ARE THE OLD WAYS SOMETIMES
THE BEST?

ROGER ORR

S sometimes the best?

ring the ‘classic C++' and 'modern' ways
to solve various programming tasks

What are some of the trade-offs?

— April 2023 —

ways sometimes the best?

ages change over time; sometimes these
ays of doing old things.

C++23 | was reflecting on some of the
arn from places in C++ where this has occurred
since its inception.

 What might guide us in choosing between idioms?
 Any lessons for code we ourselves produce for others to consume?

for loop

. calculate the produce of a vector of
t have looked in C++98...

<int>& items) {

t result = 1;

for (int i = 0; i < items.size(); i++) {
result *= items[i];

}

return result;

for loop

1;
for (int 1 = 0; i < items.size(); i++) {
result *= items[i];

}

return result;

e for loop

ame assembler output™ as the for loop...

: :vector<int>& items) {

S *= jtems[i];
++1;
end:
if (i < items.size()) goto loop;
return result;

}

 Would anyone prefer this code to the original?
(* With a couple of different compilers, but YMMV)

for loop

es that a “modern” code review might

int>& items) {

u 1};

for (std::size t idx{}; idx != items.size(); ++idx) {
result *= items[idx];

}

return result;

for loop

hool of thought might suggest other

int>& items) {

auto ult{1};

for (auto idx{@uz}; idx != items.size(); ++idx) {
result *= items[idx];

}

return result;

}

(Using PO330RS8 “Literal Suffix for (signed) size t” from C++23, in gcc, clang, & edg)

for loop

est this change (unless for some
reverse).

<int>& items) {

idx{items.size()}; idx--;) {

result *= items[idx];

}

return result;

}

(idx-- or --1idx; and are you sure...?)

or loop

int>& items) {

idx{1}; idx != items.size(); ++idx) {

result *= items[idx];

}

return result;

for loop

solution. Here's a C++98 style:

int>& items) {

iterator it = items.begin();
; ++it) {

result *= *it;

}

return result;

for loop

writer might use:

int>& items) {

; it = items.cend(); ++it) {

return result;

}
(cbegin/cend added in C++11)

for loop

neralised:

items.cbegin(); it != items.cend(); ++it) {

result *= *it;

}

return result;

or loop

, there's also this language solution:

int>& items) {

}

return result;

for loop

't achieve consensus, however:

<int>& items) {

}

return result;

h
(N3994, rejected in plenary)

he for loop

se “No raw loops”. He says*

ithms if available
ithm as a general function
« Contribute it to a library
* Preferably open source
* Invent a new algorithm
 Write a paper
 Give talks

« Become famous!
* https://sean-parent.stlab.cc/presentations/2013-09-11-cpp-seasoning/cpp-seasoning.pdf

for loop

algorithm:

int>& items) {

std: :for_each(items.begin(), items.end(),
[&](int item) { result *= item; });

return result;

for loop

onst std::vector<int>& items) {

return std::accumulate(items.begin(), items.end(), 1,
std: :multiplies<>());

(or, pre C++14 (N3421 “Making Operator Functors greater<>7),
std: :multiplies<int>)

for loop

std::vector<int>& items) {

return std::ranges::fold left(items, 1, std::multiplies<>());
}

(Using P2322R6 “ranges::fold” in C++23, implemented in MSVC)

loop - summary

be re-written in a lot of different ways.
s intent ... to your code's audience
cts are harder to reason about

can avoid having to think about it

training templates

function from the earlier for loop example:

template <template <typename...> typename Coll, typename U>
Coll<U>::value_type product(const Coll<U>& items) {

return std::accumulate(items.begin(), items.end(), 1,
std: :multiplies<>());

}

* Prior to C++20 we needed 'typename' before Coll<U>::value_ type — fixed
with P0634 “Down with typename!”

 Prior to C++17 we needed class for template template parameters (N4051)

Ining templates

nction from the earlier for loop example:

e <typename...> typename Coll, typename U>
auto product(const Coll<U>& items) {

return std::accumulate(items.begin(), items.end(), 1,
std: :multiplies<>());

}

« Or we may prefer a deduced return type

aining templates

ese usages”?
t>& ints) {
ts);

void bad(std::vector<std::string>& strings) {

std::cout << product(strings); // <-- error

}

Instantiation of the 'product’' function for U = std::string
produces errors*®, and in general we may wish to provide another
overload to use

(*which | am sparing you)

straining templates

d std: :enable_if (since C++11):

S>

ypename> typename T, typename U,

me = std::enable_if t<std::is_arithmetic_v<U>>>

auto product(const T<U>& items) {
return std::accumulate(items.begin(), items.end(), 1,

std: :multiplies<>());

}

Now product () will no longer instantiate for U = std: :string
and the error message no longer refers only to the implementation
item that fails to compile.

We could also overload with a different constraint.

Ining templates

0) we can use a requires clause:

e...> typename T, typename U>
v<U>
<U>& items) {
return std::accumulate(items.begin(), items.end(), 1,
std::multiplies<>());
}

This is very similar to the enable_if example.

mplates

concept.cpp: In function ‘void bad()’:

concept.cpp:32:23: error: no matching function for call to ‘product(std::vector<std:: cxx11::basic_string<char>
>&)°
32 | std::cout << product(strings);
I —— RS—
concept.cpp:15:27: note: candidate: “template<template<class ...»> class T, class U* requires 1is_arithmetic wv<U>

typename T<U>::value type product(const T<U>&)’
15 | typename T<U>::value type product(const T<U>& items) {
| S
concept.cpp:15:27: note: template argument deduction/substitution failed:
concept.cpp:15:27: note: constraints not satisfied
concept.cpp: In substitution of ‘template<template<class ...» class T, class U> requires 1is_arithmetic v<U> typ

ename T<U>::value type product(const T<U>&) o
concept.cpp:32:23: required from here

concept.cpp:15:27: required by the constraints of ‘template<template<class ...»> class T, class U»> requires 1s
_arithmetic_wv<U> typename T<U>::value type product(const T<U>&)’

concept.cpp:14:15: note: the expression ‘is_arithmetic v<U> [with U = std:: cxx11::basic _string{char, std::char_

traits<char>», std::allocator<char> >]’ evaluated to ‘false’
14 | requires std::is_arithmetic_w<U>

M

I ER s a Loy n) R Pt R s P a Pt P R PR Py B P L e s p S P p e P et P u e P m P P s

t in the parameter list (we must define a
e standard doesn't):

ept arithmetical =

template <template <typename...> typename T, arithmetical U>
auto product(const T<U>& items) {
return std::accumulate(items.begin(), items.end(), 1,

std: :multiplies<>());

templates

ssage:

concept.
concept.cpp(34): error C2672: 'product’: no matching overloaded function found
concept.cpp(17): note: could be 'T<U>::value type product(const T<U> &)'
concept.cpp(34): note: the associated constraints are not satisfied

concept.cpp(16): note: the concept "arithmetical<std::string>' evaluated to false
kistied

concept.cpp(14): note: the constraint was not 4

Constraining templates - summary

Some advantages of using concepts over enable_if are:

« Using a language feature reduces the wording

« Dbetter interaction with overload resolution, as the constraints are
considered when ordering candidates

 may have better compilation times than enable if

A named concept is usually clearer than a requires expression (and
works better with overload resolution)

In this case | don't personally know of a good reason to use the old
way (enable _if)

essages to/from memory

rogram used for years demonstrates the

::cout << "Hello world" << std::endl;

}
 The streaming paradigm is also usable in-memory too.

 Possible examples:

 Logging (often hidden inside a macro)
« Parsing input strings obtained elsewhere

essages to/from memory

formation about values during the execution
treaming paradigm gives us a well
. It is often buried inside a macro, but

extern "C" void log(const char *str); // for example

0SS << "Input " << 42 << " produced " << result

<< " at line " << __ LINE_ ;

log(oss.str());

ages to/from memory

+98 we used <strstream>:

::ostrstream oss;

0ss << "Input " << 42 << " produced " << result
<< " at line " << __LINE_ ;

log(oss.str());

2ssages to/from memory

2 jnput streams to extract fields from a
jht do this, again using pre-C++98:

const std::string& value) {
std::istrstream iss(value.c_str());
if (!(iss >> width >> height)) {

throw std::runtime_error("Error in '" + value + "'");

sages to/from memory

ed <strstream> but there were pitfalls:

J

0ss << "Input " << 42 << " produced " << result
<< " at line " << __ LINE_;

log(oss.str()); // Whoops

// no terminating NUL (std::ends is needed)

// memory leaks unless you call oss.freeze(false)

sages to/from memory

ded in C++98 with <sstream>

J

0ss << "Input " << 42 << " produced " << result
<< " at line " << __ LINE_ ;
log(oss.str().c_str());

// terminating NUL guaranteed, no memory leak

sages to/from memory

ded in C++98 with <sstream>

td::string& value) {

::istrihgétream iss(value-e—str{)); // ctor takes string
if (!(iss >> width >> height)) {

throw std::runtime_error("Error in '" + value + "'");

ages to/from memory

ded in C++98 with <sstream> - but...

SS;

0ss << "Input " << 42 << " produced " << result

<< " at line " << __ LINE_;

log(oss.str().c _str()); // Message contents duplicated by str()

essages to/from memory

erceded in C++98 with <sstream> - but they
ed as deprecated.

in C++20 by Peter Sommerlad's PO408R7

std::ostringstream oss;

0ss << "Input " << 42 << " produced " << result

<< " at line " << __LINE_ ;

log(std: :move(oss).str().c _str()); // message payload moved

 So, is everyone happy now?

ssages to/from memory

al buffer in the “old days”

cam oss(fixed_buffer, sizeof(fixed_buffer));
0ss << "Input " << 42 << " produced " << result
<< " at line " << __LINE << std::ends;

log(oss.str());

* |f | change to use ostringstream it copies the string

ssages to/from memory

modern C++ too, P0448R4 (also by Peter
treams to C++23:

er[40];

std: :ospanstream oss(fixed buffer, sizeof(fixed buffer));

0ss << "Input " << 42 << " produced " << result

<< " at line " << __ LINE__ << std::ends;

log(oss.span().data());

ssages to/from memory

e that takes a std: :string view*, then

std: :ospanstream oss(fixed buffer, sizeof(fixed buffer));
0ss << "Input " << 42 << " produced " << result

<< " at line " << _ LINE —<<¢——std::ends;
log(oss.span());

(* or a pointer and a length)

sages to/from memory

n view, avoiding needing a string at all.

:string& value) {
value);
if (!(iss >> width >> height)) {

throw std::runtime_error("Error in '" + value + "'");

}

ges to/from memory - summary

IS a salutary example of an unexpectedly

ner design the extra encapsulation reduced
consider when trying to provide an upgrade
might prevent someone upgrading

lizing objects

epts in C++ is that of the constructor:
orrectly initialized.

this simplified class:

i1stance;
public:
point(int x, int y);
point(const std::pair<int, int>& coord);
// accessors, etc..

};

lizing objects

tructors could be, for instance:

*y)) {}

point: :point(const std::pair<int, int>& coord) :
x(coord.first),
y(coord.second),
distance(std::sgrt(x*x + y*y)) {}

There is some near duplication here — can we avoid it?

INg objects

e a helper member function:

::point(const std::pair<int, int>& coord) :
x(coord.first),

y(coord.second) {

init();

}

void point::init() {
distance = std::sqrt(x*x + y*y);

}

itializing objects

tors allows us to chain the calls:
int y) :

nce(std: :sqrt(x*x + y*y)) {}

point::point(const std::pair<int, int>& coord) :
point(coord.first, coord.second) {}

 The code is shorter and, | believe, expresses the intent more
clearly. It is also more resilient in the face of future changes, such
as the classic case of adding a field which is not initialized correctly
in one of the several constructors.

 There may be a performance impact, esp. in unoptimised builds

lizing objects

zers also allow us to express the

rt(x*x + y*y);

in the implementation file:

point::point(int x, int y) :

X(x),

y(y)s
—distancel{stdsqgrtOcdh——y*y) —{}

point::point(const std::pair<int, int>& coord)
x(coord.first),
y(coord.second)5

—distance{stdisgrtOdtx——yry) —{}

lizing objects

header file must now #include <cmath>.
ovide a private static helper method:

ate(x, y);
alculate(int x, int y);

// .. etc

And in the implementation file:

double point::calculate(int x, int y) {
return distance(sqrt(x*x + y*y));

_}

embers be const or non-const?

point(const std::pair<int, int>& coord);
-
}s

What does this allow and disallow?
C++ Core Guidelines C.12: Don’t make data members const or references

“They are not useful, and make types difficult to use by making them either
uncopyable or partially uncopyable for subtle reasons.”

bjects - summary

echanisms for initializing member data
lalizers are great, but we aware of the

tuple and pair

e and pair classes can make good

st commonly passed through interfaces in a given
call “vocabulary types” - these are the most

of data for any project.” - Titus Winters

uple>

auto create_entry() {
int key{};
int value{};

it
// stuff happens

/b
return std::tuple<int, int>{key, value};

g tuple and pair

entry() can be processed by any function
nd conversely any function taking the
on other tuples. But sometimes we want

: ctuple<int, int>;

auto create_entry() {
int key{};
int value{};

=
// stuff happens

[

return key value{key, value};

ple and pair

make the function return type explicit

<int, int>;

pens

o —
return key—wvalue{key, value}; // Implicit creation of tuple

iIng tuple and pair

easant in the consuming code

ult = create_entry();
t<0>(result)
::get<1>(result) << '\n’;

}

What are the semantics of “0” and “1” or, equivalently, of first
and second in std: :pair?

e |t gets worse when tuples are nested. I've used production code
with three levels of nesting.

e (Can we retain the flexibility of the underlying data type while adding
the ability to express intent?

iIng tuple and pair

elper variables to express intent:

lt

create entry(),

std get<1>(resu1t),
"=" << value << '\n’;

std::cout << key <<

}

This is nice and expressive; and it also optimises well as the
compiler can easily 'see through' the references.

The same idea works with std::pair:

auto pr = map.insert({k,v});
const auto& iter = pr.first;
const auto& inserted = pr.second;

tuple and pair

ple helper class to express intent:

pename U>

T,U> &t)
ot<0>(t)), value(std::get<1>(t)) {}

T key;
U value;

i

int main() {
const Entry e = create _entry();
std::cout << e.key << "=" << e.value << '\n';

}
However, this risks adding in additional construction; avoiding this

adds additional complexity to the constructors of the class

iIng tuple and pair

Introduce helper variables and use std: :tie:

create_entry();
' << value << '\n';

std::cout << key << "

}

This is equally expressive; and it too optimises well as the compiler
can effectively elide the tie.

One advantage is the lack of aliasing — there is no 'spare' named
variable

One disadvantage is that the variables of object type may be
default constructed and then overwritten

n able to use structured bindings

create_entry();
< value << '\n’';

uivalent to the first code | showed:

const std::tuple<int, int> v = create_entry();
const auto& key = std::get<o>(__v);
const auto& value = std::get<1>(__v);

tuple and pair

e to use structured bindings with a
inside a template)

create entry<T...>();

This is proposed in P1061 “Structured Bindings can introduce a
Pack”, which should be part of C++26

g tuple and pair

from C++11 is mostly replaced by
ich | believe are generally superior.

ces where it could be useful

t variable is not that of the returned data
 You want to update existing variables with the returned data

void foo() {
auto [key, value] = create_entry();
o ——
if (needs_refresh) {
std::tie(key, value) = create entry();

| oo

¥
¥

and pair - summary

nefit in using pair in C++23 code

er with structured bindings, CTAD, and
oming down the C++ pipeline

1€ rule(s) of 'N'

, the decisions about providing
S, and asignment operators are related.

++ we have had the “rule of three”, coined

a class defines any of the following then it should probably
explicitly define all three:

e destructor
e copy constructor
e copy assignment operator”

ule(s) of 'N’

ule of three, for an owned buffer:

the instance of the class

~packet();
packet(const packet &rhs);
packet& operator=(const packet &rhs);

// other methods ...
}s

ule(s) of 'N’

tion of the special member functions:

&rhs)
er_(new char [len_])

memcpy (buffer , rhs.buffer_, len_);

}

packet: :packet& operator=(const packet &rhs) {
packet{rhs}.swap(*this);
return *this;

}

The rule(s) of 'N’

When designing a class, the decisions about providing
constructors, destructors, and asignment operators are related.

Of course, in C++11 we added move semantics to the language.
So there's now a move constructor and a move assignment
operator to consider as well.

So ... we're going need a bigger boat
N +=2

How to implement these two additional special member function

depends on what we choose for the semantics of the moved-from
state

le(s) of 'N'

needs one of the following, then it

 move assignment operator

ule(s) of 'N’
ighlighting the additions

the instance of the class

acket(packet &&rhs);
packet& operator=(const packet &rhs);

packet& operator=(packet &&rhs);
o

i

rule(s) of 'N'
three

by the instance of the class

packet(const packet &rhs);

//packet(packet &&rhs);

packet& operator=(const packet &rhs);
//packet& operator=(packet &&rhs);

J—
¥
* |f we don't declare the two extra members then they're not
declared for us. Attempting to move objects of the class for
construction or assignment simply calls the copy operation

e rule(s) of 'N'

tation of the two member functions added

rhs)
(rhs.buffer) { rhs.buffer_ = 0;)

packet &&rhs) {

this->swap(rhs);
return *this;

}

« The moved from state should be: “valid but unspecified”

 There is a time-bomb here if we ever end up copy constructing
from an object moved from by the move constructor above

rule(s) of 'N'

rinciple suggests we delegate the buffer
e object.

3 // (or whatever)

// various constructors...

// various methods...

}s

 Now the sub-object manages the ownership and, in this case, also
handles the rule of five for us

ule(s) of 'N’

destructor then we can =default the

3 // (or whatever)

s constructors...

virtual ~packet() = 0;

packet(const packet &rhs) = default;
packet(packet &&rhs) = default;

packet& operator=(const packet &rhs) = default;
packet& operator=(packet &&rhs) = default;

s

(s) of 'N' - summary

N ==
ake use of helper objects to avoid the
onsibility for too many things

to modern C++ it is an easy trap to simply
e “missing” move operations when you might do better
making the existing copy operations implicit

alization

to initialise even a simple integer

uto
auto m(9);
auto n{0};

}
 What are the differences between these ways?

tialization

or initializing variables of a class type:

d::string{"test"};
auto m(std::string("test"));
auto n{std::string{"test"}};

}
 What are the differences between these ways?

Ization

a default value?

auto n{};

}

lalization
ant a default value?

ised
g parse”

auto m(); // “most vexing parse”
auto n{}; // error

}

e j is adeclaration of a function returning int

* m is a declaration of a function with a deduced return type

lization

t a default value of class type?

. ::string());
auto n{std::string{}};
}

nitialization
u want a default value of class type?

// default value
// “most vexing parse”
// default value

auto 1 = std::string{}; // default value
auto m(std::string()); // “most vexing parse”
auto n{std::string{}}; // default value

j is a declaration of a function returning std: :string

m is a declaration of a function with a deduced return type taking an
argument of a pointer to a function returning std:string

lization

ide the wrong datatype?

J

J

auto n{0.0}

}

0.0);
auto n{0.0};

alization

}

alization

std::string('Z2'));
auto n{std::string{'Z'}};

lalization

vide the wrong data type?

// error
// error

/] "2"s

// error
uto m(std::string('z2')); // error
auto n{std::string{'Z'}}; // "Z"s

}

lalization

complicated and we've not had a great
pler ...

anges in the name of consistency

Conclusion

s more than one way to do it" (aka TMTOWTDI)
re systems

« However, there are various tradeoffs to make:

 Readability (for the developers and maintainers of the code)
« Availability of features in all your target environments
* “Invisible” performance costs or benefits

« Differences in runtime overhead
e Effects on optimization of the resulting code

