
Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager



Augustin Popa ACCU 2023C++ Dependencies Don’t Have To Be Painful: Why You Should Use A Package Manager

• Build times

• Managing CMake projects

• Debugging issues in my code

• Parallelism support

• Memory safety

• Managing Makefiles

• Managing MSBuild projects

• Setting up a CI pipeline from scratch

• Security issues

• Type safety

• Managing libraries my application 

depends on

• Moving existing code to the latest 

language standard

• Setting up a development 

environment from scratch

Which of these do you find frustrating about C++ development?

2020 2021 2022

Question from recent ISO C++ surveys

https://isocpp.org/files/papers/CppDevSurvey-2020-04-summary.pdf
https://isocpp.org/files/papers/CppDevSurvey-2021-04-summary.pdf
https://isocpp.org/files/papers/CppDevSurvey-2022-summary.pdf
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Which of these do you find frustrating about C++ development?

Answer: Managing libraries my application depends on

47% 48% 48%

39%

35% 35%

15% 16%
18%

2020 2021 2022

2020 2021 2022

https://isocpp.org/files/papers/CppDevSurvey-2020-04-summary.pdf
https://isocpp.org/files/papers/CppDevSurvey-2021-04-summary.pdf
https://isocpp.org/files/papers/CppDevSurvey-2022-summary.pdf
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How do you manage your C++ 1st and 3rd party libraries? (Check all that apply)

0% 10% 20% 30% 40% 50% 60% 70% 80%

LIBRARY SOURCE PART OF MAIN BUILD

COMPILE LIBS SEPARATELY

SYSTEM PACKAGE MANAGERS

DOWNLOAD PREBUILT BINARIES

VCPKG

CONAN

NUGET

OTHER

NO DEPENDENCIES

% OF RESPONDENTS

% of respondents 2022

https://isocpp.org/files/papers/CppDevSurvey-2022-summary.pdf
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ISO C++ 2023 Survey Is Open! 

Please take the survey to give feedback to the C++ community

https://isocpp.org/blog/2023/04/2023-annual-cpp-developer-survey-lite

Summary results will be publicly posted to isocpp.org. 

Survey closes on April 25, 2023

https://isocpp.org/blog/2023/04/2023-annual-cpp-developer-survey-lite
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A common C++ problem 

uncommon in other programming languages
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How to break the ABI and your builds

Change the 

compiler

Change the 

compiler version

Change the 

target OS

Change the 

target 

architecture

Internal library 

changes
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The diamond problem of dependency management

Example

Project

Dependency on C @v2 Dependency on C @v3

Library A
version 1.1 

Library B
version 2.2

Library C
version ?
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The diamond problem of dependency management

Example Resolved

Project

Dependency on C @v2 Dependency on C @v2

Library A
version 1.1 

Library B
version 1.7

Library C
version 2.0
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Packages can hint what they need

Conan example
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LIBRARY_NAME 

version 1.2.3

Semantic versioning hints

For libraries that respect semver

Major version

ABI definitely 

breaks

Minor version

ABI shouldn’t 

break

Patch

ABI is OK
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Baselines in vcpkg 

Making version matching an implementation detail

boost@v1 openssl@v1 gtest@v1 …

Catalog baseline:  b60f003ccf5fe8613d029f49f835c8929a66eb61

boost@v2 openssl@v1 gtest@v2 …

Catalog baseline:  a34d035cc48ye9699d350f49f835c3858a34bd20
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The “cones of destruction” in vcpkg

Preventing diamond problems

Library being updated uses A, B, C

C

B
A

Library being updated is used by X, Y, Z

Z

Y
X

Libraries A, B, C, X, Y, Z are 

rebuilt along with the 

changed library
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Minimum versioning (version>=) in vcpkg

Example

Dependency constraints: 

Library A v1.0 depends on Library B v1.0

Library A v1.1 depends on Library B v1.0 and

Library C v3.0

Library A v1.2 depends on Library B v2.0 and

Library C v3.0

Library C has no dependencies

Consumer’s vcpkg.json:

Solution: A v1.1, B v1.0, C v3.0
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Overrides in vcpkg

Example

Consumer’s vcpkg.json:

fmt is acquired at version 6.0.0, regardless of any baselines or version>= constraints for it elsewhere

Overrides are only available to end consumers in the dependency graph
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Using a package manager makes it easier to update your libraries and keep them current

Keeping dependencies up to date is important

Performance, new features, bug fixes, security, …
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• Building packages from source and binary caching

• Control and flexibility over package versions

• Reproducible build environments (using manifests)

• Large, tested package catalogs

• Consistent open-source and closed-source package experience

• Support for offline builds

• Substantial number of open-source community contributions

Other C++ package manager benefits
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1. When your project has more than 1-2 dependencies, or you have 

dependencies of dependencies

2. When you have open-source dependencies

3. When your project has no dependencies, but you want to implement 

something that is already available in an open-source library

4. When you are thinking about making your library header-only 

because it will make it more portable

5. If you are concerned about maintenance time or security

When you should consider a package manager

Any one of these is enough
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• Issues modules will address: 

• Over-use of headers during preprocessing

• Macros and “using” declarations (by hiding them away from code outside the module)

• Some ODR violations (separate translation units in separate modules)

• Too many files in your repo (no need for source + headers as separate files)

• Code architecture is clearer with separate logical components

• Issues modules won’t fix:

• Maintaining ABI stability within a dependency graph

• Diamond problems

• Migrating thousands of existing open-source libraries to modules (and even more closed-source ones)

What about modules?

Won’t they fix all our pain? 
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System package managers C++ language package managers Language package managers

(non-C++)

Types of package managers

As used by C++ developers
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• Designed for a particular operating system (OS) distribution

• Cross-platform projects must have special build logic for different OSes if system package 

managers are needed

• Packages are installed system-wide (usually elevated)

• Packages are typically acquired as-is, though some system package managers support build 

from source (e.g. Pacman)

• Not exclusive to C++ packages or even software development; can install apps, tools, and 

libraries for any workflow 

• Don’t typically provide first-class integration with build systems – however, since install paths are 

known defaults, your build system may find packages anyway

• Most popular on Linux

System package managers

E.g. apt, yum, rpm, brew, winget, pacman, …
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• Tailored for C++ development with more advanced features

• Have ways to address diamond dependency problems

• Support building packages from source or downloading valid prebuilt binaries

• Support a large variety of open-source libraries out-of-the-box

• Also support private libraries

• Support acquisition of build tools, platform SDKs, debuggers, and other tools needed for a 

working C++ environment for cross-platform development

• Work across multiple platforms, architectures, and compilers

C++ language package managers

E.g. vcpkg, Conan
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• A single-language package manager being repurposed for use with other programming languages

• Useful in limited scenarios (e.g. when a developer primarily uses another programming language than C++, 

and doesn’t want a new package acquisition workflow for C++)

• NuGet (a .NET package manager) is the most common example used by C++ developers (9% in 2022 ISO 

C++ survey). 

• Scenarios NuGet does not address well: 

• ABI violations/diamond problems: no support for building from source, for different compilers, compiler 

versions, target architectures, target OS. Need a separate package for each configuration. 

• Build systems that are not MSBuild

• Non-Windows operating systems (while technically possible under Mono or dotnet CLI, it’s still not first-

class support for C++)

• Since non-C++ language package managers do not address unique C++ requirements, not recommended 

for C++ except for developers touching C++ assets that have no plans to ever modify them

Non-C++ language package managers

E.g. NuGet, npm, Cargo, pip
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• If you work in or target primarily one system, and you do not update your dependencies frequently, use a 

system package manager

• If you need a system-specific asset (e.g. a Linux-only graphics library for your video game’s Linux port), and 

that package is not easily available in a C++ language package manager, use a system package manager

• If you primarily work in another programming language, use that language’s primary package manager

• Otherwise, use a C++ language package manager, which helps you resolve ABI issues, diamond problems, 

offers you access to much wider variety of C++ packages (and updated package versions). Also great for 

installing per-project dependencies so that other projects can have separate versions of the same 

dependency.

Which type of package manager should you use for C++ packages?
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• Package managers can be extended beyond just library dependencies

• You can package developer tools as well (build tools, debuggers, platform SDKs, static analysis tools, 

runtime analysis tools, build systems, …)

• System package managers have always offered a wide variety of packages (including dev tools)

• More recently, C++ language package managers are too (including vcpkg and Conan)

• It is important to be able to bootstrap a C++ development environment in an automated and reproducible 

way

• This ensures consistency between different dev machines and local dev environments and CI

• Use manifests to declare devtool and library dependencies

Reproducible development environments

Getting compilers, debuggers, build systems, graphical assets, …
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Be able to build 

dependencies from 

source (when necessary)

How to manage dependencies well

Principles to keep in mind

Keep your 

dependencies up-to-

date

Cross-platform should 

be first class experience

Make your build 

environment reproducible

Take advantage of 

existing open-

source solutions

Simplify workflow for 

authoring and publishing 

dependencies

Enforce ABI requirements 

across all packages, not 

one at a time

Do download 

prebuilt binaries, if 

they are verified

Use more than one 

package manager if 

it improves your 

productivity
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OLD WAYS

• Different dependencies integrated in different 

ways

• git submodules

• Custom, in-house package managers

• Built separately, linked to consuming project

• Open-source treated differently than 1st party 

dependencies

• Avoiding open-source dependencies altogether

• Every team picking their own solution

• Dependencies get months/years out of date

C++ Dependency Management at Microsoft

NEW WAY

• Many teams standardizing on one package 

manager (vcpkg)

• Many teams share the same dependencies

• Shared compliance process for open-source 

dependencies

• Dependencies are versioned and easy to 

upgrade

• 1st party and 3rd dependencies are treated the 

same way

• Dependencies are tracked in a single manifest 

file in the team repo
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Rather than maintaining an in-house solution
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