- “The Small-Pearls

N it 4 £ .Rainer Grimm
ppd Mgl : Training, Mentoring, and
| ' : Technology Consulting
»t : . " www.ModernesCpp.net
.

http://www.modernescpp.net/

C++20

2020

The Big Four

Concepts
Modules
Ranges library
Coroutines

Core Language Library

Three-way comparison operator . std::span
Designated initialization
consteval and constinit
Template improvements
Lambda improvements

Container improvements
Arithmetic utilities
Calendar and time zone
Formatting library

Concurrency

Atomics

Semaphores

Latches and barriers
Cooperative interruption
std::jthread

C++20 — The Big Four

2020

Coroutines

Core Language

Three-way comparison operator
Designated initialization
consteval and constinit
Template improvements
Lambda improvements

Library

std: ispan

Container improvements
Arithmetic utilities
Calendar and time zone
Formatting library

Concurrency

Atomics

Semaphores

Latches and barriers
Cooperative interruption
std::jthread

C++20 - Core Language

2020

The Big Four

Concepts
Modules
Ranges library
Coroutines

Core Language

Three-way comparison operator
Designated initialization
consteval and constinit
Template improvements
Lambda improvements

Library

std: ispan

Container improvements
Arithmetic utilities
Calendar and time zone
Formatting library

Concurrency

Atomics

Semaphores

Latches and barriers
Cooperative interruption
std::jthread

Three-way Comparison Operator

The three-way comparison operator <=> determines for two
values A and B, whether A< B, A==B or A> B applies.

* The three-way comparison operator

» |s also called spaceship operator.
= can be implemented or defaulted with = default.

* The comparison operator created by the compller
» needs the header file <compare>.
* |simplicit constexpr and noexcept.
= compares lexicographically except the == and ! = operator.

= All base classes from left to right
= Non-static members in their declaration order

|

Three-way Comparison Operator

User defined

struct MyInt {
int value;
explicit MyInt (int val): value{val} {}

auto operator<=>(const MyInt& rhs) const ({ // strong ord.

return value <=> rhs.value;
}
b

Compiler generated

struct MyDouble {
double value;
explicit MyDouble (double wval): value{val} {}

auto operator<=>(const MyDouble&) const = default; // partial ord.
} i

Three-way Comparison Operator

= Special features

= The compiler generates comparison expressions from the three-
way comparison order:

a<b‘(a<=>b)<0
= The three-way comparison operator is symmetric.
a<b‘(a<=>b)<0‘0<(b<=>a)

» |f the data type already has comparison operators, they have
higher priority than the three-way comparison operator.

threeWayComparisonWithInt.cpp

https://godbolt.org/z/Eeb68W3nT

Designated Initialization

Designated initializers are an extension of aggregate
Initialization.

= Aggregate
= Array
= Classtype (class, struct, union)
» public members or base classes

= No user-defined constructors
= No virtual members or base classes

= Aggregate Initialization
= Can be initialized directly with an initialization list.

= The order of the arguments must match the declaration order of
the members.

Designated Initialization

Point {
int x;
int vy;
} 7
Designated Initializer

= Allows to call the non-static members directly by name using an
initializer list.
" Point p = {.x =1, .y = 2};
= Members can also have an in-class default value.

= |f the initializer is missing, the default value is used (exception
union) .

= Narrowing conversion is detected B) ERROR

designatedInitializerDefaults.cpp

https://godbolt.org/z/xbGK7fKcE

o —

consteval

consteval generates an immediate function.

= Every call of an immediate function generates a constant
expression that is executed at compile time.

consteval
= Cannot be applied to destructors or functions that allocate or
deallocate.
= Has the same requirements such as a constexpr function.
* |mplies that the function is inline.

consteval int sqgr(int n) {

return n * n;

}
constexpr int r = sqr(100); // OK

int x = 100;
int r2 = sqr(x); // Error

o —

constinit

constinit guarantees that a variable with static storage
duration is initialized at compile time.

= Global objects, or objects declared with static or extern,
have static storage duration.

= Objects with a static storage duration are allocated at the
program start and deallocated at its end.

constinit

= Avoids the static initialization order fiasco.
= Variables are not constant.

https://www.modernescpp.com/index.php/c-20-static-initialization-order-fiasco

constinit

// sourceSIOFLl.cpp // mainSOIF1l.cpp

int square(int n) { #include <iostream>

return n * n;
} extern int statich;

auto staticA = square(5); auto staticB = statichA;

int main() {

std::cout << "staticB: " << staticB;

rainer : bash — Konsole

File Edit View Bookmarks Settings Help

rainer@seminar:~> g++ —-c mainSIOFl.cpp

rainer@seminar:~> g++ —-c sourceSIOFl.cpp

rainer@seminar:~> g++ mainSIOFl.o sourceSI0OFl.o -o mainSource
rainer@seminar:~> g++ sourceSI0OFl.o mainSIOFl.o -o sourceMain
rainer@seminar:~> mainSource

staticB: @
rainer@seminar:~> sourceMain
staticB: 25

rainer@seminar:~> I |

Template and Lambda Improvements

= New non-type template-parameters

» Floating-point numbers
» Classes with constexpr constructor

» Template lambdas allow defining a lambda expression
that can only be used for certain types.

‘ auto foo = []<typename T> (const std::vector<T>& vec) {

// do vector specific stuff

s

A concept can be used instead of a type parameter T.

templatelLambda.cpp

https://godbolt.org/z/7ddrjf3ro

C++20 - Library

The Big Four

Concepts
Modules
Ranges library
Coroutines

Core Language

Three-way comparison operator

Designated initialization

consteval and constinit

Template improvements
Lambda improvements

Library

std: ispan

Container improvements
Arithmetic utilities
Calendar and time zone
Formatting library

Concurrency

Atomics

Semaphores

Latches and barriers
Cooperative interruption
std::jthread

o —

std: :span

std:span Sstands for an object that refers to a continuous
sequence of objects.

" std::span
= |S never an owner.

= The referenced area can be an array, a pointer with a length, or a
std: :vector.

= Atypical implementation has a pointer to the first element and its
length.

= Allows the partially access to the continuous sequence of
elements.

B Astd::span knows its length.

printSpan.cpp

https://godbolt.org/z/9nGv1sGMq

o —

Modifying a span also modifies the referenced objects.

std: :span

std::vector veci{l, 2, 3, 4, 5, o6, 7, 8, 9, 10};
printMe (vec) ; // displays size and elements
std: :span spanl (vec) ;
std::span span2{spanl.subspan(l, spanl.size() - 2)};
std::transform(span2.begin(), spanZ2.end(),

span?.begin(), [](int i){ return 1 * 1i; 1});
printMe (vec) ;

printMe (spanl) ;

spanTransform.cpp

https://godbolt.org/z/PKeE5qs4c

Container Improvements

std::string and std: :vector can be created and
modified at compile time.

» The constructors of std: :string, and std::vector
constructors and member functions are constexpr.

= The algorithms of the Standard Template Library are
declared constexpr.

If a function is declared as constexpr, it has the potential to run
@ Aatcompile time.

constexprVector.cpp

https://godbolt.org/z/vo6vxThTo
https://godbolt.org/z/YbqnzKTE3

Container Improvements

std::erase and std: :erase if enable the uniform
deletion of the elements of a container.

" std::erase(container, value) :
= Removes all elements with the value from the container.
" std::erase 1f (container, predicate):

= Removes all elements from the container that fulfil the
predicate.

! Both algorithms operate directly on the container.

eraseUpper.cpp

https://godbolt.org/z/651qdnfxh

o —

Container Improvements

std::string str

str.starts with(prefix):
= Checks if the string str starts with the given prefix.

str.ends with (suffix):
» Checks if the string str ends with the given suffix.

o —

Arithmetic Utilities

The comparison of signed and unsigned integers often
does not yield the expected result.

= The std::cmp *-functions perform a secure comparison.

Compare Function

std::cmp equal ==

std::cmp not equal =

std::cmp less <
std::cmp less equal <=
std::cmp greater >
std::cmp greater equal >=

B |t causes a compile time error if an argument is not an integer.

safeComparison.cpp

https://godbolt.org/z/e6vbaTEfc

o —

Arithmetic Utilities

C++20 supports important mathematical constants.
» Need the header file <numbers>
» Are defined in the namespace std: :numbers
* The constants have the data type double.

1n?2 n2

e e
logze logze 1nlo0 In10
logl0Oe logge BEpEE2 V2
pi - sqrt3 V3
inv pi 1 inv_sqrt3 1

- V3

egamma Euler-Mascheroni constant

inv sqgrtpi 1 phi T

N ¢ (—-)

The chrono library is extended by additional clocks, time of

Calendar and Time Zones

day, a calendar, and time zones.

= New Clocks

" std::chrono:

" std::chrono:

" std::chrono:

" std::chrono:

" std::chrono:
= Time of Day:

* Time since midnight in the format hours:minutes:seconds.

:utc clock
:tali clock
:gsp clock
:file clock

:local clock

Calendar and Time Zones

= Calendar:

» Data types representing a year, a month, a weekday, and the n-th
day of the week.

= Data types can be combined to more complex data types.
= The "/" operator allows easy handling of time points.

= C++ has two new literals: d for a day and y for a year.

= Time zones:
= Display dates in different time zones.

timeOfDay.cpp
cuteSyntax.cpp
localTime.cpp
onlineClass.cpp

https://godbolt.org/z/3s9Yhr1W9
https://godbolt.org/z/8oGEbrGn3
https://godbolt.org/z/GjT5dKxqe
https://godbolt.org/z/31MorvarG

o —

Formatting Library

The formatting library offers a secure and expandable
alternative to the printf family and extends the I/O streams.

The formatting library requires header file <format>.

The format specifications follow the Python syntax.

* The format specification allows to
Specify fill letters and text alignment.

Set the sign for numbers.

Specify the width and precision of numbers.
Specify the data type.

o —

Formatting Library

" std::format

» Returns the formatted string.

" std::format to
= Writes the formatted output using an output iterator.

" std::format to n

= Writes a maximum of n characters of the formatted output using
an output iterator.

ﬂ All three functions follow the same syntax.

o —

Formatting Library

Syntax: std: : format (FormatString, Arguments)

std: :format ("{1} {O0}!", "world", "Hello");

»* The FormatString consists of
» Characters: are not changed (exception { and })
» Escape sequences: {{ and }} become { and }
= Replacement fields:
» Introductory character: {
= Argument-ID: optional, followed by a format specifier

= Colon: optional; introduces the format specifier
» End character: }

o —

Formatting Library

The format specifier std: : formatter provides formatting
rules for data types.

* Elementary data types and std: : string:

» Standard format specification based on Python'’s format specification
= Chrono data types:

* chrono format specification

* Further data types:
» User-defined format specification

formatArgumentID.cpp
formatVector.cpp

https://godbolt.org/z/fjPcodTKK
https://godbolt.org/z/Yf5cr63fd

C++20 - Concurrency

2020

The Big Four

Concepts
Modules
Ranges library
Coroutines

Core Language

Three-way comparison operator
Designated initialization
consteval and constinit
Template improvements
Lambda improvements

Library

std: ispan

Container improvements
Arithmetic utilities
Calendar and time zone
Formatting library

Concurrency

Atomics

Semaphores

Latches and barriers
Cooperative interruption
std::jthread

o —

Atomics

std: :atomic offers specializations for f1oat, double
and long double.

= std::atomic and std::atomic flag
= Allow synchronization of threads

= atom.notify one () : Notifies one waiting operation

= atom.notify all () : Notifies all waiting operations

" atom.wait (val): Waiting for a notification and blocks as long as
atom == val holds

= The default constructor initializes the value.

atomicWaitAtomicBool.cpp

https://godbolt.org/z/4rbKb8Yb9

o —

Atomics

C++11 has std: :shared ptr for shared ownership.

» General rule: use smart pointer

= But:

» The handling of the control block is thread-safe.
= Access to the resource is not thread-safe.

= Solution:

" std::atomilic shared ptr

" std::atomic weak ptr

o —

Atomics

3 reasons for an atomic smart pointer.

= Consistency
* std::shared ptr is the only non-atomic type that supports atomic
operations
= Correctness

» The correct use of the atomic operation weighs on the shoulder of the
user ‘ very error-prone
" std::atomic store(&sharPtr, localPtr) I= sharPtr = localPtr
= Speed
= std::shared ptr is designed for general use

o —

Semaphores

Semaphores are synchronization mechanisms to control
access to a shared variable.

A semaphore is initialized with a counter greater than O
» Requesting the semaphore decrements the counter
» Releasing the semaphores increments the counter
» Arequesting thread is blocked if the counter is O.

= C++20 support two semaphores.

" std::counting semaphore

" std::bilnary semaphore (std::counting semaphore<l>)

threadSynchronisationSemaphore.cpp

https://godbolt.org/z/YbKET4KdT

o

Latches and Barriers

A thread waits at a synchronization point until the counter
becomes zero.

* latch Is useful for managing one task by multiple

threads.
lat.count down (upd = 1) Atomically decrements the counter by upd without
blocking the caller.
lat.try wait () Returns true if counter ==
lat.wait () Returns immediately if counter == 0. If not blocks

until counter ==

lat.arrive and wait (upd = 1) Equivalentto count down (upd); wait();

o

Latches and Barriers

* barrier IS helpful for managing repeated tasks by
multiple threads.

bar.arrive (upd = 1) Atomically decrements counter by upd.

bar.wait () Blocks at the synchronization point until the completion step
is done.

bar.arrive and wait () Equivalenttowait (arrive())

bar.arrive and drop () Decrements the counter for the current and the subsequent

phase by one.

= The constructor gets a callable.

* Inthe completion phase, the callable is executed by an arbitrary
thread.

workers.cpp

https://godbolt.org/z/asjEKMdch

o

Cooperative Interruption

Each running entity can be cooperative interrupted.

= std::jthread and std::condition variable any
support an explicit interface for cooperative interruption.

Receiver (std: :stop token stoken)

stoken.stop possible () Returns true if stoken has an associated
stop state.
stoken.stop requested() trueifrequest stop () was called on the

associated std: :stop source src,
otherwise false.

o —

Cooperative Interruption

Sender (std: :stop source)

src.get token|()

src.stop possible ()

src.stop requested()

src.request stop()

interruptdthread. cpp

If stop possible (), returnsastop token for
the associated stop state.

Otherwise, returns a default-constructed (empty)
stop token.

true if src can be requested to stop.

trueif stop possible() and
request stop () was called by one of the
owners.

Calls a stop request if stop possible () and
!stop requested() . Otherwise, the call has no
effect.

https://godbolt.org/z/1q3f6rzKr

Cooperative Interruption

mechanism to send a signal.
=) You can send a signal to any running entity.

std::stop source stopSource;

std::stop token stopToken = stopSource.get token();
void functilion(std::stop token stopToken) {

1f (stopToken.stop requested()) return;

std::thread thr = std::thread(function, stopToken);

stopSource.request stop();

stopRequested. cpp

std::stop source and std::stop token are ageneral

https://godbolt.org/z/5r4hKM34c

o

std: :jJthread

std: :jthread joines automatically in its destructor.

std::jthread t{[]{ std::cout << "New thread"; }};
std::cout << "t.joinable(): " << t.joinable();

rainer : bash — Konsole [, VoA 9

File Edit View Bookmarks Settings Help

rainer@seminar:~> jthread

t.joinable(): true
New thread

rainer@seminar:~> |
H rainer : bash

Synchronized Output Streams

Synchronized output streams allow threads to write without
Interleaving on the same output stream.

» Predefined synchronized output streams

std::osyncstream for std::basic osyncstream<char>
std::wosyncstream for std::basic osyncstream<wchar t>

= Synchronized output streams

= Qutput is written to the internal buffer of type
std::basic syncbuf

= When the output stream goes out of scope, it outputs its internal
buffer

Synchronized Output Streams

= Permanent variable synced out
{
std::osyncstream synced out (std::cout);
synced out << "Hello, ";
synced out << "World!";
synced out << std::endl; // no effect
synced out << "and more!\n";

} // destroys the synced output and emits the internal buffer

» Temporary Variable

std::osyncstream(std: :cout) << "Hello, " << "World!"
<< std::endl;

C++20 — The Big Four

2020

Coroutines

Core Language

Three-way comparison operator
Designated initialization
consteval and constinit
Template improvements
Lambda improvements

Library

std: ispan

Container improvements
Arithmetic utilities
Calendar and time zone
Formatting library

Concurrency

Atomics

Semaphores

Latches and barriers
Cooperative interruption
std::jthread

C++20 i

= Modernes C++ BloQg

C++20

Get the Details

spaceship

templates

atomic_ref
stop_source

calendar voTatlleformat

Cdt FE)'C'Y -constexpr
= C++20: Get the Details Y COnCeptslatches

,.9§ unlikely mtlallzatlon
d I char8_t

spanra n g es“me Z00e

Ib‘@ atomics qaress
0 uniaue ’iambdas
n0Yhodiscard
stop_ callback
semaphores
consteval

o/
9
@

Rainer
Grimm

ModernesCpp.com

https://www.modernescpp.com/index.php/category/c-20
https://leanpub.com/c20

"Rainer Grimm

Training, Mentoring, and
. Technology Consulting

www.ModernesCpp.net

http://www.modernescpp.com/
http://www.modernescpp.net/

