The Basics of Profiling

v

>? Some Metrics

Mathieu Ropert
Stellaris 2.7 starts in 54s

Stellaris 2.8 beta starts in 21s

HEARTS
Making Games
Start Fast:

A Story About Both rely on multithreading
Concurrency

Same amount of work

P Pl) 44aa/10224

Previously on CppCon...

(D concon AA

Mathieu Ropert

Making Games
Start Fast:
A Story About
Concurrency 2.8 (New) Startup CPU Usage

LTI

P Pl) 733/10224

Previously on CppCon...

e

“Here’s how I made things faster”

“Here’s how I found what was slow”

Hello!

I am Mathieu Ropert

I'm a Tech Lead at Paradox Development Studio
where | make Hearts of Iron IV.

You can reach me at:
X mro@puchiko.net
¥ @MatRopert
@ https://mropert.github.io

https:/career.paradoxplaza.com/

https://career.paradoxplaza.com/

5> About this talk

Profiling
Tools for profiling

Building an intuition

1 Profiling 101

Just enough theory to be dangerous

“The real problem is that
programmers have spent far too
much time worrying about
efficiency in the wrong places and
at the wrong times”

(11

10

%~ Why profiling?

Figuring why a program is slow is hard
Reading the code can easily mislead
Modern CPUs are quite complex

Measure, measure, measure!

11

Profilers

Tools to help programmers measure and reason
about performance

12

Profiling & Optimization

Measure

Y

Happy?

Profiling & Optimization

Y

Done!

Y

Happy?

Profiling & Optimization

Y

Done!

%> Profiling vs Optimization

Profilers are one of the tools that can be used
during an optimization iteration cycle

Better used to investigate where to optimize

Can be used to measure if an optimization was
effective, within limits

16

%> Profiler usage

Identify hotspots & bottlenecks
Visualize execution timeline

Collect & compute metrics

17

5> Sampling Profiling

Attach to program, periodically interrupt and
record the stack trace

Sampling frequency is customizable
Results are statistical averages

Example tool: vTune

18

5> Sampling Profiling

Only needs to be able to read stack trace
Minimal debug info is enough
Works out of the box on any executable

Inlined functions are usually invisible

19

pNg

Instrumentation Profiling

Add code hooks to explicitly record metrics

Can provide both averages and exact
breakdown by execution frame

Not affected by inlining or statistical anomalies

Example tool: Optick

20

pNg

Instrumentation Profiling

Requires programmers to add collection
macros in tactical places in the code

Supports adding extra business metadata
Can fallback on sampling

Build implications

21

52 Profiler Families

Sampling Instrumentation

Periodically interrupt
program and record
stack

Works out of the box

Susceptible to inlining

Add code to collect
metrics

Records usually match
business logic better

Need to recompile and
link a 3rd party

22

2

Profiling in Practice

Let’s put the theory to use!

23

X Setting up goals

Set up a reproducible scenario
Measure its performance

Define an objective

24

% Using the right tool

Instrumentation (+ some sampling) is the
recommended way to go

Sampling alone is cheaper to start with

Consider adding instrumentation as an
Investment

25

Demo Time!

26

% Finding the needle

First time look at a profile can be
overwhelming

Look at what sticks out

Domain knowledge is key

27

5% Know thy program

A profiler can tell what takes the most time
It can explain why

It can’t tell if it should

28

>> Hunting disprecencies

Performance regressions become easy to spot
once the normal profile outline is known

What takes time vs what should take time

29

Profile Time!

52 Best Work Is No Work

Most efficient code does nothing
Profiling can highlight useless computations

No need to dive deep into metrics!

31

% Profiling First Time

Assess the big picture

Understanding the domain is key to figure out
where to start digging

Get quick wins out of the way before delving
deeper

32

3

Profiling Analysis

We have to go deeper

33

% Profiling Metrics

CPU Time
Wait Time

System Time

34

% Profiling Metrics

CPU Time

Wait Time

35

Demo Time!

36

% High CPU Time

Inefficient algorithms or data structures
Spin locks
Single threaded code

Branch misprediction, cache misses

37

% High Wait Time

Disk 1/0
Network calls
Locks

Synchronization

38

%> Filtering Metrics

Sampling views usually aggregate call stacks
across threads

Consider filtering on main bottleneck thread

2D control flow view from instrumented
profilers helps a lot

39

52 A* Refresher

Open set: nodes/square reachable but not
explored

Closed set: nodes/squares fully explored

Pick best candidate in open set, add neighbours
to open set, repeat until destination is reached

40

% Inefficient Algorithms

Source

& CPU Time: Total »

CPU Time: Self »

while (fScore.

E
double minFScore = std::numeric limits<double>::max();

7.159s
27.028s
38.262s

41

pNg

Inefficient Algorithms

Time spent in loops, recursive calls and
<algorithm>

Check the Big O

Can computations be cached and reused?

42

pNg

Inefficient Data Structures

Source Line A Source & CPU Time: Total » | CPU Time: Self »
235 // Loop on possible adjacent cells

236 // Map::findNeighbors() will remove uneligible cells from the list (out of bounds and impassable cells)

237 for (const Coordinatess& nextCell : _map.findNeighbors(currentCell)) 0.2% 0

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

aute findCurx =|cos:FromSta::.find{cu:ren:CeLl);I
]

assert (findCur cocstFromStart.end());

o the next

"
5]
H
8}
<]
m
0
m
he)
b
ot

int newCost = findCurrentCost->second + 1; // it costs 1 to go £

’ Only examine the next cell it if it's the first time,

or if a shorter path from Start cell has been found.

aute findIt =|ccstFrcm_:ar:.f;nd(nex:CeLl); I

if (findIt == costFromStart.end() | newCost < findIt->second)
const int heuristics = _map.distance (nextCell, _target); // distance without ocbstacle
int priority = newCost + heuristics;

g.put (nextCell, priority);

Iccs:?:cmS:a:t[nextCel newCost;

shortestPathMap [nextCell] = currentCell;

6.702s

0.155s
1.753s
2.957s

0.117s

43

pNg

Inefficient Data Structures

Time spent in find, insert or operator|]
Easier to spot in bottom-up without inlining

Know your data structures strengths and
weaknesses

44

%> Spin Locks

High spin time in profiler or equivalent tagged
functions in instrumented profiles

Look at the bigger picture and threading model

Check out talks about concurrency &=

45

% Single Threaded Code

Low core usage in timeline
Consider parallel algorithms...

.. or a task scheduler

46

% Micro-architecture Usage

High CPI rate
More and more important on modern CPUs

Micro-optimization on large applications is
tricky

Keep for last

47

5> Blocking 1/0

High wait/system time in filesystem or
network AP]

Can it be put in an async task instead?

See my 2020 CppCon Talk: Making Games
Start Fast - A Story About Concurrency

48

5% Wait on Mutex or Semaphore

Grouping: | Function / Call Stack

"|[x][2][=]

Function / Call Stack

CPU Time

»

Wait Time by Utilization ¥

@ !dle @ Poor

9 Ok @!deal @ Over

»

Wait Count

Module

» _PHYSFS_platformGrabMutex

» _PHYSFS_platformRead

58.418s DD

2.739s |§

5,093 stellaris.exe

12,651 stellaris.exe

PHYSFS

PHYSFS

49

5% Wait on Mutex or Semaphore

High wait time on synchronization functions

Remember: “it shouldn't be called mutex, it
should be called bottleneck”

Consider changing concurrency model

50

% Profiling Analysis

Profiler will show what sticks out

Some filtering needs to be done by the
developer to focus on the right part

Deal with inefficient algorithms, data structures
and locks first

51

4

Wrapping Up

Have you been listening closely?

52

pNg

In conclusion

Profilers help pinpointing performance
bottlenecks

Domain knowledge can speed up the analysis
by a lot

Add instrumentation support to your program

53

Furthermore

(11

>4

Furthermore, I think your build
should be destroyed

(11

55

75 Thanks!

Any questions ?

You can reach me at
(R mro@puchiko.net
¥ @MatRopert

() @mropert
@ https://mropert.github.io

56

https:/career.paradoxplaza.com/

57

https://career.paradoxplaza.com/

