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Are the old ways sometimes the best?
● Programming languages change over time; sometimes these 

changes give new ways of doing old things.

● As the dust settles on C++23 I was reflecting on some of the 
lessons we might learn from places in C++ where this has occurred 
since its inception.

● What might guide us in choosing between idioms?
● Any lessons for code we ourselves produce for others to consume?



The for loop
● We begin with a simple task: calculate the produce of a vector of 

integers. Here's how it might have looked in C++98...

#include <vector>

int product(const std::vector<int>& items) {

  int result = 1;

  for (int i = 0; i < items.size(); i++) {

    result *= items[i];

  }

  return result;

}



The for loop
● Is this code understandable ? 

Is this code right ?

#include <vector>

int product(const std::vector<int>& items) {

  int result = 1;

  for (int i = 0; i < items.size(); i++) {

    result *= items[i];

  }

  return result;

}



The for loop
● This code produces the same assembler output* as the for loop...

int product_raw(const std::vector<int>& items) {
  int result = 1;
  int i = 0;
  goto end;
  loop:;
    result *= items[i];
    ++i;
  end:
    if (i < items.size()) goto loop;
  return result;
}

● Would anyone prefer this code to the original?

(* With a couple of different compilers, but YMMV)



The for loop
● There are some small changes that a “modern” code review might 

suggest to this code

#include <vector>

int product(const std::vector<int>& items) {

  int result{1};

  for (std::size_t idx{}; idx != items.size(); ++idx) {

    result *= items[idx];

  }

  return result;

}



The for loop
● The “Almost Always Auto” school of thought might suggest other 

changes:

#include <vector>

int product(const std::vector<int>& items) {

  auto result{1};

  for (auto idx{0uz}; idx != items.size(); ++idx) {

    result *= items[idx];

  }

  return result;

}

(Using P0330R8 “Literal Suffix for (signed) size_t” from C++23, in gcc, clang, & edg)



The for loop
● Hopefully no-one would suggest this change (unless for some 

reason you have to iterate in reverse):

int product(const std::vector<int>& items) {

  auto result{1};

  for (auto idx{items.size()}; idx--; ) {

    result *= items[idx];

  }

  return result;

}

(idx-- or --idx; and are you sure...?)



The for loop
● Or this one:

int product(const std::vector<int>& items) {

  if (items.empty()) return 1;

  auto result{items[0]};

  for (std::size_t idx{1}; idx != items.size(); ++idx) {

    result *= items[idx];

  }

  return result;

}



The for loop
● Some would prefer an iterator solution. Here's a C++98 style:

int product(const std::vector<int>& items) {

  int result = 1;

  for (std::vector<int>::const_iterator it = items.begin();
       it != items.end(); ++it) {

    result *= *it;

  }

  return result;

}



The for loop
● Here is what a more modern writer might use:

int product(const std::vector<int>& items) {

  auto result = 1;

  for (auto it = items.cbegin(); it != items.cend(); ++it) {

    result *= *it;

  }

  return result;

}

(cbegin/cend added in C++11)



The for loop
● An iterator solution can be generalised:

template <typename Coll>

int product(const Coll& items) {

  int result = 1;

  for (auto it = items.cbegin(); it != items.cend(); ++it) {

    result *= *it;

  }

  return result;

}



The for loop
● Moving away from “raw” loops, there's also this language solution:

int product(const std::vector<int>& items) {

  int result = 1;

  for (auto item : items) {

    result *= item;

  }

  return result;

}



The for loop
● This further simplification didn't achieve consensus, however:

int product(const std::vector<int>& items) {

  int result = 1;

  for (item : items) {

    result *= item;

  }

  return result;

}

(N3994, rejected in plenary)



The for loop
● Sean Parent has a phrase “No raw loops”. He says*

● Use an existing algorithm
● Prefer standard algorithms if available

● Implement a known algorithm as a general function
● Contribute it to a library
● Preferably open source

● Invent a new algorithm
● Write a paper
● Give talks
● Become famous!

* https://sean-parent.stlab.cc/presentations/2013-09-11-cpp-seasoning/cpp-seasoning.pdf

#include <functional>

#include <numeric>

int product(const std::vector<int>& items) {

  return std::ranges::fold_left(items, 1, std::multiplies<>());

}

(Using P2322R6 in C++23, implemented in MSVC)



The for loop
● This is a simple way to use an algorithm:

#include <algorithm>

int product(const std::vector<int>& items) {

  int result = 1;

  std::for_each(items.begin(), items.end(),
    [&](int item) { result *= item; } );

  return result;

}



The for loop
● Or a different algorithm:

#include <functional>

#include <numeric>

int product(const std::vector<int>& items) {

  return std::accumulate(items.begin(), items.end(), 1,
    std::multiplies<>());

}

(or, pre C++14 (N3421 “Making Operator Functors greater<>”), 
std::multiplies<int>)



The for loop
● Or another different algorithm:

#include <functional>

#include <numeric>

int product(const std::vector<int>& items) {

  return std::ranges::fold_left(items, 1, std::multiplies<>());

}

(Using P2322R6 “ranges::fold” in C++23, implemented in MSVC)



The for loop - summary
● The simple for loop can be re-written in a lot of different ways.

● Which way best expresses intent … to your code's audience

● Non-idiomatic loop constructs are harder to reason about

● Hiding the loop completely can avoid having to think about it



Constraining templates
● Consider a generalised function from the earlier for loop example:

#include <functional>

#include <numeric>

template <template <typename...> typename Coll, typename U>

Coll<U>::value_type product(const Coll<U>& items) {

  return std::accumulate(items.begin(), items.end(), 1,
    std::multiplies<>());

}

● Prior to C++20 we needed 'typename' before Coll<U>::value_type – fixed 
with P0634 “Down with typename!”

● Prior to C++17 we needed class for template template parameters (N4051)



Constraining templates
● Consider a generalised function from the earlier for loop example:

#include <functional>

#include <numeric>

template <template <typename...> typename Coll, typename U>

auto product(const Coll<U>& items) {

  return std::accumulate(items.begin(), items.end(), 1,
    std::multiplies<>());

}

● Or we may prefer a deduced return type



Constraining templates
● However, what about these usages?

void good(std::vector<int>& ints) {

  std::cout << product(ints);

}

void bad(std::vector<std::string>& strings) {

  std::cout << product(strings); // <-- error

}

Instantiation of the 'product' function for U = std::string 
produces errors*, and in general we may wish to provide another 
overload to use

(*which I am sparing you)



Constraining templates
● The original way used std::enable_if (since C++11):

#include <type_traits>

template <template <typename> typename T, typename U,

typename = std::enable_if_t<std::is_arithmetic_v<U>>>

auto product(const T<U>& items) {

  return std::accumulate(items.begin(), items.end(), 1,

    std::multiplies<>());

}

Now product() will no longer instantiate for U = std::string 
and the error message no longer refers only to the implementation 
item that fails to compile.
We could also overload with a different constraint.



Constraining templates
● With concepts (since C++20) we can use a requires clause:

#include <type_traits>

template <template <typename...> typename T, typename U>

requires std::is_arithmetic_v<U>

auto product(const T<U>& items) {

  return std::accumulate(items.begin(), items.end(), 1,

    std::multiplies<>());

}

This is very similar to the enable_if example. 



Constraining templates



Constraining templates
● Or we can use a concept in the parameter list (we must define a 

concept in this case as the standard doesn't):

#include <type_traits>

template <typename C> concept arithmetical =

  std::is_arithmetic_v<C>;

template <template <typename...> typename T, arithmetical U>

auto product(const T<U>& items) {

  return std::accumulate(items.begin(), items.end(), 1,

    std::multiplies<>());

}



Constraining templates
● This gave me the clearest error message:



Constraining templates - summary
● Some advantages of using concepts over enable_if are:

● Using a language feature reduces the wording
● better interaction with overload resolution, as the constraints are 

considered when ordering candidates
● may have better compilation times than enable_if

● A named concept is usually clearer than a requires expression (and 
works better with overload resolution)

● In this case I don't personally know of a good reason to use the old 
way (enable_if)



Streaming messages to/from memory
● The C++ “hello world” program used for years demonstrates the 

streaming idiom:

#include <iostream>

int main() {

  std::cout << "Hello world" << std::endl;

}

● The streaming paradigm is also usable in-memory too.

● Possible examples:
● Logging (often hidden inside a macro)
● Parsing input strings obtained elsewhere



Streaming messages to/from memory
● We often want to log information about values during the execution 

of a program and the streaming paradigm gives us a well 
recognised way to do so. It is often buried inside a macro, but 
expands to:

extern "C" void log(const char *str); // for example

...

  oss << "Input " << 42 << " produced " << result

      << " at line " << __LINE__;

  log(oss.str());

...



Streaming messages to/from memory
● Back in the old days pre-C++98 we used <strstream>:

#include <strstream>

...

  std::ostrstream oss;

  oss << "Input " << 42 << " produced " << result

      << " at line " << __LINE__;

  log(oss.str());

...



Streaming messages to/from memory
● Conversely, you can use input streams to extract fields from a 

string; here how you might do this, again using pre-C++98:

#include <strstream>

void area::configure(const std::string& value) {

  std::istrstream iss(value.c_str());

  if (!(iss >> width >> height)) {

    throw std::runtime_error("Error in '" + value + "'");

  }

  ...

}



Streaming messages to/from memory
● Back in the old days we used <strstream> but there were pitfalls:

#include <strstream>

  std::ostrstream oss;

  oss << "Input " << 42 << " produced " << result

      << " at line " << __LINE__;

  log(oss.str()); // Whoops

  // no terminating NUL (std::ends is needed)

  // memory leaks unless you call oss.freeze(false)

...



Streaming messages to/from memory
● This approach was superceded in C++98 with <sstream>

#include <sstream>

  std::ostringstream oss;

  oss << "Input " << 42 << " produced " << result

      << " at line " << __LINE__;

  log(oss.str().c_str());

  // terminating NUL guaranteed, no memory leak

 ...



Streaming messages to/from memory
● This approach was superceded in C++98 with <sstream>

#include <sstream>

void area::configure(const std::string& value) {

  std::istringstream iss(value.c_str()); // ctor takes string 

  if (!(iss >> width >> height)) {

    throw std::runtime_error("Error in '" + value + "'");

  }

  ...

}



Streaming messages to/from memory
● This approach was superceded in C++98 with <sstream> - but...

#include <sstream>

  std::ostringstream oss;

  oss << "Input " << 42 << " produced " << result

      << " at line " << __LINE__;

  log(oss.str().c_str()); // Message contents duplicated by str()

 ...



Streaming messages to/from memory
● This approach was superceded in C++98 with <sstream> - but they 

are still in C++23 marked as deprecated.

● Move semantics: added in C++20 by Peter Sommerlad's P0408R7

  std::ostringstream oss;

  oss << "Input " << 42 << " produced " << result

      << " at line " << __LINE__;

  log(std::move(oss).str().c_str()); // message payload moved

 ... 

● So, is everyone happy now?



Streaming messages to/from memory
● You could use an external buffer in the “old days”

...

  char fixed_buffer[40];

  std::ostrstream oss(fixed_buffer, sizeof(fixed_buffer));

  oss << "Input " << 42 << " produced " << result

      << " at line " << __LINE__ << std::ends;

  log(oss.str());

 …

● If I change to use ostringstream it copies the string



Streaming messages to/from memory
● Sigh. Ok, now you can in modern C++ too, P0448R4 (also by Peter 

Sommerlad) adds span streams to C++23:

#include <spanstream>

...

  char fixed_buffer[40];

  std::ospanstream oss(fixed_buffer, sizeof(fixed_buffer));

  oss << "Input " << 42 << " produced " << result

      << " at line " << __LINE__ << std::ends;

  log(oss.span().data());

 ... 



Streaming messages to/from memory
● If you have a C++ interface that takes a std::string_view*, then 

you can use it directly:

#include <spanstream>

...

  char fixed_buffer[40];

  std::ospanstream oss(fixed_buffer, sizeof(fixed_buffer));

  oss << "Input " << 42 << " produced " << result

      << " at line " << __LINE__ << std::ends;

  log(oss.span());

 …

(* or a pointer and a length)



Streaming messages to/from memory
● There is also an input span view, avoiding needing a string at all:

#include <spanstream>

...

  void configure(const std::string& value) {

  std::ispanstream iss(value);

  if (!(iss >> width >> height)) {

    throw std::runtime_error("Error in '" + value + "'");

  }

  ...

}



Streaming messages to/from memory - summary
● I think that strstream is a salutary example of an unexpectedly 

long lived class

● While sstream is a cleaner design the extra encapsulation reduced 
take-up – something to consider when trying to provide an upgrade 
path: what might prevent someone upgrading



Initializing objects
● One of the important concepts in C++ is that of the constructor: 

ensuring that objects are correctly initialized.

● For example, let's consider this simplified class:

class point {
  int x, y;
  double distance;
public:
  point(int x, int y);
  point(const std::pair<int, int>& coord);
  // accessors, etc…
};



Initializing objects
● One way to write the constructors could be, for instance:

point::point(int x, int y) : 
  x(x),
  y(y),
  distance(std::sqrt(x*x + y*y)) {}

point::point(const std::pair<int, int>& coord) :
  x(coord.first),
  y(coord.second),
  distance(std::sqrt(x*x + y*y)) {}

There is some near duplication here – can we avoid it?



Initializing objects
● In C++98 one way was to use a helper member function:

point::point(int x, int y) : 
  x(x),
  y(y) {
  init();
}

point::point(const std::pair<int, int>& coord) :
  x(coord.first),
  y(coord.second) {
  init();
}

void point::init() {
  distance = std::sqrt(x*x + y*y);
}



Initializing objects
● Forwarding constructors allows us to chain the calls:

point::point(int x, int y) : 
  x(x),
  y(y),
  distance(std::sqrt(x*x + y*y)) {}

point::point(const std::pair<int, int>& coord) :
  point(coord.first, coord.second) {}

● The code is shorter and, I believe, expresses the intent more 
clearly. It is also more resilient in the face of future changes, such 
as the classic case of adding a field which is not initialized correctly 
in one of the several constructors.

● There may be a performance impact, esp. in unoptimised builds



Initializing objects
● Non-static member initializers also allow us to express the 

constraint:

class point {
  int x, y;
  double distance = std::sqrt(x*x + y*y);
  // … etc
And in the implementation file:

point::point(int x, int y) : 
  x(x),
  y(y),
 distance(std::sqrt(x*x + y*y)) {}

point::point(const std::pair<int, int>& coord) :
  x(coord.first),
  y(coord.second),
  distance(std::sqrt(x*x + y*y)) {}



Initializing objects
● In this case note that the header file must now #include <cmath>. 

Or of course you could provide a private static helper method:

class point {
  int x, y;
  double distance = calculate(x, y);
  static double calculate(int x, int y);
  // … etc

And in the implementation file:

double point::calculate(int x, int y) {
  return distance(sqrt(x*x + y*y));
}



Initializing objects
Should immutable data members be const or non-const?

class point {
  const int x, y;
  const double distance;
public:
  point(int x, int y);
  point(const std::pair<int, int>& coord);
  // …
};

What does this allow and disallow?

C++ Core Guidelines C.12: Don’t make data members const or references

“They are not useful, and make types difficult to use by making them either 
uncopyable or partially uncopyable for subtle reasons.”



Initializing objects - summary
● Know the various different mechanisms for initializing member data

● Non-static data member initializers are great, but we aware of the 
possible downsides



Using tuple and pair
The standard library tuple and pair classes can make good 
vocabulary types

● “*The types that are most commonly passed through interfaces in a given 
codebase are what we call “vocabulary types” - these are the most 
common generic forms of data for any project.” - Titus Winters 

#include <tuple>

auto create_entry() {
  int key{};
  int value{};
  // ...
  // stuff happens
  // ...
  return std::tuple<int, int>{key, value};

}



Using tuple and pair
The output from create_entry() can be processed by any function 
that operates on tuple, and conversely any function taking the 
output could also operate on other tuples. But sometimes we want 
to express intent

using key_value = std::tuple<int, int>;

auto create_entry() {
  int key{};
  int value{};
  // ...
  // stuff happens
  // ...
  return key_value{key, value};

}



Using tuple and pair
Of course, we may prefer to make the function return type explicit

using key_value = std::tuple<int, int>;

key_value create_entry() {
  int key{};
  int value{};
  // ...
  // stuff happens
  // ...
  return key_value{key, value}; // Implicit creation of tuple

}



Using tuple and pair
It is, however, less pleasant in the consuming code

int main() {
  const key_value result = create_entry();
  std::cout << std::get<0>(result)
     << "=" << std::get<1>(result) << '\n';
}

What are the semantics of “0” and “1” or, equivalently, of first 
and second in std::pair?

● It gets worse when tuples are nested. I've used production code 
with three levels of nesting.

● Can we retain the flexibility of the underlying data type while adding 
the ability to express intent?



Using tuple and pair
● We could introduce helper variables to express intent:

int main() {
  const key_value result = create_entry();
  const auto& key = std::get<0>(result);
  const auto& value = std::get<1>(result);
  std::cout << key << "=" << value << '\n';
}

This is nice and expressive; and it also optimises well as the 
compiler can easily 'see through' the references.

● The same idea works with std::pair:

auto pr = map.insert({k,v});
const auto& iter = pr.first;
const auto& inserted = pr.second;



Using tuple and pair
● We could introduce a simple helper class to express intent:

template <typename T, typename U>
struct Entry
{
  Entry(const std::tuple<T,U> &t) :
    key(std::get<0>(t)), value(std::get<1>(t)) {}
  T key;
  U value;
};

int main() {
  const Entry e = create_entry();
  std::cout << e.key << "=" << e.value << '\n';
}
However, this risks adding in additional construction; avoiding this 
adds additional complexity to the constructors of the class



Using tuple and pair
● Another idiom was to introduce helper variables and use std::tie:

int main() {
  int key;
  int value;
  std::tie(key, value) = create_entry();
  std::cout << key << "=" << value << '\n';
}

This is equally expressive; and it too optimises well as the compiler 
can effectively elide the tie.

● One advantage is the lack of aliasing – there is no 'spare' named 
variable

● One disadvantage is that the variables of object type may be 
default constructed and then overwritten



Using tuple and pair
● Since C++17 we have been able to use structured bindings

int main() {
  const auto [key, value] = create_entry();
  std::cout << key << "=" << value << '\n';
}

This is approximately equivalent to the first code I showed:

  const std::tuple<int, int> __v = create_entry();
  const auto& key = std::get<0>(__v);
  const auto& value = std::get<1>(__v);



Using tuple and pair
● It would be nice to be able to use structured bindings with a 

variadic tuple (for example inside a template)

template <typename... T>
void foo() {
  const auto [...items] = create_entry<T...>();
  process(items...);
}

This is proposed in P1061 “Structured Bindings can introduce a 
Pack”, which should be part of C++26



Using tuple and pair
● The std::tie solution from C++11 is mostly replaced by 

structured bindings which I believe are generally superior.

● There are still some places where it could be useful
● The type of the target variable is not that of the returned data
● You want to update existing variables with the returned data

void foo() {
  auto [key, value] = create_entry();
  // ...
  if (needs_refresh) {
    std::tie(key, value) = create_entry();
  //...
  }
}



Using tuple and pair - summary
● There seems to be little benefit in using pair in C++23 code

● Using tuple is getting easier with structured bindings, CTAD, and 
some of the other changes coming down the C++ pipeline



The rule(s) of 'N'
● When designing a class, the decisions about providing 

constructors, destructors, and asignment operators are related.

● From the early days of C++ we have had the “rule of three”, coined 
by Marshal Cline in 1991:

● “if a class defines any of the following then it should probably 
explicitly define all three:
● destructor
● copy constructor
● copy assignment operator”



The rule(s) of 'N'
● A standard example of the rule of three, for an owned buffer:

class packet {
  std::size_t len_;
  char *buffer_; // owned by the instance of the class
  // ...
public:
  // various constructors...

  ~packet();
  packet(const packet &rhs);
  packet& operator=(const packet &rhs);

  // other methods ... 
};



The rule(s) of 'N'
● And a possible implementation of the special member functions:

packet::~packet() {
  delete buffer_;
}

packet::packet(const packet &rhs)
  : len_(rhs.len_), buffer_(new char [len_])
{
  memcpy(buffer_, rhs.buffer_, len_);
}

packet::packet& operator=(const packet &rhs) {
  packet{rhs}.swap(*this);
  return *this;
}



The rule(s) of 'N'
● When designing a class, the decisions about providing 

constructors, destructors, and asignment operators are related.

● Of course, in C++11 we added move semantics to the language. 
So there's now a move constructor and a move assignment 
operator to consider as well.

● So … we're going need a bigger boat

N += 2

● How to implement these two additional special member function 
depends on what we choose for the semantics of the moved-from 
state



The rule(s) of 'N'
● The rule of five: if a type ever needs one of the following, then it 

must have all five:

destructor
● copy constructor
● move constructor
● copy assignment operator
● move assignment operator



The rule(s) of 'N'
● Example of the rule of five highlighting the additions

class packet {
  char *buffer; // owned by the instance of the class
  // ...
public:
  ~packet();
  packet(const packet &rhs);
  packet(packet &&rhs);
  packet& operator=(const packet &rhs);
  packet& operator=(packet &&rhs);
  // ... 
};

●



The rule(s) of 'N'
● Example of the rule of five three

class packet {
  char *buffer; // owned by the instance of the class
  // ...
public:
  ~packet();
  packet(const packet &rhs);
  //packet(packet &&rhs);
  packet& operator=(const packet &rhs);
  //packet& operator=(packet &&rhs);
  // ... 
};

● If we don't declare the two extra members then they're not 
declared for us. Attempting to move objects of the class for 
construction or assignment simply calls the copy operation



The rule(s) of 'N'
● One possible implementation of the two member functions added 

by the rule of five:

packet::packet(packet &&rhs)
: len_(rhs.len_), buffer_(rhs.buffer_) { rhs.buffer_ = 0; )

packet& operator=(packet &&rhs) {
  this->swap(rhs);
  return *this;
}

● The moved from state should be: “valid but unspecified”

● There is a time-bomb here if we ever end up copy constructing 
from an object moved from by the move constructor above



The rule(s) of 'N'
● The single responsibility principle suggests we delegate the buffer 

management to a separate object.

class packet {
  std::vector<char> buffer_; // (or whatever)
  // ...
public:
  // various constructors...

  // various methods...
};

● Now the sub-object manages the ownership and, in this case, also 
handles the rule of five for us



The rule(s) of 'N'
● If we need, for example, a destructor then we can =default the 

methods we want.

class packet {
  std::vector<char> buffer_; // (or whatever)
  // ...
public:
  // various constructors...

  virtual ~packet() = 0;
  packet(const packet &rhs) = default;
  packet(packet &&rhs) = default;
  packet& operator=(const packet &rhs) = default;
  packet& operator=(packet &&rhs) = default;

};



The rule(s) of 'N' - summary
● The best case is when N == 0

● We can, and should, make use of helper objects to avoid the 
“main” class having responsibility for too many things

● When moving older code to modern C++ it is an easy trap to simply 
add the “missing” move operations when you might do better 
making the existing copy operations implicit



Initialization
● There are many ways in C++ to initialise even a simple integer 

variable:

int main() {
  int i = 0;
  int j(0);
  int k{0};

  auto l = 0;
  auto m(0);
  auto n{0};
}

● What are the differences between these ways?



Initialization
● There are similar options for initializing variables of a class type:

int main() {
  std::string i = "test";
  std::string j("test");
  std::string k{"test"};

  auto l = std::string{"test"};
  auto m(std::string("test"));
  auto n{std::string{"test"}};
}

● What are the differences between these ways?



Initialization
● What happens when you want a default value?

int main() {
  int i; 
  int j();
  int k{};

  auto l;
  auto m();
  auto n{};
}



Initialization
● What happens when you want a default value?

int main() {
  int i;      // un-initialised
  int j();    // “most vexing parse”
  int k{};    // fine

  auto l;     // error
  auto m();   // “most vexing parse”
  auto n{};   // error
}

● j is a declaration of a function returning int

● m is a declaration of a function with a deduced return type



Initialization
● What happens when you want a default value of class type?

int main() {
  std::string i;
  std::string j();
  std::string k{};

  auto l = std::string{};
  auto m(std::string());
  auto n{std::string{}};
}



Initialization
● What happens when you want a default value of class type?

int main() {
  std::string i;           // default value
  std::string j();         // “most vexing parse”
  std::string k{};         // default value

  auto l = std::string{};  // default value
  auto m(std::string());   // “most vexing parse”
  auto n{std::string{}};   // default value
}

● j is a declaration of a function returning std::string

● m is a declaration of a function with a deduced return type taking an 
argument of a pointer to a function returning std:string 



Initialization
● What happens when you provide the wrong datatype?

int main() {
  int i = 0.0;
  int j(0.0);
  int k{0.0};

  auto l = 0.0;
  auto m(0.0);
  auto n{0.0};
}



Initialization
● What happens when you provide the wrong datatype?

int main() {
  int i = 0.0;    // truncates
  int j(0.0);     // truncates
  int k{0.0};     // error

  auto l = 0.0;   // l is now a double
  auto m(0.0);    // m ''
  auto n{0.0};    // n ''
}



Initialization
● What happens when you provide the wrong data type?

int main() {
  std::string i = 'Z';
  std::string j('Z');
  std::string k{'Z'};

  auto l = std:string{'Z'};
  auto m(std::string('Z'));
  auto n{std::string{'Z'}};
}



Initialization
● What happens when you provide the wrong data type?

int main() {
  std::string i = 'Z';           // error
  std::string j('Z');            // error
  std::string k{'Z'};            // "Z"s

  auto l = std:string{'Z'};      // error
  auto m(std::string('Z'));      // error
  auto n{std::string{'Z'}};      // "Z"s
}



Initialization
● Sadly initialization in C++ is complicated and we've not had a great 

track record at making it simpler …

● Be aware of the pitfalls

● Be careful about “drive-by” changes in the name of consistency



Conclusion
● The phrase “There's more than one way to do it” (aka TMTOWTDI) 

is true in many mature systems

● It's good to keep up to date with the new ways to do what we 
already know how to do

● However, there are various tradeoffs to make:
● Readability (for the developers and maintainers of the code)
● Availability of features in all your target environments
● “Invisible” performance costs or benefits

● Differences in runtime overhead
● Effects on optimization of the resulting code


