
ADVENTURES WITH REACT
AND JUCE

ADVENTURES WITH REACT AND JUCE
Doing UI with Typescript in a C++ application

Jim Hague
InMusic

jim.hague@acm.org
@banburybill@fosstodon.org

@banbury_bill
https://github.com/banburybill

http://www.inmusic.com/
mailto:jim.hague@acm.org
https://https//fosstodon.org/@banburybill
mailto:banburybill@fosstodon.org
https://twitter.com/banbury_bill
https://github.com/banburybill

AGENDA
What is React-JUCE?

What is JUCE?

What is React?

OK, so what is React-JUCE?

How does it work?

The Good Parts

The Less Good Parts

JUCE GUI
void paint (juce::Graphics& g)
{
 g.fillAll (juce::Colours::lightblue);

 g.setColour (juce::Colours::darkblue);
 juce::Font mainComponentFont ("Times New Roman", 20.0f, juce::Font::italic);
 g.setFont (mainComponentFont);
 g.drawText ("Hello, World!", 20, 40, 200, 40, juce::Justification::centred, true);

 g.setColour (juce::Colours::green);
 g.drawLine (10, 300, 590, 300, 5);

 juce::Rectangle<float> house (300, 120, 200, 170);
 g.fillCheckerBoard (house, 30, 10, juce::Colours::sandybrown, juce::Colours::saddl
 g.setColour (juce::Colours::yellow);
 g.drawEllipse (getWidth() - 70, 10, 60, 60, 3);
 g.setColour (juce::Colours::red);

 Path roof;
 roof.addTriangle (300, 110, 500, 110, 400, 70);
 g.fillPath (roof);
}

JUCE GUI SAMPLE

modules.exports = leftpad;
function leftpad(str, len, ch) {
 str = String(str);
 var i = -1;
 if (!ch && ch !== 0) ch = ' ';
 len = len - str(length);
 while (++i < len) {
 str = ch + str;
 }
 return str;
}

BUT, BUT, JIM! REACT!?
For the love of $DEITY, why?

WHY REACT?

WHY REACT?
Declarative UI.

WHY REACT?
Declarative UI.

Avoid long compile-link cycle.

WHY REACT?
Declarative UI.

Avoid long compile-link cycle.

Because It’s There.

import React from 'react';
import ReactDOM from 'react-dom/client';

const Greeting = () => {
 return (
 <div className="hello-world">
 <h1>Hello, world!</h1>
 </div>
);
};

const App = () => {
 return <Greeting />;
};

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(
 <React.StrictMode>
 <App />
 </React.StrictMode>
);

JSX
const element = (
 <h1 className="greeting">
 Hello, world!
 </h1>
);

const element = React.createElement(
 'h1',
 {className: 'greeting'},
 'Hello, world!'
);

COMPONENT PROPERTIES
const Greeting = (props) => {
 return (
 <div className="hello-world">
 <h1>Hello, { props.name }!</h1>
 </div>
);
};

const App = () => {
 return <Greeting name="there"/>;
};

COMPONENT STATE
function FavoriteColor() {
 const [color, setColor] = useState("red");

 return (
 <>
 <h1>My favorite color is {color}!</h1>
 <button
 type="button"
 onClick={() => setColor("blue")}
 >Blue</button>
 </>
)
}

REACT RENDERING
import React from 'react';
import ReactDOM from 'react-dom/client';

const Greeting = () => {
 return (
 <div className="hello-world">
 <h1>Hello, world!</h1>
 </div>
);
};

VIRTUAL DOM

REACTDOM?
import React from 'react';
import ReactDOM from 'react-dom/client';

const Greeting = () => {
 return (
 <div className="hello-world">
 <h1>Hello, world!</h1>
 </div>
);
};

REACT NATIVE
A framework for native UI for applications.

Android, Android TV

iOS, MacOS

tvOS, Web(!)

Windows - Universal Windows Platform (UWP)

Used for Android & iOS apps at Facebook, Microso�, Shopify.

REACT NATIVE EXAMPLE
import React from 'react';
import {View, Text, Image, ScrollView, TextInput} from 'react-native';

const App = () => {
 return (
 <ScrollView>
 <Text>Some text</Text>
 <View>
 <Text>Some more text</Text>
 <Image
 source={{
 uri: 'https://reactnative.dev/docs/assets/p_cat2.png',
 }}
 style={{width: 200, height: 200}}
 />
 </View>
 <TextInput
 style={{
 height: 40,
 borderColor: 'gray',
 borderWidth: 1,
 }}
 defaultValue="You can type in me"
 />
 </ScrollView>

REACT-JUCE COMPONENTS
View

Canvas

ScrollView

ListView

Text

TextInput

Image

Button

Slider

DEMO TIME

WHY’S IT LOOK LIKE THAT?

HOW DOES THAT METER WORK?

BACK IN C++ LAND

LET’S DIVE A BIT FURTHER

THE APP HARNESS

ALL ROADS LEAD BACK TO APPROOT

A FIRST LOOK AT THE ENGINE

SENDING EVENTS FROM THE APPLICATION

INVOKING A FUNCTION

OK, WHERE IS JS DISPATCHEVENT?

LOOKING AT COMPONENTS

CANVAS COMPONENT

THE RECONCILER BACKEND

WHAT IS MOBX?
A simple, scalable state management library.

Prevents inconsistent state by ensuring that all derivations are
performed automatically.

"MobX makes state management simple again by addressing the
root issue: it makes it impossible to produce an inconsistent state."

EXAMPLE
import React from "react"
import ReactDOM from "react-dom"
import { makeAutoObservable } from "mobx"
import { observer } from "mobx-react-lite"

class Timer {
 secondsPassed = 0

 constructor() {
 makeAutoObservable(this)
 }

 increaseTimer() {
 this.secondsPassed += 1
 }
}

const myTimer = new Timer()

// A function component wrapped with `observer` will react
// to any future change in an observable it used before.
const TimerView = observer(({ timer }) => Seconds passed: {timer.secondsPassed}<

ReactDOM.render(<TimerView timer={myTimer} />, document.body)

setInterval(() => {
 myTimer.increaseTimer()
}, 1000)

SENDING DATA INTO MOBX

Add/replace individual path values.

Remove path.

Respecify the entire tree.

[{"op":"replace","path":"/project/currentItem/id","value":3003},
 {"op":"replace","path":"/project/currentItem/name","value":"Jim's Item"}]

THINGS WE LIKE ABOUT REACT JUCE

THINGS WE LIKE ABOUT REACT JUCE
JUCE!

THINGS WE LIKE ABOUT REACT JUCE
JUCE!

Building UIs declaratively with a flexbox layout engine.

THINGS WE LIKE ABOUT REACT JUCE
JUCE!

Building UIs declaratively with a flexbox layout engine.

Using native code JUCE components.

THINGS WE LIKE ABOUT REACT JUCE
JUCE!

Building UIs declaratively with a flexbox layout engine.

Using native code JUCE components.

Hot reload!

THINGS WE LIKE LESS ABOUT REACT JUCE

THINGS WE LIKE LESS ABOUT REACT JUCE
Getting up to speed with Javascript.

THINGS WE LIKE LESS ABOUT REACT JUCE
Getting up to speed with Javascript.

Getting up to speed with Typescript.

THINGS WE LIKE LESS ABOUT REACT JUCE
Getting up to speed with Javascript.

Getting up to speed with Typescript.

Getting up to speed with React.

THINGS WE LIKE LESS ABOUT REACT JUCE
Getting up to speed with Javascript.

Getting up to speed with Typescript.

Getting up to speed with React.

Getting up to speed with mobx.

THINGS WE LIKE LESS ABOUT REACT JUCE
Getting up to speed with Javascript.

Getting up to speed with Typescript.

Getting up to speed with React.

Getting up to speed with mobx.

So, Time.

THINGS WE LIKE LESS ABOUT REACT JUCE
Getting up to speed with Javascript.

Getting up to speed with Typescript.

Getting up to speed with React.

Getting up to speed with mobx.

So, Time.

Speed.

THINGS WE LIKE LESS ABOUT REACT JUCE
Getting up to speed with Javascript.

Getting up to speed with Typescript.

Getting up to speed with React.

Getting up to speed with mobx.

So, Time.

Speed.

The tide went out.

THE END
Thank you all for listening and contributing.

