
Testing as an Equal
1st class citizen
(to coding)

ACCU 6th April 2022

Jon Jagger
Director of Software
jon@merkely.com

equal rights
for tests!

never believe any
assertion containing

the words never or
always

 blood glucose

mg/dL Time

The value of your blood glucose can go up as well as down.
Your health is at risk if you do not keep up a balanced diet.

 The Glucose Cycle

The Equilibrium Law

stable systems
tend to oppose

their own proper
function

dynamic thinking
static thinking

there is a necessary
trade off between
certainty at a given
time for continuity
through time

evolution is always
co-evolution

all change can be
understood as the
effort to maintain
some constancy,
and all constancy
as maintained
through change

…
activity
stability
activity
stability
activity
stability

…

homeostasis

mg/dL Time

noun
v

verb

100-proof

testing and coding
opposing each other in a

stable
co-evolving

system

and now for
something
completely
different?

four_simple_questions()

what is a function’s
coverage?Q1

eg, simple branch coverage

test_f2() f()

test_f1()

test_f3()

test_f2() f()

test_f1()

test_f3()

test_f2() f()

test_f1()

test_f3()
suppose this

statement
 is dead code

I see dead code!

lost $450m in a
few hours on

1st August 2012

test_f2() f()

test_f1()

test_f3()

what am I thinking now?

equal rights
for tests!

test_f2() f()

test_f1()

test_f3()

if you use a tool in the code,
consider using the tool in the test-code

what is the coverage of a test function?

test_f1() f()

often I do get full coverage

test_f1()

often I don’t get full coverage

test_f1()
asserter()

sometimes I get no coverage

test_f1()

test_f1()

full coverage is
important mostly
so I can see when I

don’t have it

unless I detect and
delete dead code
 I will accumulate

dead code

Q2 what is a function’s
complexity?

eg, the number of different paths

f() 3

f() 3
what am I thinking now?

equal rights
for tests!

test_f1() 5

f()test_f1()

can you see a problem?

f()test_f1() >

f()test_f1() <
specific

<<

what is a function’s
behaviour?Q3

eg, what does it print?

what am I thinking now?

what am I thinking now?

equal rights
for tests!

hands up…

if you’ve ever thought
a failing test
was passing

if you’ve ever thought
a passing test

was failing

hands up…

a test should do one thing
when it fails and

something completely different
when it passes

a difference
that makes
a difference

Gregory Bateson

when a test fails you want
helpful diagnostics printed

when a test passes you want
 ~nothing printed

NO

what is a function’s
name?Q4

naming a function
● member function?
● return value assignment?
● argument expressions?
● side effects?
● …
● …

what am I thinking now?

what am I thinking now?

equal rights
for tests!

equal rights means
equal opportunities,
not equal outcomes

naming a test function
is different because a

test function is different

● not called*
● no return type*
● no arguments*
● no side effects*
● …
● …
● …

too much context for
a single identifier?

where should
context live?

in a doc-string?

a uid for the name?

$ date +"%s%N" | sha256sum | awk '{print substr($1,1,6)}'
d878c5
$

pytest --ds ledger

conftest.py (top level)

t fixture?

t.id == “4dd3b712”

summary
● the equilibrium law
● thinking dynamically & thinking statically
● coding & testing co-evolving
● use tools/techniques on code and test-code?
● equal rights for tests!

have fun
be nice to each other

and the planet

