependency on C @v2 Dependency on C @v2

Library A
version 1.1

Library B
version 1.7

Library C
version 2.0

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

Packages can hint what they need

Conan example

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

LIBRARY_NAME

version 1.2.3

Semantic versioning hints

For libraries that respect semver

Major version

ABI definitely

breaks

Minor version

ABI shouldn’t

break

Patch

ABI is OK

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

Baselines in vcpkg

Making version matching an implementation detail

boost@v1 openssl@v1 gtest@v1 …

Catalog baseline: b60f003ccf5fe8613d029f49f835c8929a66eb61

boost@v2 openssl@v1 gtest@v2 …

Catalog baseline: a34d035cc48ye9699d350f49f835c3858a34bd20

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

The “cones of destruction” in vcpkg

Preventing diamond problems

Library being updated uses A, B, C

C

B
A

Library being updated is used by X, Y, Z

Z

Y
X

Libraries A, B, C, X, Y, Z are

rebuilt along with the

changed library

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

Minimum versioning (version>=) in vcpkg

Example

Dependency constraints:

Library A v1.0 depends on Library B v1.0

Library A v1.1 depends on Library B v1.0 and

Library C v3.0

Library A v1.2 depends on Library B v2.0 and

Library C v3.0

Library C has no dependencies

Consumer’s vcpkg.json:

Solution: A v1.1, B v1.0, C v3.0

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

Overrides in vcpkg

Example

Consumer’s vcpkg.json:

fmt is acquired at version 6.0.0, regardless of any baselines or version>= constraints for it elsewhere

Overrides are only available to end consumers in the dependency graph

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

Using a package manager makes it easier to update your libraries and keep them current

Keeping dependencies up to date is important

Performance, new features, bug fixes, security, …

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

• Building packages from source and binary caching

• Control and flexibility over package versions

• Reproducible build environments (using manifests)

• Large, tested package catalogs

• Consistent open-source and closed-source package experience

• Support for offline builds

• Substantial number of open-source community contributions

Other C++ package manager benefits

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

1. When your project has more than 1-2 dependencies, or you have

dependencies of dependencies

2. When you have open-source dependencies

3. When your project has no dependencies, but you want to implement

something that is already available in an open-source library

4. When you are thinking about making your library header-only

because it will make it more portable

5. If you are concerned about maintenance time or security

When you should consider a package manager

Any one of these is enough

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

• Issues modules will address:

• Over-use of headers during preprocessing

• Macros and “using” declarations (by hiding them away from code outside the module)

• Some ODR violations (separate translation units in separate modules)

• Too many files in your repo (no need for source + headers as separate files)

• Code architecture is clearer with separate logical components

• Issues modules won’t fix:

• Maintaining ABI stability within a dependency graph

• Diamond problems

• Migrating thousands of existing open-source libraries to modules (and even more closed-source ones)

What about modules?

Won’t they fix all our pain?

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

System package managers C++ language package managers Language package managers

(non-C++)

Types of package managers

As used by C++ developers

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

• Designed for a particular operating system (OS) distribution

• Cross-platform projects must have special build logic for different OSes if system package

managers are needed

• Packages are installed system-wide (usually elevated)

• Packages are typically acquired as-is, though some system package managers support build

from source (e.g. Pacman)

• Not exclusive to C++ packages or even software development; can install apps, tools, and

libraries for any workflow

• Don’t typically provide first-class integration with build systems – however, since install paths are

known defaults, your build system may find packages anyway

• Most popular on Linux

System package managers

E.g. apt, yum, rpm, brew, winget, pacman, …

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

• Tailored for C++ development with more advanced features

• Have ways to address diamond dependency problems

• Support building packages from source or downloading valid prebuilt binaries

• Support a large variety of open-source libraries out-of-the-box

• Also support private libraries

• Support acquisition of build tools, platform SDKs, debuggers, and other tools needed for a

working C++ environment for cross-platform development

• Work across multiple platforms, architectures, and compilers

C++ language package managers

E.g. vcpkg, Conan

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

• A single-language package manager being repurposed for use with other programming languages

• Useful in limited scenarios (e.g. when a developer primarily uses another programming language than C++,

and doesn’t want a new package acquisition workflow for C++)

• NuGet (a .NET package manager) is the most common example used by C++ developers (9% in 2022 ISO

C++ survey).

• Scenarios NuGet does not address well:

• ABI violations/diamond problems: no support for building from source, for different compilers, compiler

versions, target architectures, target OS. Need a separate package for each configuration.

• Build systems that are not MSBuild

• Non-Windows operating systems (while technically possible under Mono or dotnet CLI, it’s still not first-

class support for C++)

• Since non-C++ language package managers do not address unique C++ requirements, not recommended

for C++ except for developers touching C++ assets that have no plans to ever modify them

Non-C++ language package managers

E.g. NuGet, npm, Cargo, pip

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

• If you work in or target primarily one system, and you do not update your dependencies frequently, use a

system package manager

• If you need a system-specific asset (e.g. a Linux-only graphics library for your video game’s Linux port), and

that package is not easily available in a C++ language package manager, use a system package manager

• If you primarily work in another programming language, use that language’s primary package manager

• Otherwise, use a C++ language package manager, which helps you resolve ABI issues, diamond problems,

offers you access to much wider variety of C++ packages (and updated package versions). Also great for

installing per-project dependencies so that other projects can have separate versions of the same

dependency.

Which type of package manager should you use for C++ packages?

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

• Package managers can be extended beyond just library dependencies

• You can package developer tools as well (build tools, debuggers, platform SDKs, static analysis tools,

runtime analysis tools, build systems, …)

• System package managers have always offered a wide variety of packages (including dev tools)

• More recently, C++ language package managers are too (including vcpkg and Conan)

• It is important to be able to bootstrap a C++ development environment in an automated and reproducible

way

• This ensures consistency between different dev machines and local dev environments and CI

• Use manifests to declare devtool and library dependencies

Reproducible development environments

Getting compilers, debuggers, build systems, graphical assets, …

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

Be able to build

dependencies from

source (when necessary)

How to manage dependencies well

Principles to keep in mind

Keep your

dependencies up-to-

date

Cross-platform should

be first class experience

Make your build

environment reproducible

Take advantage of

existing open-

source solutions

Simplify workflow for

authoring and publishing

dependencies

Enforce ABI requirements

across all packages, not

one at a time

Do download

prebuilt binaries, if

they are verified

Use more than one

package manager if

it improves your

productivity

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

OLD WAYS

• Different dependencies integrated in different

ways

• git submodules

• Custom, in-house package managers

• Built separately, linked to consuming project

• Open-source treated differently than 1st party

dependencies

• Avoiding open-source dependencies altogether

• Every team picking their own solution

• Dependencies get months/years out of date

C++ Dependency Management at Microsoft

NEW WAY

• Many teams standardizing on one package

manager (vcpkg)

• Many teams share the same dependencies

• Shared compliance process for open-source

dependencies

• Dependencies are versioned and easy to

upgrade

• 1st party and 3rd dependencies are treated the

same way

• Dependencies are tracked in a single manifest

file in the team repo

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

Rather than maintaining an in-house solution

Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

	Presentation
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: ISO C++ 2023 Survey Is Open!
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

