STRUCTURED CONCURRENCY

LUCIAN RADU TEODORESCU

@LucT30 lucteo.ro/pres/2022-accu-conc

a tale of two problems

complexity
concurrency

relevant timeline

first electronic digital
programmable computer

“software” word
informal software engineering
formal software engineering

- oo o
1940 1950 1960

""""" 1990 2000 2010 2020

L}

4,
....
....
L 4

....
....
L 4

|
‘ Structured Programming

Go To Considered Harmful

Flow Diagrams, Turing Machines and Languages With only Two Formation Rules

I PLIET e Solution of a problem in concurrent programming control

I @LucT3o0

(e an v t+ cf ‘

@ docs.google.com/presentation/d/1rfdksmy?2

C++ development frustration: safety & security

Concurrency safety: Races, deadlocks, performance bottlenecks

Debugging issues in my code

Memory safety: Bounds safety issues (read/write beyond the bounds of an object or array)

R
Memory safety: Use-after-delete/free (dangling pointers, iterators, spans, ...)

Security issues: other security issues (secret disclosure, vulnerabilities, exploits, ...)

Memory safety: Forgot to delete/free (memory leaks)

Type safety: Using an object as the wrong type (unsafe downcasts, unsafe unions, ...)

0% 5% 10% 15% 20% 25% 30 %

this talk

lessons

problem

senders/receivers

I @LucT3o0

what to expect

general picture
the

LLLLLL

what to expect

introduction to senders/receivers
deep dive into details

@LucT3o0

Agenda

Structured Concurrency Structured
Programming with Tasks Concurrency

Concurrency Senders /

with Threads Receivers An Example

I @LucT3o0

Structured Programming

Flow Diagrams, Turing Machines
And Languages With Only Two

Formation Rules

Corrano Bouw axp GIUsSerPE JACOPINI
International Compuiation Centre and Istituto Nazionale
per le Applicaziont del Calcolo, Roma, Italy

In the first part of the poper, flow diagrams are introduced
to represent inter al. mappings of a set into itself. Although
not every diagram is decomposable into a finite number of
given base diagrams, this becomes tive at a semantical level
due to a suitable extension of the given set and of the basic
mappings defined in it. Two normalization methods of flow
diagrams are given. The first has three base diagrams; the
second, only two.

In the second part of the paper, the second method is ap-
plied to the theory of Turing machines. With every Turing
maching provided with a two-way half-tape, there is associ-
ated a similar machine, doing essentially the same job, but
working on o tape obtained from the first one by interspersing
alternate blank squares. The new machine belongs to the
family, elsewhere introduced, generated by composition and
iteration from the two machines A and E. That family is @
proper subfamily of the whole family of Turing machines.

1. Introduction and Summary

The set of block or flow diagrams is a two-dimensional
programming language, which was used at the beginning
of automatic computing and which now still enjoys a
certain favor. As far as is known, a systematic theory of
this language does not exist. At the most, there are some
papers by Peter (1], Gorn [2], Hermes [3], Ciampa [4],
Riguet [5), Tanov [6], Asser [7], where flow diagrams are
introduced with different purposes and defined in connec-
tion with the descriptions of algorithms or programs.

This paper was presented as an invited talk at the 1964 Inter-
national Colloquium on Algebraic Linguisties and Automats
Theory, Jerusalem, lsrael. Preparation of the manuseript was
supported by National Science Foundation Grant GI?-2880.

This work was carried out at the Istituto Nazionale per le
Applicazioni del Caleolo (INAC) in collaboration with the In-
ternational Computation Centre {ICC), under the Ttalian Con-
siglio Nazionale delle Ricerche (CNR) Research Group No. 22
for 1963-64.

366 Communications of the ACM

In this paper, flow diagrams are introduced by the
ostensive method; this is done to avoid definitions which
certainly would not be of much use. In the first part
(written by G. Jacopini), methods of normalization of
diagrams are studied, which allow them to be decomposed
into base diagrams of three types (first result) or of two
types (second result). In the second part of the paper (by
C. Béhm), some results of a previous paper are reported
[8] and the results of the first part of this paper are then
used to prove that every Turing machine is reducible into,
or in a determined sense is equivalent to, a program
written in a language which admits as formation rules
only composition and iteration.

2. Normalization of Flow Diagrams

It is a well-known fact that a flow daigram is suitable
for representing programs, computers, Turing machines,
ete. Diagrams are usually composed of boxes mutually
connected by oriented lines. The boxes are of functional

type {
tions
set, X
as thi
compl
ete. 1
2) wi
next (
not a
diagrg
(e, |
a diff|
parts
lated
denofl
natur

Z(d
Nol

the sg
diagrd

whost

Let
subdii
not ¢
should

Edgar Dijkstra: Go To Statement Considered Harmful

TN

Go To Statement Considered Harmful

Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

CR Categories: 4.22, 5.23, 5.24

EDITOR:

For a number of years I have been familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state-
ment should be abolished from all “higher level” programming
languages (i.e. everything except, perhaps, plain machine code).
At’that time [did not attach too much importance to this dis-
covery; I now submit my considerations for publication because
in very recent discussions in which the subject turned up, I have
been urged to do so.

My first remark is that, although the programmer’s activity
ends when he has constructed a correct program, the process
taking place under control of his program is the true subject
matter of his activity, for it is this process that has to accomplish
the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired specifications. Yet, once the program has
been made, the “making’’ of the corresponding process is dele-
gated to the machine

dynamic progress is only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don’t wish to ex-
clude them: on the one hand, repetition clauses can be imple-
mented quite comfortably with present day finite equipment; on
the other hand, the reasoning pattern known as “induction’
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With the inclusion of
the repetition clauses textual indices are no longer sufficient to
describe the dynamic progress of the process. With each entry into
a repetition clause, however, we can associate a so-called ‘‘dy-
namic index,”” inexorably counting the ordinal number of the
corresponding current repetition. As repetition clauses (just as
procedure calls) may be applied nestedly, we find that now the
progress of the process can always be uniquely characterized by a
(mixed) sequence of textual and/or dynamie indices.

The main point is that the values of these indices are outside
programmer’s control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether

he arteaheae ae nalt THhasr monesrda tndanandant ananundinatas sn mehink

APIC Studies in Data Processing No. 8

=] P § LS
FRLERETI

O.-J. Dahl, E. W. Dijkstra and C. A. R. Hoare

Academic Press
London New York San Francisco
A Subsidiary of Harcourt Brace Jovanovich, Publishers

what is Structured Programming?

1. abstractions as building blocks
2. recursive decomposition

3. local reasoning

4. single entry, single exit point
b.soundness and completeness

I @LucT3o0

abstractions as building blocks

@@@@@@@

Vancouver Edinburell
inburg N—
Oslo Helsinki
Glasgow
Calgary
Newcastle
Seattle " Edmonton sheffield Gothenburg
Liverpool
Portland Toronto Dublin NottiREEs Stockholm
Boston Manchester
San Francisco i Birmingham Copenhagen
London

Montreal New York

Sacramento

Minneapolis

Buffalo Amsterdam

The Hague
Detroit

Rotterdam

San José

Cleveland

Salt Lake City Brussels

Los Angeles Antwerp Bielefeld

Philadelphia

Las Vegas Laon Charleroi

Pittsburgh

Hamburg

Hanover

Berlin

San Diego Baltimore

Barivar St. Louis Orleans Paris Lille Rhine/Ruhr

Washington

Phoenix Cologne
Houston Dallas Atlanta Rouen Strasbourg Bonn
Ludwigshafen
Jacksonville Rennes Zurich Frankfurt
Monterrey Miami ~ Nantes Karlsruhe
T — Lausanne Munich
Guadalajara : Stuttgart '
Toulouse Montpelller Lyon Milan

Mexico City

Porto Bilbao Grenoble

Madrid =
= Barcelona

; Marseille
Santo Domingo

San Juan

Palma de Mallorca

Valencia

Seville Alicante

Lisbon Malaga

Valencia Caracas

‘-..l

o4 Algiers

Fortaleza

Alexandria
Salvador *

Maracaibo
" Rio de Janeiro i
Medellin Brasilia 4 k. Cairo
Lima ’,’ :
Valparaiso Goiania Belo Horizonte ’00 Under "
e Sao Paulo © % Construction .
antiago
$ Porto Alegre Lagos ’.’ .
L |
Montevideo R & M .
&

Buenos Aires :

| 3

|

|

|

|

»

|]

al

&
&

Sapporo
St. Petersburg

Sendai
Tokyo
Kawasaki
Gdansk Changchun
Moscow Yokohama
Poznan Nagoya
Shenyang Kyoto
Perm Yekaterinbur
Cracow Warsaw g Osaka
G ® Kazan Chelyabinsk Beijing Kahe
Hiroshima
[) Nizhniy Novgorod
. Tianjin (J Kitakyushu
Uf
. ® = Fukuoka
v . Omsk
() Pyongyan
Dnipropetrovs’k 'b s e
Nuremburg ~ Novosibirsk Xi'an Seoul
Vienna Naha
Linz Biiabal Samara Krasnoyarsk Incheon
Rih Volgograd Daejeon
Brescia Odessa i Dadlll
Pa——— Chen du XS
Bologna Bucharest Tbilisi g o Gwangiu
Istanbul Almaty Busan
Bursa Chongqing
Yerevan

Hangzhou | Taipei

Baku Guangzhou (]

P Kaohsiung
Tashkent
Chaing Mai
ANETEL T Ho chi Minh e ol
Jerusalem Esfahan Mashhad Bangkok |
Shiraz Kuala Lumpur
Baghdad 4
. \ 4 + Manila
Singapore *
[) Bangalore |
= Jakarta
Mumbai Chennai
Melbourne Sydney Auckland

Seattle ,

&,
LI

Portland

San Francisco

Sacramento

San José

Los Angeles

San Diego

Phoenix

Monterrey

Guadalajara

Toronto

Chicago
Minneapolis
Detroit

Salt Lake City

Las Vegas

Denver St. Louis

Dallas

Houston

Mexico City

- Santo Domingo

San Juan

Valencia Caracas

Pittsburgh

Ottawa

Cleveland

Jacksonville

Miami

Montreal

Washington

Atlanta

Dublin §

Boston

New York

Buffalo

Newark

Philadelphia

Baltimore

Tou ouse

Seville Alicante

abstra

Barcelona
Palma de Mallorca

| Lisbon Malaga Valencia Tunis

Chaffiald
nerriewla

Cracow

Moscow

Warsaw

Perm

K
Raall Chelyabinsk

Liverpool G
Nottingh dansk
o oL Stockholm
Manchester ¢ Poznan
Birmingham Copenhagen _—
i~ London S
@, The Hague Amsterdam E‘:Hanover
Rotterdam % |
% Brussels
Antwerp " Blelefeld q

Grenoble

Marseille

yon

= Cairo

Alexandria

Prague

Minsk

Kiev

Laon Cha;Leroi Berlin |
Orleans Paris Lille Rhine/Ruhr
Cologne
Rouen Strasbourg Bonn
» Renhes Ludwigshafen Brarkfin
1' @ I I Munich

Milan

Brescia

Bologna

Nuremburg

Linz

Dnlpropetrovs k

kee

Budapest

@I r

Belgra

[) Nizhniy Novgorod

Yerevan

Baku

Tashkent

Chaing Mai

Yekaterinburg

Ho Chi Minh

Kawasaki

Changchun
Yokohama
Nagoya
Shenyang Kyoto
Osaka
Beijing Kobe
Hiroshima
Tianjin (J Kitakyushu
Fukuoka
() Pyongyang
Seoul
Naha

Incheon
Daejeon
Daegu

Gwangju

Busan

example: variable

keep: type, single value
drop: the current value

(al[il] 10)

print(ti)

I @LucT3o0

example: function

keep: signature, entry/exit semantics, main idea
drop: implementation details

I @LucT3o0

example: function

keep: signature, entry/exit semantics, main idea
drop: implementation details

name: summarisation of semantics

I @LucT3o0

P ."ZS"‘; ,.‘.\::'.;' UL U 3
| AL
l"nu.hl!g

f v.l- "I‘;' .' b

R\
i
it

.

" .
IN
Wy
Y

B

.
Y

’
'L

-

\)
i
Hh . o

abstraction helps our mind

focus on essential

INn Structured Programming

functions
data structures

LLLLLL

recursive decomposition

divide et impera

LLLLLL

building programs

recursively decompose programs into parts
make one decision at a time (local context)
later decisions don't influence prev. decisions

successive refinement

@LucT3o0

example

print the first 1000 prime numbers

@LucT3o0

step O

main() {
print_first 1000 _prime_numbers()
0,

I @LucT3o0

step |

auto print_first 1000 prime_numbers() -= void {
// TODO: define array p of 1000 elements

// TODO: fill array p with first 1000 prime numbers
// TODO: print array p

I @LucT3o0

step 2 (refinement)

print_first_1000_prime_numbers() {
p[1000]
f1ll with_first 1000 prime_numbers(p)
print_array(p)

I @LucT3o0

step 3

f1ill with_first 1000 _prime_numbers(p)
num_primes 0,
val 1

(num_primes < 1000) {
// TODO: increase val until next prime number
pLnum_primes++] = val

I @LucT3o0

step 4

f1ill with _first 1000 prime_numbers(o,
num_primes 0,
val 1
(num_primes < 1000) {
{
val
} (!1s_prime(val, p, num_primes))

pLnum_primes++] = val

I @LucT3o0

step 5 (revision)

fill with _first 1000 _prime_numbers(D) {
p[O] = 2
num_primes 1
val 1
(num_primes < 1000) {
{
val 2
} (!1s_prime(val, p, num_primes))

pLnum_primes++] = val

I @LucT3o0

step 6

auto is_prime(int val, int* p, int num_primes) -> bool {
// TODO: for all previously found primes, starting with 3, up until sqrt(val)
// ... check if there is a divisor of val

I @LucT3o0

step 7 (refinement)

i1s_prime(val, D, num_primes) {
val_1s_prime
(i1 =1; 1 < num_primes pLi] p[i] val val_is _prime; i1++) {
val_1s_prime is_divisor(p[i], val)
}

val_1s_prime

I @LucT3o0

step 8

s _divisor(div, val) {
(val div) 0,

I @LucT3o0

step 9

print_array(p) {
(L 0; 1 1000; 1++)
printf("sd\n", p[i])

I @LucT3o0

local reasoning

nested scopes
encapsulation of local concerns

@LucT3o0

small example

(1=0; 1<10; i++) {

X L
{
(1=0; 1<10; 1++) {
Y L
printf("%sd/%sd\n", X, y)
}
}

focus

one thing at a time

@LucT3o0

I @LucT3o0

4. single entry, single exit point

GOTO excluded

redSONsS

easy
linear reasoning
code & execution have the same flow

@LucT3o0

I @LucT3o0

same shape

Instruction
function call
block of code
alternatives

loops

I @LucT3o0

exitin C++

return a value
throw an exception
abort (internal or external)

sum(Matrix a, Matrix b) Matrix

Matrix a
Matrix b
Matrix c sum(a, b)

soundness and completeness

can Structured Programming be applied?

LLLLLL

soundness

applying SP should lead to correct programs

@LucT3o0

completeness

applying SP for all programs

BOhm-Jacopini theorem

P AN A

'y
i\ .'f?:{{{i% -

abel Vid X
4 & b

@LucT3o0

Flow Diagrams, Turing Machines

And Languages With Only Two

Formation Rules

Corrano Boum axp GIUSEPPE JACOPINI
Inlernalional Compulation Centre and Istituto Nazionale
per le Applicaziont del Calcolo, Roma, Italy

In the first part of the paper, flow diagrams are introduced
to represent infer ol. mappings of o set into itself. Although
not every diagram is decomposable into a finite number of
given base diagrams, this becomes tive at a semantical level
due to a svitable extension of the given set and of the basic
mappings defined in it. Two normalization methods of flow
diagrams are given. The first has three base diagrams; the
second, only two,

In the second part of the paper, the second method is ap-
plied to the theory of Turing machines. With every Turing
maching provided with a two-way half-tape, there is associ-
ated a similar machine, doing essentially the same job, but
working on o tape obtcined from the first one by interspersing
alternate blank squares. The new machine belongs to the
family, elsewhere introduced, generated by composition and
iteration from the two machines A\ and E. That family is o
proper subfamily of the whole family of Turing machines.

In this paper, flow diagrams are introduced by the
ostensive method; this is done to avoid definitions which
certainly would not be of much use. In the first part
(written by G. Jacopini), methods of normalization of
diagrams are studied, which allow them to be decomposed
into base diagrams of three types (first result) or of two
types (second result). In the second part of the paper (by
C. Béhm), some results of a previous paper are reported
[8] and the results of the first part of this paper are then
used to prove that every Turing machine is reducible into,
or in a determined sense is equivalent to, a program
written in a language which admits as formation rules
only composition and iteration.

2. Normalization of Flow Diagrams

It is a well-known fact that a flow daigram 1s suitable
for representing programs, computers, Turing machines,
ete. Diagrams are usually composed of boxes mutually
connected by oriented lines. The boxes are of functional
type (see I'igure 1) when they represent elementary opera-
tions to be carried out on an unspecified object z of a
sel, X, the former of which may be imagined concretely
as the set of the digits contained in the memory of a
computer, the tape configuration of a Turing machine,
ete. There are other boxes of predicative type (see Iigure
2) which do not operate on an object but decide on the
next operation to be carried out, according to whether or
not a certain property of z € X occurs. Examples of

Structured Programming

1. abstractions as building blocks
2. recursive decomposition

3. local reasoning

4. single entry, single exit point
b.soundness and completeness

I @LucT3o0

Concurrency with Threads

primitives

threads
locks (mutexes, semaphores, etc.)

@LucT3o0

abstractions as building blocks

threads and locks are not good abstractions

LLLLLL

recursive decomposition

INto what

LLLLLL

local reasoning

threads and locks have non-local effects
(by design)

@LucT3o0

single entry, single exit point

N/A

@@@@@@@

soundness and completeness

complete but not sound

LLLLLL

unsounc

Nno general strategy

C++ development frustration: safety & security

Concurrency safety: Races, deadlocks, performance bottlenecks
Debugging issues in my code

Memory safety: Bounds safety issues (read/write beyond the bounds of an object or array)

RS
I @LucT3o0 Memory safety: Use-after-delete/free (dangling pointers, iterators, spans, ...)

structured?

NoO
NoO
NoO

(
O

e J

N
0,
Q)
(-
0,

@,
O

O
O

%
D,
O
O

@),

(.

O
9

@,
9,

\ .

0,
0,

9,

/>

ss and completeness

O

@LucT3o0

Concurrency with Tasks

primitives

tasks
(independent units of work)

@LucT3o0

two models

raw tasks with continuations

- -I

I @LucT3o0

two models

raw tasks with continuations

-

I @LucT3o0

two models

raw tasks with continuations

can represent

just like functions
larger concurrent parts

@LucT3o0

raw tasks — structuread?

1%
abstractions as building blocks yes
recursive decomposition no
local reasoning yes
single entry, single exit point gle
soundness and completeness yes

I @LucT3o0

tasks w/ cont. — structured?

1%
abstractions as building blocks yes
recursive decomposition yes
local reasoning gle
single entry, single exit point />
soundness and completeness yes

I @LucT3o0

Senders/Receivers

P2300 — std: :execution

C++ proposal
did not make it to C++23

LLLLLL

P2300 — std: :execution

concepts
initial set of algorithms
utilities

LLLLLL

handle to a compute resource

ex:
- thread pool
- GPU threads

schedule describes a computation
sends notification when done

user facing

library internal

connect

async notification handler

implementation details
for a computation

I @LucT3o0

senders describe computations

any chunk of work,
with one entry and one exit point

computations

a task

computations

tasks over multiple threads

o "

S—

computations

group of computations

i

computations

the entire application

— -

computations

a task
tasks over multiple threads
group of computations
the entire application

@LucT3o0

example

example

workl()

work2()

work3() std::string

combine_res(1, d, std::string& s)

compute_in_parallel() {

static_thread_pool pool{8}

ex::scheduler sched pool.get_scheduler()

ex: :sender work

ex::when all

ex::schedule(sched ex: :then(workl),
ex::schedule(sched ex: :then(work2),
ex::schedule(sched ex: :then(work3

[1, d, S] std: :this_thread: :sync wailt(std: :move(work)).value()
combine res(i1, d, s)

}

I @LucT3o0

senders’s completion

promises to call on completion, one of:
- set_value(dest, values..)
- set _error(dest, error)
- set _stopped(dest)

I @LucT3o0

recelver

something that is called with one of:
- set_value(recv, values..)
- set_error(recv, error)
- set_stopped(recv)

@LucT3o0

A _~ A -~ A -~ A _~ A)i adliOll Sldl A -~ A -~ A -~ A h A .
" Y WY Y Y Y Y YV VO YV YV VUG %Y UV YV VY YT YT YTTOYYTY Y s

start

H H £ H
y, °2ct_VvVdtiuc -
YW 4

ANV VAV NN\~

)
’
’
:
’
:
’
’
’
:
’

@LucT3o0

operation state object

alive during the whole duration

LLLLLL

I @LucT3o0

operdation state creation

ANV AN AN AN NN NN ANACNANANANAN<«

ANANANANANASCNAENASANASCSNANSCSNAEANANASNSA

I @LucT3o0

operdation state creation

ANV AN AN AN NN NN ANACNANANANAN<«

ANANANANANASCNAENASANASCSNANSCSNAEANANASNSA

I @LucT3o0

operdation state creation

ANV AN AN AN NN NN ANACNANANANAN<«

ANANANANANASCNAENASANASCSNANSCSNAEANANASNSA

starting operation

A

| VATVATAY

@ vV 3

D A A A 4
VYV V. V.V VY

A” A7 A
PAFVAFAY v_ ,

¢

[Py
——

VvV V. VY

A7V A A
A7 A7 A7 A7 A7 A7 A7 A A ar ara’. |
| VAFVAFAY v_ ,

)

YV VvV VvV V.V Vv

[——Y
——

VvV V. VY

A A

V.V V.V VY

starting operation

starting operation

starting operation

starting operation

I @LucT3o0

start

ANANANEANENENSCNSENSCSNSENENAEANEANAEAANY

starting operation

starting operation

Tela

ing operat

Start

start

@LucT3o0

starting operation

A

| VATVATAY

@ vV 3

D A A A 4
VYV V. V.V VY

A” A7 A
PAFVAFAY v_ ,

¢

[Py
——

VvV V. VY

A7V A A
A7 A7 A7 A7 A7 A7 A7 A A ar ara’. |
| VAFVAFAY v_ ,

)

YV VvV VvV V.V Vv

[——Y
——

VvV V. VY

A A

V.V V.V VY

done
O VYV VOV VU9V VVV VYV VYV VY YV Y yTY YT VY

LA LNLNL L L L "L "L L L L L "4 44
L ELC AN ANALNANACNLANLCNLCR LN
PVAVAFVAY

A7 A |
FAFATAY

A7 A
P T T T e aTaTATN D
FAZATAY

AV AV

focus of the talk

senders describe computations

functions computations

same thread entry thread = exit thread

computations

generalisation of functions

LLLLLL

computations are for concurrency
what functions are for Structured Programming

I @LucT3o0

Structured Concurrency

functions computations

Structured Programming Structured Concurrency

LLLLLL

senhders

functions

Structured Programming Structured Concurrency

I @LucT3o0

some theoretical results

P2504R0
Computations as a global solution to http://wg21.link/P2504

concurrency
Published Proposal, 2021-12-11

Author:
Lucian Radu Teodorescu

Source:
GitHub

Issue Tracking:
GitHub

Project:
ISO/IEC JTC1/SC22/WG21 14882: Programming Language — C++

Audience:
SG1, LEWG

1. Introduction

global solution to concurrency.

I This paper aims at providing proof that the senders/receivers model proposed by [P2300R2] can constitute a
@LucT3o0

some theoretical results (1)

all programs can be described in terms of senders

(w/o the need of synchronisation primitives)

I @LucT3o0

@LucT3o0

some theoretical results (2)

any part of a program,
that has one entry point and one exit point,

can be described as a sender

some theoretical results (3)

the entire program can be described as one sender

some theoretical results (4)

any sufficiently large concurrent chunk of work can be
decomposed into smaller chunks of work, which can be
described with senders

I @LucT3o0

some theoretical results (5)

programs can be implemented using senders using maximum
efficiency (under certain assumptions)

@LucT3o0

computations
fully encapsulate concurrency concerns

computations are for concurrency
what functions are for Structured Programming

I @LucT3o0

Structured Concurrency

1. abstractions as building blocks
2. recursive decomposition

3. local reasoning

4. single entry, single exit point
b.soundness and completeness

I @LucT3o0

abstractions as building blocks

@@@@@@@

use computations (senders)

similar to using functions

recursive decomposition

divide et impera

LLLLLL

computations can be broken down
Into smaller computations

senders, from top to bottom

LLLLLL

local reasoning

nested scopes
encapsulation of local concerns

@LucT3o0

NoO spooky action at a distance

all the concerns are handled locally
iInputs and outputs are clearly defined
senders nests

@LucT3o0

4. single entry, single exit point

by definition

Input:
- start(op_state)

output is one of:
- set_value(recv, values..)
- set_error(recv, error)
- set_stopped(recv)

@LucT3o0

discouraged: fire-and-forget

computations — same shape

composability of concurrent work

LLLLLL

soundness and completeness

can Structured Concurrency be applied?

LLLLLL

soundness

all programs can safely be built with senders
(without the need of sync. primitives)

@LucT3o0

completeness

all programs can be described by senders

I @LucT3o0

Structured Concurrency

o =

1. abstractions as building blocks
2. recursive decomposition

3. local reasoning

4. single entry, single exit point

5. soundness and completeness

I @LucT3o0

An Example

application

HTTP server

O)
=
",
%
O,
O
O
O
0,
@),
O
S

@LucT3o0

goals

senders as building blocks
recursive decomposition with senders
local reasoning
single entry and single exit point (*)

@LucT3o0

secondary goals

Interaction with coroutines
type erasure for senders

@LucT3o0

Of

-LT

e

=]

@LucT30 https://github.com/lucteo/structured _concurrency_example

the entire app Is a sender

main() {
[r] std: :this_thread::sync_wait(get_main_sender()).value()

r >

I @LucT3o0

the entire app Is a sender

get _main_sender() {
ex::just ex::then([] {

0

top-level logic

get _main_sender() {
ex::just ex::then([] {
port 3080
static_thread _pool pool{8}

10::10 context ctx
set _sig_handler(ctx, SIGTERM)

ex::sender snd = ex::on(ctx.get _scheduler(), listener(port, ctx, pool)
ex::start_detached(std: :move(snd)

ctx.run()
0

I @LucT3o0

Listener

Listener(port, 10::10_context& ctx, static_thread _pool& pool) task
/] ...

I @LucT3o0

Listener

Listener(port, 1o0::10_context& ctx, static_thread_pool& pool) task

10::Llistening_socket listen_sock

Listen_sock.bind(port)
Listen_sock. Listen()

(!ctx.i1s_stopped()) {
10: :connection conn co_awalt 1o::async_accept(ctx, listen_sock)

conn_data data{std::move(conn), ctx, pool}

ex: :sender snd
ex::just

ex::let value([data std: :move(data)]() { // I Q
handle connection(data)
5

ex::start _detached(std: :move(snd)

I @LucT3o0

async_accept ->asender

async_accept(ito_contextd ctx, Listening_socket& sock)
detail::async_accept _sender {

{&ctx, sock.fd()}
) \

I @LucT3o0

handle connection

handle connection(conn_data& cdata) {
read_http_request(cdata.t1o ctx , cdata.conn_)
ex::transfer(cdata.pool_.get_scheduler()
ex::let _value([&cdatal(http_server::http_request req) {
handle_request(cdata, std::move(req))

}
ex::let error([](std::exception_ptr) { just 500 response(); }
ex::let_stopped([]() { just 500 response(); }

ex::let _value([&cdatal(http_server::http_response r) {
write_http_response(cdata.1o ctx , cdata.conn_, std::move(r))
}

I @LucT3o0

just 500 response

just 500 response() {
resp = http_server::create_response(
http_server::status_code::s 500 _tinternal _server_error)
ex::just(std: :move(resp)

I @LucT3o0

read _http _request

read_http_request(io::t1o_context& ctx, 10: :connection& conn)
task<http_server::http_request> {
http_server::request_parser parser
std::string buf
buf.reserve(1024 1024)
ito::out_buffer out_buf{buf}
() A
std::s1ze_t n co_awalt t1o::async_read(ctx, conn, out_buf)
data = std::string_view{buf.data(), n}
r parser.parse_next_packet(data)

(r)

{std::move(r.value())}

async_read ->asender

async_read(i1o_contextd ctx, connection& ¢, out _buffer buf)
detail::async_read sender {

1&ctx, c.fd(), buf} \
}

I @LucT3o0

write http _request

write http _response(i1o::10_context& ctx, 10: :connection& conn,
http_server::http _response resp) task<std::size_t> {
std: :vector<std::string_view> out_buffers
http_server::to_buffers(resp, out _buffers)
std::size_t bytes written{0}
(buf out buffers) {
(!buf.empty()) {
N co_awalt to::async _write(ctx, conn, buf)
bytes _written n
buf buf.substr(n)

bytes _written

I @LucT3o0

async_write ->asender

async_write(i1to_contextd ctx, connection& ¢, std::string_view data)
detail::async_write_sender {

{&ctx, c.fd(), data}
) \

I @LucT3o0

handle_request

handle_request(conn_data& cdata, http_server::http_request req)
task<http_server::http_response> {
purt parse_urti(req.urt_)

(purti.path_ "/transform/blur")
handle_blur(cdata, std::move(req), purt)
(purti.path_ "/transform/adaptthresh")
handle_adaptthresh(cdata, std::move(req), purt)
(purti.path_ "/transform/reducecolors")
handle_reducecolors(cdata, std::move(req), purti)
(puri.path_ "/transform/cartoonify")
co_awalt handle_cartoonify(cdata, std::move(req), purti) <45----
(purti.path_ "/transform/oilpainting")
handle_otitlpainting(cdata, std::move(req), purti)
(purti.path_ "/transform/contourpaint”)

co_awalt handle_contourpaint(cdata, std::move(req), purt)
http_server::create_response(http_server::status_code::s 404 not found)

I @LucT3o0

handle_cartoontify(conn_data& cdata, http_server::http_request req, parsed_urt purti)
task<http_server::http _response> {

blur _size get_param_int(puri, "blur_size", 3)
num_colors get_param_int(purt, "num_colors", 5)
block size get_param_int(puri, "block_size", 5)
diff get_param_int(purti, "diff", 5)

Src to_cv(req.body_)

ex: :sender snd ex: :when_all
ex::transfer_just(cdata.pool .get _scheduler(), src
ex: :then([=](cv::Mat& src) {

gray = tr_to_grayscale(tr_blur(src, blur_size))
tr_adaptthresh(gray, block _size, diff)

} s
ex::transfer_just(cdata.pool .get _scheduler(), src
ex::then([=](cv::Maté& src) {
tr_reducecolors(src, num_colors)
}
ex: :then([](cv::Mat& edges, cv::Mat& reduced_colors) {

tr_apply_mask(reduced_colors, edges)

ex: :then(img_to_response
co _awalt std::move(snd)

I @LucT3o0

recursive decomposition

« get_main_sender
« listener
« Adsync_accept
- handle_connection
» read_http_request
e Async_read
« handle_request
- handle_cartoonify

« just_500_response

« write_http_response
e async_write

@LucT3o0

Conclusions

I @LucT3o0

(e an v t+ cf ‘

@ docs.google.com/presentation/d/1rfdksmy?2

C++ development frustration: safety & security

Concurrency safety: Races, deadlocks, performance bottlenecks

Debugging issues in my code

Memory safety: Bounds safety issues (read/write beyond the bounds of an object or array)

R
Memory safety: Use-after-delete/free (dangling pointers, iterators, spans, ...)

Security issues: other security issues (secret disclosure, vulnerabilities, exploits, ...)

Memory safety: Forgot to delete/free (memory leaks)

Type safety: Using an object as the wrong type (unsafe downcasts, unsafe unions, ...)

0% 5% 10% 15% 20% 25% 30 %

what we did

lessons

problem

key Insight

functions — Structured Programming

computations — Structured Concurrency

@LucT3o0

Structured Concurrency

1. abstractions as building blocks
2. recursive decomposition

3. local reasoning

4. single entry, single exit point
b.soundness and completeness

I @LucT3o0

Thank You

! @lucl 30

@ lucteo.ro

