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a tale of two problems

complexity
concurrency
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Flow Diagrams, Turing Machines and Languages With only Two Formation Rules
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C++ development frustration: safety & security

Concurrency safety: Races, deadlocks, performance bottlenecks

Debugging issues in my code

Memory safety: Bounds safety issues (read/write beyond the bounds of an object or array)

R
Memory safety: Use-after-delete/free (dangling pointers, iterators, spans, ...)

Security issues: other security issues (secret disclosure, vulnerabilities, exploits, ...)

Memory safety: Forgot to delete/free (memory leaks)

Type safety: Using an object as the wrong type (unsafe downcasts, unsafe unions, ...)

0% 5% 10% 15% 20% 25% 30 %



this talk

lessons

problem

senders/receivers
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what to expect

general picture
the
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what to expect

introduction to senders/receivers
deep dive into details
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Agenda

Structured Concurrency Structured
Programming with Tasks Concurrency

Concurrency Senders /

with Threads Receivers An Example
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Structured Programming




Flow Diagrams, Turing Machines
And Languages With Only Two

Formation Rules

Corrano Bouw axp GIUsSerPE JACOPINI
International Compuiation Centre and Istituto Nazionale
per le Applicaziont del Calcolo, Roma, Italy

In the first part of the poper, flow diagrams are introduced
to represent inter al. mappings of a set into itself. Although
not every diagram is decomposable into a finite number of
given base diagrams, this becomes tive at a semantical level
due to a suitable extension of the given set and of the basic
mappings defined in it. Two normalization methods of flow
diagrams are given. The first has three base diagrams; the
second, only two.

In the second part of the paper, the second method is ap-
plied to the theory of Turing machines. With every Turing
maching provided with a two-way half-tape, there is associ-
ated a similar machine, doing essentially the same job, but
working on o tape obtained from the first one by interspersing
alternate blank squares. The new machine belongs to the
family, elsewhere introduced, generated by composition and
iteration from the two machines A and E. That family is @
proper subfamily of the whole family of Turing machines.

1. Introduction and Summary

The set of block or flow diagrams is a two-dimensional
programming language, which was used at the beginning
of automatic computing and which now still enjoys a
certain favor. As far as is known, a systematic theory of
this language does not exist. At the most, there are some
papers by Peter (1], Gorn [2], Hermes [3], Ciampa [4],
Riguet [5), Tanov [6], Asser [7], where flow diagrams are
introduced with different purposes and defined in connec-
tion with the descriptions of algorithms or programs.

This paper was presented as an invited talk at the 1964 Inter-
national Colloquium on Algebraic Linguisties and Automats
Theory, Jerusalem, lsrael. Preparation of the manuseript was
supported by National Science Foundation Grant GI?-2880.

This work was carried out at the Istituto Nazionale per le
Applicazioni del Caleolo (INAC) in collaboration with the In-
ternational Computation Centre {ICC), under the Ttalian Con-
siglio Nazionale delle Ricerche (CNR) Research Group No. 22
for 1963-64.
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In this paper, flow diagrams are introduced by the
ostensive method; this is done to avoid definitions which
certainly would not be of much use. In the first part
(written by G. Jacopini), methods of normalization of
diagrams are studied, which allow them to be decomposed
into base diagrams of three types (first result) or of two
types (second result). In the second part of the paper (by
C. Béhm), some results of a previous paper are reported
[8] and the results of the first part of this paper are then
used to prove that every Turing machine is reducible into,
or in a determined sense is equivalent to, a program
written in a language which admits as formation rules
only composition and iteration.

2. Normalization of Flow Diagrams

It is a well-known fact that a flow daigram is suitable
for representing programs, computers, Turing machines,
ete. Diagrams are usually composed of boxes mutually
connected by oriented lines. The boxes are of functional
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Go To Statement Considered Harmful

Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

CR Categories: 4.22, 5.23, 5.24

EDITOR:

For a number of years I have been familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and I became convinced that the go to state-
ment should be abolished from all “higher level” programming
languages (i.e. everything except, perhaps, plain machine code).
At’that time [ did not attach too much importance to this dis-
covery; I now submit my considerations for publication because
in very recent discussions in which the subject turned up, I have
been urged to do so.

My first remark is that, although the programmer’s activity
ends when he has constructed a correct program, the process
taking place under control of his program is the true subject
matter of his activity, for it is this process that has to accomplish
the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired specifications. Yet, once the program has
been made, the “making’’ of the corresponding process is dele-
gated to the machine

dynamic progress is only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don’t wish to ex-
clude them: on the one hand, repetition clauses can be imple-
mented quite comfortably with present day finite equipment; on
the other hand, the reasoning pattern known as “induction’
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With the inclusion of
the repetition clauses textual indices are no longer sufficient to
describe the dynamic progress of the process. With each entry into
a repetition clause, however, we can associate a so-called ‘‘dy-
namic index,”” inexorably counting the ordinal number of the
corresponding current repetition. As repetition clauses (just as
procedure calls) may be applied nestedly, we find that now the
progress of the process can always be uniquely characterized by a
(mixed) sequence of textual and/or dynamie indices.

The main point is that the values of these indices are outside
programmer’s control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether
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what is Structured Programming?

1. abstractions as building blocks
2. recursive decomposition

3. local reasoning

4. single entry, single exit point
b.soundness and completeness
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abstractions as building blocks
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example: variable

keep: type, single value
drop: the current value

( al[il] 10 )

print(ti)
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example: function

keep: signature, entry/exit semantics, main idea
drop: implementation details
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example: function

keep: signature, entry/exit semantics, main idea
drop: implementation details

name: summarisation of semantics
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abstraction helps our mind

focus on essential




INn Structured Programming

functions
data structures
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recursive decomposition

divide et impera

LLLLLL



building programs

recursively decompose programs into parts
make one decision at a time (local context)
later decisions don't influence prev. decisions

successive refinement

@LucT3o0



example

print the first 1000 prime numbers
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step O

main( ) {
print_first 1000 _prime_numbers( )
0,
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step |

auto print_first 1000 prime_numbers() -= void {
// TODO: define array p of 1000 elements

// TODO: fill array p with first 1000 prime numbers
// TODO: print array p

I @LucT3o0



step 2 (refinement)

print_first_1000_prime_numbers( ) {
p[1000 ]
f1ll with_first 1000 prime_numbers(p)
print_array(p)

I @LucT3o0



step 3

f1ill with_first 1000 _prime_numbers( p)
num_primes 0,
val 1

(num_primes < 1000) {
// TODO: increase val until next prime number
pLnum_primes++] = val

I @LucT3o0



step 4

f1ill with _first 1000 prime_numbers( o,
num_primes 0,
val 1
(num_primes < 1000) {
{
val
} (!1s_prime(val, p, num_primes))

pLnum_primes++] = val

I @LucT3o0



step 5 (revision)

fill with _first 1000 _prime_numbers( D) {
p[O] = 2
num_primes 1
val 1
(num_primes < 1000) {
{
val 2
} (!1s_prime(val, p, num_primes))

pLnum_primes++] = val

I @LucT3o0



step 6

auto is_prime(int val, int* p, int num_primes) -> bool {
// TODO: for all previously found primes, starting with 3, up until sqrt(val)
// ... check if there is a divisor of val

I @LucT3o0



step 7 (refinement)

i1s_prime( val, D, num_primes) {
val_1s_prime
( i1 =1; 1 < num_primes pLi] p[i] val val_is _prime; i1++) {
val_1s_prime is_divisor(p[i], val)
}

val_1s_prime

I @LucT3o0



step 8

s _divisor( div, val) {
(val div) 0,
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step 9

print_array( p) {
( L 0; 1 1000; 1++)
printf("sd\n", p[i])

I @LucT3o0






local reasoning

nested scopes
encapsulation of local concerns
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small example

( 1=0; 1<10; i++) {

X L
{
( 1=0; 1<10; 1++) {
Y L
printf("%sd/%sd\n", X, y)
}
}




focus

one thing at a time
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4. single entry, single exit point




GOTO excluded




redSONsS

easy
linear reasoning
code & execution have the same flow
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same shape

Instruction
function call
block of code
alternatives

loops
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exitin C++

return a value
throw an exception
abort (internal or external)

sum(Matrix a, Matrix b) Matrix

Matrix a
Matrix b
Matrix c sum(a, b)



soundness and completeness

can Structured Programming be applied?
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soundness

applying SP should lead to correct programs
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completeness

applying SP for all programs




BOhm-Jacopini theorem
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Flow Diagrams, Turing Machines

And Languages With Only Two

Formation Rules

Corrano Boum axp GIUSEPPE JACOPINI
Inlernalional Compulation Centre and Istituto Nazionale
per le Applicaziont del Calcolo, Roma, Italy

In the first part of the paper, flow diagrams are introduced
to represent infer ol. mappings of o set into itself. Although
not every diagram is decomposable into a finite number of
given base diagrams, this becomes tive at a semantical level
due to a svitable extension of the given set and of the basic
mappings defined in it. Two normalization methods of flow
diagrams are given. The first has three base diagrams; the
second, only two,

In the second part of the paper, the second method is ap-
plied to the theory of Turing machines. With every Turing
maching provided with a two-way half-tape, there is associ-
ated a similar machine, doing essentially the same job, but
working on o tape obtcined from the first one by interspersing
alternate blank squares. The new machine belongs to the
family, elsewhere introduced, generated by composition and
iteration from the two machines A\ and E. That family is o
proper subfamily of the whole family of Turing machines.

In this paper, flow diagrams are introduced by the
ostensive method; this is done to avoid definitions which
certainly would not be of much use. In the first part
(written by G. Jacopini), methods of normalization of
diagrams are studied, which allow them to be decomposed
into base diagrams of three types (first result) or of two
types (second result). In the second part of the paper (by
C. Béhm), some results of a previous paper are reported
[8] and the results of the first part of this paper are then
used to prove that every Turing machine is reducible into,
or in a determined sense is equivalent to, a program
written in a language which admits as formation rules
only composition and iteration.

2. Normalization of Flow Diagrams

It is a well-known fact that a flow daigram 1s suitable
for representing programs, computers, Turing machines,
ete. Diagrams are usually composed of boxes mutually
connected by oriented lines. The boxes are of functional
type (see I'igure 1) when they represent elementary opera-
tions to be carried out on an unspecified object z of a
sel, X, the former of which may be imagined concretely
as the set of the digits contained in the memory of a
computer, the tape configuration of a Turing machine,
ete. There are other boxes of predicative type (see Iigure
2) which do not operate on an object but decide on the
next operation to be carried out, according to whether or
not a certain property of z € X occurs. Examples of




Structured Programming

1. abstractions as building blocks
2. recursive decomposition

3. local reasoning

4. single entry, single exit point
b.soundness and completeness
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Concurrency with Threads




primitives

threads
locks (mutexes, semaphores, etc.)
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abstractions as building blocks

threads and locks are not good abstractions
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recursive decomposition

INto what

LLLLLL



local reasoning

threads and locks have non-local effects
(by design)

@LucT3o0



single entry, single exit point

N/A
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soundness and completeness

complete but not sound
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unsounc

Nno general strategy

C++ development frustration: safety & security

Concurrency safety: Races, deadlocks, performance bottlenecks
Debugging issues in my code

Memory safety: Bounds safety issues (read/write beyond the bounds of an object or array)

RS
I @LucT3o0 Memory safety: Use-after-delete/free (dangling pointers, iterators, spans, ...)




structured?

NoO
NoO
NoO

(
O

e J

N
0,
Q)
(-
0,

@,
O

O
O

%
D,
O
O

@),

(.

O
9

@,
9,

\ .

0,
0,

9,

/>

ss and completeness

O

@LucT3o0



Concurrency with Tasks




primitives

tasks
(independent units of work)
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two models

raw tasks with continuations

- -I

I @LucT3o0



two models

raw tasks with continuations

-
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two models

raw tasks with continuations

can represent

just like functions
larger concurrent parts
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raw tasks — structuread?

1%
abstractions as building blocks yes
recursive decomposition no
local reasoning yes
single entry, single exit point gle
soundness and completeness yes
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tasks w/ cont. — structured?

1%
abstractions as building blocks yes
recursive decomposition yes
local reasoning gle
single entry, single exit point />
soundness and completeness yes
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Senders/Receivers




P2300 — std: :execution

C++ proposal
did not make it to C++23

LLLLLL



P2300 — std: :execution

concepts
initial set of algorithms
utilities

LLLLLL



handle to a compute resource

ex:
- thread pool
- GPU threads

schedule describes a computation
sends notification when done

user facing

library internal

connect

async notification handler

implementation details
for a computation

I @LucT3o0



senders describe computations

any chunk of work,
with one entry and one exit point




computations

a task




computations

tasks over multiple threads

o "

S—




computations

group of computations

i




computations

the entire application

— -




computations

a task
tasks over multiple threads
group of computations
the entire application
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example




example

workl()

work2( )

work3() std::string

combine_res( 1, d, std::string& s)

compute_in_parallel( ) {

static_thread_pool pool{8}

ex::scheduler sched pool.get_scheduler()

ex: :sender work

ex::when all

ex::schedule( sched ex: :then(workl),
ex::schedule(sched ex: :then(work2),
ex::schedule( sched ex: :then(work3

[1, d, S] std: :this_thread: :sync wailt(std: :move(work)).value()
combine res(i1, d, s)

}

I @LucT3o0






senders’s completion

promises to call on completion, one of:
- set_value(dest, values..)
- set _error(dest, error)
- set _stopped(dest)

I @LucT3o0



recelver

something that is called with one of:
- set_value(recv, values..)
- set_error(recv, error)
- set_stopped(recv)

@LucT3o0
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operation state object

alive during the whole duration
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operdation state creation

ANV AN AN AN NN NN ANACNANANANAN<«
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operdation state creation
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operdation state creation
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starting operation
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starting operation




starting operation




starting operation




starting operation
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start
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starting operation




starting operation




Tela

ing operat

Start

start
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starting operation
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focus of the talk

senders describe computations




functions computations

same thread entry thread = exit thread




computations

generalisation of functions

LLLLLL



computations are for concurrency
what functions are for Structured Programming
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Structured Concurrency




functions computations

Structured Programming Structured Concurrency

LLLLLL



senhders

functions

Structured Programming Structured Concurrency
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some theoretical results

P2504R0
Computations as a global solution to http://wg21.link/P2504

concurrency
Published Proposal, 2021-12-11

Author:
Lucian Radu Teodorescu

Source:
GitHub

Issue Tracking:
GitHub

Project:
ISO/IEC JTC1/SC22/WG21 14882: Programming Language — C++

Audience:
SG1, LEWG

1. Introduction

global solution to concurrency.

I This paper aims at providing proof that the senders/receivers model proposed by [P2300R2] can constitute a
@LucT3o0



some theoretical results (1)

all programs can be described in terms of senders

(w/o the need of synchronisation primitives)

I @LucT3o0
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some theoretical results (2)

any part of a program,
that has one entry point and one exit point,

can be described as a sender




some theoretical results (3)

the entire program can be described as one sender




some theoretical results (4)

any sufficiently large concurrent chunk of work can be
decomposed into smaller chunks of work, which can be
described with senders

I @LucT3o0



some theoretical results (5)

programs can be implemented using senders using maximum
efficiency (under certain assumptions)
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computations
fully encapsulate concurrency concerns




computations are for concurrency
what functions are for Structured Programming
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Structured Concurrency

1. abstractions as building blocks
2. recursive decomposition

3. local reasoning

4. single entry, single exit point
b.soundness and completeness
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abstractions as building blocks
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use computations (senders)

similar to using functions




recursive decomposition

divide et impera
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computations can be broken down
Into smaller computations

senders, from top to bottom
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local reasoning

nested scopes
encapsulation of local concerns
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NoO spooky action at a distance

all the concerns are handled locally
iInputs and outputs are clearly defined
senders nests
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4. single entry, single exit point




by definition

Input:
- start(op_state)

output is one of:
- set_value(recv, values..)
- set_error(recv, error)
- set_stopped(recv)
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discouraged: fire-and-forget




computations — same shape

composability of concurrent work
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soundness and completeness

can Structured Concurrency be applied?
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soundness

all programs can safely be built with senders
(without the need of sync. primitives)
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completeness

all programs can be described by senders
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Structured Concurrency

o =

1. abstractions as building blocks
2. recursive decomposition

3. local reasoning

4. single entry, single exit point

5. soundness and completeness
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An Example




application

HTTP server
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goals

senders as building blocks
recursive decomposition with senders
local reasoning
single entry and single exit point (*)
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secondary goals

Interaction with coroutines
type erasure for senders
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@LucT30 https://github.com/lucteo/structured _concurrency_example




the entire app Is a sender

main( ) {
[ r] std: :this_thread::sync_wait(get_main_sender()).value()

r >
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the entire app Is a sender

get _main_sender() {
ex::just ex::then([] {

0




top-level logic

get _main_sender() {
ex::just ex::then([] {
port 3080
static_thread _pool pool{8}

10::10 context ctx
set _sig_handler(ctx, SIGTERM)

ex::sender snd = ex::on(ctx.get _scheduler(), listener(port, ctx, pool)
ex::start_detached(std: :move(snd)

ctx.run()
0
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Listener

Listener( port, 10::10_context& ctx, static_thread _pool& pool) task
/] ...
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Listener

Listener( port, 1o0::10_context& ctx, static_thread_pool& pool) task

10::Llistening_socket listen_sock

Listen_sock.bind(port)
Listen_sock. Listen()

(!ctx.i1s_stopped()) {
10: :connection conn co_awalt 1o::async_accept(ctx, listen_sock)

conn_data data{std::move(conn), ctx, pool}

ex: :sender snd
ex::just

ex::let value([data std: :move(data)]() { // I Q
handle connection(data)
5

ex::start _detached(std: :move(snd)
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async_accept ->asender

async_accept(ito_contextd ctx, Listening_socket& sock)
detail::async_accept _sender {

{&ctx, sock.fd()}
) \
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handle connection

handle connection( conn_data& cdata) {
read_http_request(cdata.t1o ctx , cdata.conn_)
ex::transfer(cdata.pool_.get_scheduler()
ex::let _value([&cdatal(http_server::http_request req) {
handle_request(cdata, std::move(req))

}
ex::let error([](std::exception_ptr) { just 500 response(); }
ex::let_stopped([]() { just 500 response(); }

ex::let _value([&cdatal(http_server::http_response r) {
write_http_response(cdata.1o ctx , cdata.conn_, std::move(r))
}
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just 500 response

just 500 response() {
resp = http_server::create_response(
http_server::status_code::s 500 _tinternal _server_error)
ex::just(std: :move(resp)
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read _http _request

read_http_request(io::t1o_context& ctx, 10: :connection& conn)
task<http_server::http_request> {
http_server::request_parser parser
std::string buf
buf.reserve(1024 1024 )
ito::out_buffer out_buf{buf}
( ) A
std::s1ze_t n co_awalt t1o::async_read(ctx, conn, out_buf)
data = std::string_view{buf.data(), n}
r parser.parse_next_packet(data)

(r)

{std::move(r.value())}




async_read ->asender

async_read(i1o_contextd ctx, connection& ¢, out _buffer buf)
detail::async_read sender {

1&ctx, c.fd(), buf} \
}
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write http _request

write http _response(i1o::10_context& ctx, 10: :connection& conn,
http_server::http _response resp) task<std::size_t> {
std: :vector<std::string_view> out_buffers
http_server::to_buffers(resp, out _buffers)
std::size_t bytes written{0}
( buf out buffers) {
(!buf.empty()) {
N co_awalt to::async _write(ctx, conn, buf)
bytes _written n
buf buf.substr(n)

bytes _written
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async_write ->asender

async_write(i1to_contextd ctx, connection& ¢, std::string_view data)
detail::async_write_sender {

{&ctx, c.fd(), data}
) \
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handle_request

handle_request( conn_data& cdata, http_server::http_request req)
task<http_server::http_response> {
purt parse_urti(req.urt_)

(purti.path_ "/transform/blur")
handle_blur(cdata, std::move(req), purt)
(purti.path_ "/transform/adaptthresh")
handle_adaptthresh(cdata, std::move(req), purt)
(purti.path_ "/transform/reducecolors")
handle_reducecolors(cdata, std::move(req), purti)
(puri.path_ "/transform/cartoonify")
co_awalt handle_cartoonify(cdata, std::move(req), purti) <45----
(purti.path_ "/transform/oilpainting")
handle_otitlpainting(cdata, std::move(req), purti)
(purti.path_ "/transform/contourpaint”)

co_awalt handle_contourpaint(cdata, std::move(req), purt)
http_server::create_response(http_server::status_code::s 404 not found)
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handle_cartoontify( conn_data& cdata, http_server::http_request req, parsed_urt purti)
task<http_server::http _response> {

blur _size get_param_int(puri, "blur_size", 3)
num_colors get_param_int(purt, "num_colors", 5)
block size get_param_int(puri, "block_size", 5)
diff get_param_int(purti, "diff", 5)

Src to_cv(req.body_ )

ex: :sender snd ex: :when_all
ex::transfer_just(cdata.pool .get _scheduler(), src
ex: :then([=]( cv::Mat& src) {

gray = tr_to_grayscale(tr_blur(src, blur_size))
tr_adaptthresh(gray, block _size, diff)

} s
ex::transfer_just(cdata.pool .get _scheduler(), src
ex::then([=]( cv::Maté& src) {
tr_reducecolors(src, num_colors)
}
ex: :then([]( cv::Mat& edges, cv::Mat& reduced_colors) {

tr_apply_mask(reduced_colors, edges)

ex: :then(img_to_response
co _awalt std::move(snd)
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recursive decomposition

« get_main_sender
« listener
« Adsync_accept
- handle_connection
» read_http_request
e Async_read
« handle_request
- handle_cartoonify

« just_500_response

« write_http_response
e async_write
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Conclusions
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@ docs.google.com/presentation/d/1rfdksmy?2

C++ development frustration: safety & security

Concurrency safety: Races, deadlocks, performance bottlenecks

Debugging issues in my code

Memory safety: Bounds safety issues (read/write beyond the bounds of an object or array)

R
Memory safety: Use-after-delete/free (dangling pointers, iterators, spans, ...)

Security issues: other security issues (secret disclosure, vulnerabilities, exploits, ...)

Memory safety: Forgot to delete/free (memory leaks)

Type safety: Using an object as the wrong type (unsafe downcasts, unsafe unions, ...)

0% 5% 10% 15% 20% 25% 30 %



what we did

lessons

problem




key Insight

functions —  Structured Programming

computations —  Structured Concurrency
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Structured Concurrency

1. abstractions as building blocks
2. recursive decomposition

3. local reasoning

4. single entry, single exit point
b.soundness and completeness
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Thank You
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