
The Basics of Profiling



Previously on CppCon...



Previously on CppCon...



“Here’s how I made things faster”

4

🚅



“Here’s how I found what was slow”

5

🕵



I am Mathieu Ropert
I’m a Tech Lead at Paradox Development Studio 
where I make Hearts of Iron IV.

You can reach me at:

mro@puchiko.net

@MatRopert

https://mropert.github.io

Hello!

6



https://career.paradoxplaza.com/

We’re Hiring

7

https://career.paradoxplaza.com/


About this talk

◉ Profiling

◉ Tools for profiling

◉ Building an intuition

8



Just enough theory to be dangerous

Profiling 1011

9



“

“The real problem is that 
programmers have spent far too 

much time worrying about 
efficiency in the wrong places and 

at the wrong times”

10



Why profiling?

◉ Figuring why a program is slow is hard

◉ Reading the code can easily mislead

◉ Modern CPUs are quite complex

◉ Measure, measure, measure!

11



Profilers
Tools to help programmers measure and reason 

about performance

⏱

12



Profiling & Optimization

Measure Happy? Done!

Optimize

😄

🙁



Profiling & Optimization

Measure Happy? Done!

Optimize

😄

🙁



Profiling & Optimization

Measure Happy? Done!

Optimize

😄

🙁



Profiling vs Optimization

◉ Profilers are one of the tools that can be used 
during an optimization iteration cycle

◉ Better used to investigate where to optimize

◉ Can be used to measure if an optimization was 
effective, within limits

16



Profiler usage

◉ Identify hotspots & bottlenecks

◉ Visualize execution timeline

◉ Collect & compute metrics

17



Sampling Profiling

◉ Attach to program, periodically interrupt and 
record the stack trace

◉ Sampling frequency is customizable

◉ Results are statistical averages

◉ Example tool: vTune
18



Sampling Profiling

◉ Only needs to be able to read stack trace

◉ Minimal debug info is enough

◉ Works out of the box on any executable

◉ Inlined functions are usually invisible

19



Instrumentation Profiling

◉ Add code hooks to explicitly record metrics

◉ Can provide both averages and exact 
breakdown by execution frame

◉ Not affected by inlining or statistical anomalies

◉ Example tool: Optick
20



Instrumentation Profiling

◉ Requires programmers to add collection 
macros in tactical places in the code

◉ Supports adding extra business metadata

◉ Can fallback on sampling

◉ Build implications
21



Profiler Families

Sampling

◉ Periodically interrupt 
program and record 
stack

◉ Works out of the box

◉ Susceptible to inlining

Instrumentation

◉ Add code to collect 
metrics

◉ Records usually match 
business logic better

◉ Need to recompile and 
link a 3rd party

22



Let’s put the theory to use!

Profiling in Practice2

23



Setting up goals

◉ Set up a reproducible scenario

◉ Measure its performance

◉ Define an objective

24



Using the right tool

◉ Instrumentation (+ some sampling) is the 
recommended way to go

◉ Sampling alone is cheaper to start with

◉ Consider adding instrumentation as an 
investment

25



Demo Time!

26

📊



Finding the needle

◉ First time look at a profile can be 
overwhelming

◉ Look at what sticks out

◉ Domain knowledge is key

27



Know thy program

◉ A profiler can tell what takes the most time

◉ It can explain why

◉ It can’t tell if it should

28



Hunting disprecencies

◉ Performance regressions become easy to spot 
once the normal profile outline is known

◉ What takes time vs what should take time

29



Profile Time!

30

📊



Best Work Is No Work

◉ Most efficient code does nothing

◉ Profiling can highlight useless computations

◉ No need to dive deep into metrics!

31



Profiling First Time

◉ Assess the big picture

◉ Understanding the domain is key to figure out 
where to start digging

◉ Get quick wins out of the way before delving 
deeper

32



We have to go deeper

Profiling Analysis3

33



Profiling Metrics

◉ CPU Time

◉ Wait Time

◉ System Time

34



Profiling Metrics

◉ CPU Time

◉ Wait Time

◉ System Time

35



Demo Time!

36

📊



High CPU Time

◉ Inefficient algorithms or data structures

◉ Spin locks

◉ Single threaded code

◉ Branch misprediction, cache misses

37



High Wait Time

◉ Disk I/O

◉ Network calls

◉ Locks

◉ Synchronization

38



Filtering Metrics

◉ Sampling views usually aggregate call stacks 
across threads

◉ Consider filtering on main bottleneck thread

◉ 2D control flow view from instrumented 
profilers helps a lot

39



A* Refresher

◉ Open set: nodes/square reachable but not 
explored

◉ Closed set: nodes/squares fully explored

◉ Pick best candidate in open set, add neighbours 
to open set, repeat until destination is reached

40



Inefficient Algorithms

41



Inefficient Algorithms

◉ Time spent in loops, recursive calls and 
<algorithm>

◉ Check the Big O

◉ Can computations be cached and reused?

42



Inefficient Data Structures

43



Inefficient Data Structures

◉ Time spent in find, insert or operator[]

◉ Easier to spot in bottom-up without inlining

◉ Know your data structures strengths and 
weaknesses

44



Spin Locks

◉ High spin time in profiler or equivalent tagged 
functions in instrumented profiles

◉ Look at the bigger picture and threading model

◉ Check out talks about concurrency 😉

45



Single Threaded Code

◉ Low core usage in timeline

◉ Consider parallel algorithms…

◉ … or a task scheduler

46



Micro-architecture Usage

◉ High CPI rate

◉ More and more important on modern CPUs

◉ Micro-optimization on large applications is 
tricky

◉ Keep for last
47



Blocking I/O

◉ High wait/system time in filesystem or 
network API

◉ Can it be put in an async task instead?

◉ See my 2020 CppCon Talk: Making Games 
Start Fast - A Story About Concurrency

48



Wait on Mutex or Semaphore

49



Wait on Mutex or Semaphore

◉ High wait time on synchronization functions

◉ Remember: “it shouldn’t be called mutex, it 
should be called bottleneck”

◉ Consider changing concurrency model

50



Profiling Analysis

◉ Profiler will show what sticks out

◉ Some filtering needs to be done by the 
developer to focus on the right part

◉ Deal with inefficient algorithms, data structures 
and locks first

51



Have you been listening closely?

Wrapping Up4

52



In conclusion

◉ Profilers help pinpointing performance 
bottlenecks

◉ Domain knowledge can speed up the analysis 
by a lot

◉ Add instrumentation support to your program

53



“

Furthermore, I think your build 
should be destroyed

54



“

Furthermore, I think your build 
should be destroyed

55



Any questions ?
You can reach me at

mro@puchiko.net

@MatRopert

@mropert

https://mropert.github.io

Thanks!

56



https://career.paradoxplaza.com/

We’re Hiring

57

https://career.paradoxplaza.com/

