WHAT CLASSES WE DESIGN
AND HOW

PETER SOMMERLAD




What Classes We Design
and How

ACCU 2022-04-08 Slides:
Peter Sommerlad
peter.cpp@sommerlad.ch
@PeterSommerlad

https://github.com/PeterSommerlad/talks_public/tree/master/ACCU/2022

My philosophy
| ess Code

More Software



What C++-objects model?

Roles:

C++ specific:

Speaker notes

These are the categories I'd like to talk about today. A type of an object can be simultaneously serve to more than one
category

For example, providing a relation to a value object makes the latter a subject even if it holds a value, because now its
location is important.



What C++-objects model?

Roles:
e Value - what

C++ specific:

What C++-objects model?

Roles:

e Value - what
e Subject - here

C++ specific:



What C++-objects model?

Roles:

e Value - what
e Subject - here
e Relation - where

C++ specific:

What C++-objects model?

Roles:

e Value - what
e Subject - here
e Relation - where

C++ specific:
e Manager - clean up



Roles of C++ objects (V)

e Value - what
e Subject - here
e Relation - where

C++ specific:
e Manager - clean up

What is a Value ® ?

A value is an intangible individual that exists outside time
and space, and is not subject to change.
— Michael Jackson



Speaker notes

| am not citing the famous US pop singer, but a Brit who was talking about IT system analysis

What is a Value ® ?

A value is an intangible individual that exists outside time
and space, and is not subject to change.
— Michael Jackson

When in doubt, do as the 1nts do! — Scott Meyers



outside time &3 and space B

a value can have different representations

o 42 e 052
e Ob10'1010 e OX2A

behavior is independent of representation and location

a value object is valid independent of other entities

10

Speaker notes

the self-containedness of value objects is important. There is no “Fernwirkung” possible.



Value Semantics in C++
property of a type

e copyability
= poth copy and original behave the same
= original is unchanged by copy

e all C++ defaults support types with value semantics
e C++ built-in types have value semantics

11

Speaker notes
value semantics does not necessarily mean instances of a type are values

For example, pointer types have value semantics, but a pointer is useless, when its target is gone



Values and const in C++

immutability is a means to enforce value semantics
e shared_ptr<T const> has value semantics

But, do not add const to member variables needlessly
getting it right and efficient is tricky

See Juanpe Bolivar's CPPCon 2017 talk & immer lib

12

Speaker notes

obtaining value semantics through immutable types is possible, but often requires sophisticated implementation
techniques to keep it efficient. See for example https://sinusoid.es/immer/ (or the CPPCon 2017 talk)



Roles of C++ objects (S)

e Value - what
e Subject - here
e Relation - where

C++ specific:
e Manager - clean up

14

What is a Subject *?

| choose subject over object

identity is important

= has |location

= and lifetime

in general not copyable
target of a Relation < %
allows polymorphic behavior

object becomes a subject, once a Relation is formed to it

15



Speaker notes
| chose subject over object, because that has too many meanings

Once we form a relation to an object, it becomes a “subject”. | chose this name, because “object” is already too
overloaded and has different meanings in programming languages, e.g., C++ object means, a memory location with a
type and value, in Java an object means, an instance of a class type inheriting from java.lang.Object.

Because identity is important, lifetime becomes important, because relation objects referring the subject become
invalid when it is gone, or sometimes, when it is changed.

Polymorphic subject types

This deals with the C++ way of using virtual

e derived classes from a base with virtual member
functions
e heap clean-up via defining virtual destructor in base
e copy-prevention via base (no value semantics)
= keep identity X
= prevent slicing /¢

other means for dynamic polymorphism not shown today

16



Speaker notes

There are other means to implement dynamic polymorphism that do not rely on inheriting from a class hierarchy and
that might even provide value semantics on its objects. However, those are topics for another talk and wouldn't fit within

this talk’s slot.

Roles of C++ objects (R)

e Value - what
e Subject - here
e Relation - where

C++ specific:
e Manager - clean up

18



What is a Relation &< ?

represents a subject ¥ (to)

= Uses its identity

enables “Fernwirkung”

enables abstraction (polymorphism)
enables use of hon-copyable objects

19

Speaker notes

let me introduce a nice German word “Fernwirkung”. It can be combined with other words to become even more
interesting and it enables access of the same subject from different places

It means to effect something remote/non-local from an expression.

While values act locally in the expression they are used in, using a relation object means, it can access or modify an
object (its subject) that is not actually or directly part of the expression.



"Fernwirkung’ o

access or modify an object that is not part of current
expression

e for reference parameters
= T const &-access, copy-optimization
» T &-side effect
» T && -transfer of ownership

e similarly for pointers, span, views, iterators

20

Gy

Technicalities of Relation Types ¢

e rely on the existence of the referred entity
= can be or become invalid: dangling or empty @
= aka DANGs = potentially dangling types #:E3&
e require programmer care to track validity &
» safe to use as function parameters
e language relation types: T& and T*
m [terators, span, views
e Relation members make class a Relation type
(contagious #)
= unless class is a Manager I

21



Speaker notes

language pedants will note that reference types do not form a C++ object in a technical sense. | am aware of that, but
don’t want to be hair-splitting in this explanation, because other relation types, such as pointers or span actually form
C++ objects with similar problems than the C++'s reference types.

Using Relation Types

Parameters with relation types are safe

e usually no dangling possible
« unless thread or coroutine #:E3&

returning a relation type requires £

e mostly safe from functions: if parameter
 safe from member functions: lvalue-ref-qualify

memorize returned relation: DANG @

22



Speaker notes

take utmost care not to dangle when using relation types

Returning Relation Types

template <typename T>
T const& max(T const &L, T const &r) {
return '(1 <r) 2 1 : r;

}

returning a parameter is mostly safe

auto const & x { max("hello"s, "world"s)}; // DANG

23



Returning Relation from Member
Unfortunately, even compiler-provided ones are imperfect

auto make = [](auto ... vals){
return std::vector{std::string{vals}...};
ik

int main() {
std::string &s = make("hello","world").at(1);
// s immediately dangles!
std::cout << "Hello " << s <<'\n';
s.append("!!1");
std::cout << "Hello " << s <<'\n';

https://godbolt.org/z/GdhTf94KM
-fsanitize=address

https://godbolt.org/z/8aafWdzPM

24

opt: Using Relation Types

25



How to use Relation Types

References, Spans, Views, unmanaged Pointers

27

Passing DANGSs

Passing references/pointers/views down the call tree is dangle free

{...scope...} O———=>> passrelation

global variables

Horoernnrannn - refer to subject

call tree

Relation types (e.qg. std: : span) are also known as parameter types

28



Speaker notes

using global variables is poisonous! They taint your code and make it untestable.

Globals cannot dangle, BUT..
Better pass parameters!

{...scope...} O———=>> passrelation

Horoernnrannn - refer to subject

global variables

call tree

Global variables make the code untestable in isolation

29



Speaker notes

using global variables is poisonous! They taint your code and make it untestable.

Parameterize from Above

pass global variables as parameters frommain()!

{...scope...} O———=>> passrelation

Horoernnrannn - refer to subject

AQ

global variables

call tree

Enable testability by using different arguments for tests instead

30



Speaker notes

using global variables is poisonous! They taint your code and make it untestable.

Don't Return Relations 4“E3 &%

Returning relation objects (DANGSs) up the call tree can/will dangle!

{...scope...} © 3> Dpass relation
- ISRLLLALELE - refer to subject

call tree

31



Speaker notes

returning relation objects referring local subjects will lead to immediate dangling

Don't Return Relations 4“E3 &%

Returning relation objects (DANGSs) up the call tree can/will dangle!

{...scope...} © 3> Dpass relation
- ISRLLLALELE - refer to subject

call tree

31



Return only Relations to Parameters

still requires care about lifetime, subject might be a temporary!

L B
* .
2

{.. .sa]cecfae. ..} O 3> pass relation
. RRRLERRLERE - refer to subject

&

call tree

32

Speaker notes

returning relation objects referring local subjects will lead to immediate dangling



Return only Relations to Parameters

still requires care about lifetime, subject might be a temporary!

{.. .sa]cecfae. ..} O 3> pass relation
. RRRLERRLERE - refer to subject

call tree

32

Relations and Threads

call tree thread call tree

Passing Relations to another thread risks data races

33



Speaker notes

Pass data to thread by value. This means each thread gets its own copy and does not need to access shared data,
which leads to data races and thus undefined behavior.

Relations and Threads

{...scope...}

call tree thread call tree

Passing Relations to another thread risks data races

33



Globals and Threads

{...scope...}
0O

AQ

global variables

call tree thread call tree

Using mutable global variables in multiple threads risks data races

34

Speaker notes

Mutable (non-const) global variables (with static storage duration) accessed from multiple threads cause data races
and thus undefined behavior.



Globals and Threads

{... .}

Q

global variables

call tree thread call tree

Using mutable global variables in multiple threads risks data races

34

Safer Sharing with Threads

AQ

atomics/mutex

call tree thread call tree

Using atomic variables or objects protected with a mutex is required

35



Speaker notes

Mutable (non-const) global variables (with static storage duration) accessed from multiple threads cause data races
and thus undefined behavior.

Roles of C++ objects (M)

e Value - what
e Subject - who
e Relation - where

C++ specific:
e Manager - clean up



Speaker notes

actually a Manager object is one that is behaving not like a typical business manager, but more like a janitor or well-
behaved dog owner: it cleans up the mess, when everything is done.

What is a Manager #4?

Manage a single resource

« Scoped Manager {1

= |Local usage of resource
e Unique Manager & ©

= Resource cannot be duplicated
« General Manager Il

= Resource can be duplicated



Technicalities of Managers (i

e class defines a non-empty destructor
e usually have a member of Relation type
= sometimes disquised, e.qg,, file handle 1int

e care about copying and moving

39

Speaker notes

Think twice if you have such an odd-ball manager not actually managing a resource, caring for a non-local invariant,
that might be broken by compiler-provided copy or move operations. Those often occur in bad example code
demonstrating woes of move/copy operations and should rarely occur in real life. If so, they tend to try to provide
“caching” of information from previous operations.



Technicalities of Managers (i

e class defines a non-empty destructor
e usually have a member of Relation type

= sometimes disquised, e.qg,, file handle 1int
e care about copying and moving

never define a destructor with an empty body

Technicalities of Managers (i

e class defines a non-empty destructor
e usually have a member of Relation type

= sometimes disquised, e.qg,, file handle 1int
e care about copying and moving

never define a destructor with an empty body

exceptional cases might manage an invariant and not a resource

39

39



Kinds of Manager Types

« Scoped Manager i
= Non-copyable, non-movable
= can be returned from factory functions (>C++17)
o Unique Manager & ©
= Move-only, Transfer of ownership
= Resource can not be easily duplicated
o General Manager i1l &
= Copyable, possibly Move-operation for optimization
= Resource can be (expensively?) duplicated

Why?

think about object roles and class kinds

e roles of sub-objects (bases/members) influence
e defining class types correctly can be overwhelming

40

42



Speaker notes

unfortunately, roles can overlap for instances of a class

Defining a class: too many options?

° ~T() o .
e« T(T const &) public

« T& operator=(T const&) & e protectec

« T(T&&) noexcept e private
« T& operator=(T&&) & noexcept

e not declared

e =default;

e =delete;

e with non-empty body

plus all the different spelling options for copy/move

43



© Peter Sommerla

What special member functions we get

What you get

default copy copy move move
constructor constructor assignment constructor assignment

defaulted defaulted defaulted defaulted defaulted defaulted
consatr:xctor not declared defaulted defaulted defaulted defaulted defaulted
2 e user declared defaulted defaulted defaulted defaulted defaulted
s constructor e
=}
g, defaulted user declared -- not declared not declared
©
< copy
= constructor not declared defaulted user declared not declared not declared
copy
assignment defaulted defaulted - user declared not declared not declared
move
constructor not declared defaulted deleted deleted user declared not declared
move
defaulted defaulted deleted deleted not declared user declared

assignment

Howard Hinnant's Table: https://accu.org/content/conf2014/Howard_Hinnant_Accu_2014.pdf
Note: Getting the defaulted special members denoted with a (!) is an unfixable bug in the standard.

44

Sub-object influence

e Value: fine ¥
e Relation:
= contagious *
= Manager
e Polymorphic (base)
= fine, when base well defined ¢
« Scoped Manager: contagious #
« Unigue Manager: contagious #
e General Manager = Value: fine ¥

¥ or

45



How to define a class!

Don't declare any of the special members
This is called the Rule of Zero (RoZ)

.. unless you must

47

RoZ: What the Core Guidelines say

C.20
If you can avoid defining default operations, do.

Reason
It's the simplest and gives the cleanest semantics.

Simplicity rules!
but rationale sounds a bit weak

48



Rule of Zero (RoZ)

Implement your classes in a way, that compiler-provided
default implementations just work

Even defining special member functions with =default;
or =delete; can change overload resolution, being an
aggregate or trivial, and thus behavior or compilability.

exception for =default;
you should resurrect a default constructor or define a virtual destructor as
=default;

49

When RoZ ill-suited ?

A class that needs to define a destructor

e This was the cause for Scott Meyer’'s Rule of Three
e And in most cases still is for non-RoZ

e An odd manager for an invariant (where the default destructor is fine)
= non-local invariant, or
= with internal references (= local invariant)

50



Speaker notes

| still haven’t found such strange behaving Manager types in real world code, where it actually had to exist like that.

Polymorphic Base Classes

Deleting via pointer to base of a derived object is
undefined behavior unless base has virtual destructor

C.35
A base class destructor should be
pu b'l.iC aﬂd Virtual, or protected and non-virtual

Copy will slice objects via base class references

C.67
A polymorphic class should suppress copy/move

51



Speaker notes

Slicing is just one aspect, why copying should be prevented. The use of relationship objects to access and object
should not degenerate to copying, because with the copy, one loses the identity of the original and in the case of
slicing even its dynamic type.

How to prevent copying?

Old options Newer (C++11):
(C++98/03):

e private copy operation
declared but not defined

e define copy ops =delete

struct nc{
nc(nc const &) =delete; // nc()

e protected copy operation gone
defined for subclasses ncé operator=(nc const §) =
« inherit non-copyability, e delete;
Py Y. €9, nc()=default;// requires
boost::noncopyable resurrection
i

e disables default
constructor and move
operations

52



Making a class T non-copyable:
T& operator=(T&&)=delete;

What you get

default copy copy move move
constructor constructor assignment constructor assignment

defaulted defaulted defaulted defaulted defaulted defaulted

any
not declared defaulted defaulted defaulted defaulted defaulted

default
user declared defaulted defaulted defaulted defaulted defaulted
m defaulted user declared -- not declared not declared

con:‘:rﬁlyctor not declared defaulted user declared -

What you write

not declared not declared

copy
assignment defaulted defaulted - user declared not declared not declared
move not declared defaulted deleted deleted user declared not declared
constructor #

move
_ assignment

eletd user declared
e I

defaulted defaulted

deleted declared }

Howard Hinnant's Table: https://accu.org/content/conf2014/Howard_Hinnant_Accu_2014.pdf
Note: Getting the defaulted special members denoted with a (!) is a bug in the standard.

© Peter Sommerlad



Rule of DesDeMovA

Prevent a class copy and move with less code

DesDeMoVvA Q

Rule of if
Destructor defined
Deleted
Move Assigment

- >

No need to resurrect default constructor
For polymorphic base classes and scoped managers

54

Polymorphic Base Class

public virtual destructor =default;
and move assignment =delete;

struct OOBase {

virtual void somevirtualmember();

virtual ~00Base() = default;

OOBase& operator=(00Base &&other) = delete;
i

least amount of code and DesDeMovA G
ot : Rule of if
distinct to prevent confusion Destructor defined

Deleted
Move Assigment

55



¥ 4
Managers i

C++ deterministic object lifetime and destructors

57

Destructor for RAIl

Resource-acquisition-is-initialization
Scope-based Resource Management (SBRM)

Destructor with body defined

Constructor acquires resource

Destructor releases resource

need to care about copying/moving (next slide)

Do not manage multiple resources at once

» | tried with unique_resource p0052 and itis too
error prone

58



Speaker notes

*NEVER define a destructor with an empty body. This is not only superfluous code, but also suppresses the compiler-
provided move operations, so depending on your class’ sub-objects actually a pessimization.

¥ 4
Manager Classes i for a Resource

Manage a single resource

« Scoped Manager .

= Non-copyable, non-movable

= can be returned from factory functions (C++17)
o Unique Manager & *

= Move-only, Transfer of ownership

» Resource can not be easily duplicated
o General Manager i1 &

= Copyable, Move-operation for optimization

» Resource can be (expensively?) duplicated

59



Speaker notes

Have a non-empty destructor body, e.g., for cleaning up!

Scoped Manager } @9

struct Scoped {

Scoped(); // acquire resource

~Scoped();// release resource

Scoped& operator=(Scoped &&other) = delete;
private:

Resource resource; // only one!

b

Constructor usually has
parameters identifying the
resource.

DesDeMovA

Rule of if
Destructor defined
Deleted
Move Assigment

(&)

60



Speaker notes

A scoped manager usually does not have a default constructor, but one that takes an identification for the resource to
allocate.

Destructor definition has a non-empty body.

If acquisition can fail AND exceptions are disabled: make constructor private and have a factory function that returns
an optional<Scoped> or variant<Scoped,Error>.

Unique Manager *

class Unique {
std::optional<Resource> resource;
void release() noexcept;
public:
Unique() = default;
Unique(Params p); // acquire resource
~Unique() noexcept;
Unique& operator=(Unique &&other) & noexcept;
Unique(Unique &&other) noexcept;

b

optional<Resource> provides extra ‘empty” state for
moved-from or default constructed

New Rule of Three, for move-only types

61



Speaker notes

class Unique {
std::optional<Resource> resource;
void release() noexcept;
public:
Unique() = default;
Unique(Params p); // acquire resource
~Unique() noexcept;
Unique& operator=(Unique &&other) & noexcept;
Unique(Unique &&other) noexcept;

b
Unique: :Unique(Unique &5other) noexcept void Unique::release() noexcept {
:resource{std: :move(other.resource)}{ if (resource)
other.resource.reset(); // really release resource here
n resource.reset();
Uniques }
Unique: :operator=(Unique &5other) & noexcept { }
if (this != sother) { Unique::~Unique() noexcept {
this->release(); this->release();
std: :swap(this->resource, other.resource); }

return +this;

Move = Transfer of ownership T
AMS=std: :move(BMR) < ABR BB (actually moved)

Unique::Unique(Unique &&other) noexcept Unique::~Unique()

:resource{std::move(other.resource)}{ noexcept {
other.resource.reset(); // clear RHS optional this->release();

} }

Uniqueé&

Unique::operator=(Unique &S5other) & noexcept {
if (this != &other) { // self-assignment check
required
this->release();
std::swap(this->resource, other.resource);
}
return *this;
}
void Unique::release() noexcept {
if (resource) { // is optional non-empty
// really release resource here
resource.reset(); // AND clear the optional



Speaker notes
Unique Managers require a deliberate empty “moved-from” state.
using std: :optional provides the extra “empty” state required for the moved-from state.

New “Rule of Three for move-only types”

General Manager

struct MvValue {
MValue() = default;
~MValue();
MValue(const MValue &other);
MValue& operator=(const MValue &other) &;
MvValue(Mvalue &&other) noexcept ; // optional optimization
MValue& operator=(MValue &Sother) & noexcept; // optional
optimization

};
Move for optimization only through “gut stealing”.
Alm=p0E < ADR BAs (5ctually moved)

Rule of Three(classic) / Rule of Five/Six

63



General Manager Discussion &

Provide value semantics for a resource without
Expert-level coding, explicit clean-up

Resource must be copyable/replicable

It might be simpler to reuse existing GM types

64

Take aways W Roles

create non-value types only with consideration

e deviate from value semantics only when needed
= polymorphic bases
= scoped and unique managers
e handle relation objects with care
» especially when disguised as class types
= as function parameter types fine

66



Speaker notes

wrt relation object as parameters: don’t make them parameter types for coroutines or thread lambdas. Those will either
lead to data races or potential dangling.

Returning a relation object is necessary and possible, but requires close scrutiny to not unnecessarily keep hold of it
across statements that invalidate it, e.g., by destroying its target subject.

Take aways £ ©: Special Members

Rule of Zero Rulez

67



Speaker notes

Define a destructor only when you must do it and never define it with just an empty body (use =defau'lt for virtual
destructor in a base class).

have unique and general managers have a default constructor, creating an “empty” managing object that does not
own a resource for managing.

Take aways & : Special Members
Rule of Zero Rulez

Never define a destructor with an empty body

67



Take aways & : Special Members

Rule of Zero Rulez
Never define a destructor with an empty body

=default virtual destructor

67

Take aways & : Special Members

Rule of Zero Rulez
Never define a destructor with an empty body
=default virtual destructor

3 kinds of Managers il

e Rule of DesDeMovVA |east code for non-copyable
 Rule of Three(new) for move-only Unique Managers
 Rule of Three(classic) or Six for General Managers

67



What was missing?

How to encapsulate virtual?
Alternatives for run-time polymorphism?

e variant<A, B, C>, Envelope-Letter pattern

See for example Sean Parent’s talk “Better Code: Runtime
Polymorphism®

https://www.youtube.com/watch?v=QGcVXgEVMJg

68

Questions & Contact

Peter Sommerlad Slides:
peter.cpp@sommerlad.ch
@PeterSommerlad

https://sommerlad.ch

https://github.com/PeterSommerlad/talks_public/tree/master/ACCU/2022

69



