CONTRACTUAL DISAPPOINTMENT
INC++

JOHN MCFARLANE

About Me

About Me

John McFarlane

About Me

John McFarlane

Software Engineer, Jaguar Land Rover, Shannon, Co Clare, Ireland

About Me

John McFarlane

Software Engineer, Jaguar Land Rover, Shannon, Co Clare, Ireland

github.com/johnmcfarlane/accu-2022-examples

https://github.com/johnmcfarlane/accu-2022-examples/

About Me

John McFarlane

Software Engineer, Jaguar Land Rover, Shannon, Co Clare, Ireland

\

github.com/johnmcfarlane/accu-2022-examples

twitter.com/JSAMcFarlane

https://github.com/johnmcfarlane/accu-2022-examples/
https://twitter.com/JSAMcFarlane

About Me

John McFarlane

Software Engineer, Jaguar Land Rover, Shannon, Co Clare, Ireland

\

github.com/johnmcfarlane/accu-2022-examples

twitter.com/JSAMcFarlane

johnmcfarlane.github.io/accu-2022

https://github.com/johnmcfarlane/accu-2022-examples/
https://twitter.com/JSAMcFarlane
https://johnmcfarlane.github.io/accu-2022

Background

Background

Work:

Background

Work: games,

Background

Work: games, servers,

Background

Work: games, servers, automotive

Background
Work: games, servers, automotive

Fun:

Background
Work: games, servers, automotive

Fun: numerics,

Background
Work: games, servers, automotive

Fun: numerics, workflow,

Background
Work: games, servers, automotive

Fun: numerics, workflow, word games

Background
Work: games, servers, automotive

Fun: numerics, workflow, word games

C++:

Background
Work: games, servers, automotive
Fun: numerics, workflow, word games

C++: low latency,

Background
Work: games, servers, automotive
Fun: numerics, workflow, word games

C++: low latency, numerics,

Background
Work: games, servers, automotive
Fun: numerics, workflow, word games

C++: low latency, numerics, contracts

Definitions

Contracts

Contract Programming in C++(20)

Alisdair Meredith, CppCon 2018

A contract is an exchange of promises between a
client and a provider.

https://youtu.be/aAFRxRznVjQ

PO157RO0:

Disappointment

Handling Disappointment in C++

_awrence Crowl, 2015

When a function fails to do what we want, we are
disappointed. How do we report that
disappointment to callers? How do we handle that
disappointment in the caller?

https://wg21.link/p0157

Bugs and Errors

PO709R2: Zero-overhead deterministic exceptions: Throwing values

Herb Sutter, 2018

Programming bugs (e.g., out-of-bounds access, null
dereference) and abstract machine corruption (e.q.,
stack overflow) cause a corrupted state that cannot
be recovered from programmatically, and so they
should never be reported to the calling code as
errors that code could somehow handle.

https://wg21.link/p709r2

Contracts

Contracts

Contracts
Types

Contracts
Types

e C++ API Contracts

Contracts
Types

e C++ API Contracts
e C++ Standard

Contracts
Types

e C++ API Contracts
e C++ Standard
e End User Contract

Contracts
Types

e C++ APl Contracts
e C++ Standard

e End User Contract
e Test User Contract

Contracts
Types Attributes

e C++ APl Contracts
e C++ Standard

e End User Contract
e Test User Contract

Contracts
Types Attributes

e C++ APl Contracts e Agreement
e C++ Standard

e End User Contract

e Test User Contract

Contracts

Types Attributes
e C++ APl Contracts e Agreement
e C++ Standard e Client

e End User Contract
e Test User Contract

Contracts

Types Attributes
e C++ APl Contracts e Agreement
e C++ Standard e Client
e End User Contract e Provider

e Test User Contract

Contracts
Types Attributes

e C++ APl Contracts e Agreement
e C++ Standard e Client
e End User Contract e Provider

e Test User Contract e (Client) Violation

Contract Attributes

C++ APl standard end user testuser

agreement

client

provider

violation

Contract Attributes

C++ APl standard end user testuser
agreement docs ISO/IEC 14882 docs docs
client dev dev user dev
provider dev implementer dev implementer
violation bug bug error error

Contract Attributes

violation bug bug error error

Contract Attributes

test user

C

OCS

C

ev

implementer

error

Contract Attributes

C++ APl standard end user testuser
agreement docs ISO/IEC 14882 docs docs
client dev dev user dev
provider dev implementer dev implementer
violation bug bug error error

Contract Attributes

user

Fnd User Contract

End User Contract

End User Contract

e The exchange of promises between the user and developer of a
software product.

End User Contract

e The exchange of promises between the user and developer of a
software product.
e |[t's expected that the user may violate the contract.

End User Contract

e The exchange of promises between the user and developer of a
software product.

e |[t's expected that the user may violate the contract.
= All people make mistakes.

End User Contract

e The exchange of promises between the user and developer of a
software product.

e |[t's expected that the user may violate the contract.
= All people make mistakes.
= Some people are naughty!

End User Contract

e The exchange of promises between the user and developer of a
software product.

e |[t's expected that the user may violate the contract.
= All people make mistakes.
= Some people are naughty!

e Such violations are errors.

End User Contract

e The exchange of promises between the user and developer of a
software product.

e |[t's expected that the user may violate the contract.
= All people make mistakes.
= Some people are naughty!

e Such violations are errors.

e Errors should be handled by the program.

Errors

Errors

e are imperfections modelled within the system

Errors

e are imperfections modelled within the system
e arise from real-world unpredictability/unreliability

Errors

e are imperfections modelled within the system
e arise from real-world unpredictability/unreliability
e are caused by real-world phenomena (such as humans)

Errors

are imperfections modelled within the system

arise from real-world unpredictability/unreliability
are caused by real-world phenomena (such as humans)
Input is a major source of errors:

Errors

are imperfections modelled within the system

arise from real-world unpredictability/unreliability
are caused by real-world phenomena (such as humans)
Input is a major source of errors:

= command line, network traffic, files, input devices.

Errors

are imperfections modelled within the system

arise from real-world unpredictability/unreliability
are caused by real-world phenomena (such as humans)
Input is a major source of errors:

= command line, network traffic, files, input devices.
are introduced through interfaces with the real world, e.g.:

Errors

are imperfections modelled within the system

arise from real-world unpredictability/unreliability
are caused by real-world phenomena (such as humans)
Input is a major source of errors:

= command line, network traffic, files, input devices.
are introduced through interfaces with the real world, e.g.:
m std::filesystemandstd: :stringare Ul elements!

Errors

are imperfections modelled within the system

arise from real-world unpredictability/unreliability

are caused by real-world phenomena (such as humans)
Input is a major source of errors:

= command line, network traffic, files, input devices.

are introduced through interfaces with the real world, e.g.:
m std::filesystemandstd: :stringare Ul elements!

m std: :chrono models the real world and similarly 'messy..

xkcd.com/435

FIELDS arrAncED BY FPORITY
MORE PURE

SOCIOLOGY 15 PSYCHOLOGY 15 BIOLOGY 1S WHICH 1S JUsT
JUST APFLIED JusT APPLIED TUST APPLED APPRUED PHYSICS,
FﬁFtHﬂujG‘r’ Eaﬂu:rmf CHEMISTRY ITS NICE TO

BE ON TOF

BEEE

OH, HEY, T DIODNT
SEE YOU GUYS ALL
THE WAY OVER THERE.

t

SDUGLEGIETE P&?EHDLGGIETE Elﬁ.mﬁnﬁ‘rs EHEHlSTS PHYSICISTS

MATHEMATICIANS

errors errors errors errors errors

bugs

https://xkcd.com/435/

Errors are things that can go wrong
- even in perfect programs.

Examples of Errors

Examples of Errors

reSOource

Examples of Errors

reSOource

Examples of Errors

reSOource

Examples of Errors

reSOource

Examples of Errors

reSOource

Examples of Errors

resource ill-formed input

Examples of Errors

resource ill-formed input

e file too short

Examples of Errors

resource ill-formed input

e file too short
e file doesn't conform to format,

e.g. JSON

Examples of Errors

resource ill-formed input

e file too short
e file doesn't conform to format,

e.g. JSON
e parameter is out of range

Examples of Errors

resource ill-formed input

e filetoo short

e file doesn't conform to format,
e.g. JSON

e parameter is out of range

e unexpected device type

Examples of Errors

reSOource

ill-formed input

file too short

file doesn't conform to format,
e.g. JSON

parameter is out of range
unexpected device type
unexpected network packet size

Error Handling

Error Handling

e Recap: client violations of the End User Contract should be handled
by the program

Error Handling

e Recap: client violations of the End User Contract should be handled
by the program

e The user needs to know about them in order to decide what to do
next.

Error Handling

e Recap: client violations of the End User Contract should be handled
by the program

e The user needs to know about them in order to decide what to do
next.

e The software must inform the user to this end.

Error Handling

e Recap: client violations of the End User Contract should be handled
by the program
e The user needs to know about them in order to decide what to do

next.
e The software must inform the user to this end.
e Be considerate!

$1,000,000 Question

How does your program handle errors?

$1,000.000 Answer

It depends.

't depends on the program

't depends on the program

e |syour program batch or steady-state?

't depends on the program

e |syour program batch or steady-state?
e Does your program have realtime constraints?

't depends on the program

s your program batch or steady-state?
Does your program have realtime constraints?
Does your program respond through:

't depends on the program

s your program batch or steady-state?

Does your program have realtime constraints?
Does your program respond through:

= 3 console,

't depends on the program

s your program batch or steady-state?
Does your program have realtime constraints?
Does your program respond through:

= g console,
= 3 GUI,

't depends on the program

s your program batch or steady-state?

Does your program have realtime constraints?
Does your program respond through:

= 3 console,

= 3 GUI,

= 3 RESTful API,

't depends on the program

s your program batch or steady-state?

Does your program have realtime constraints?
Does your program respond through:

= 3 console,

= 3 GUI,

= g RESTful API,
= something else, or

't depends on the program

s your program batch or steady-state?

Does your program have realtime constraints?
Does your program respond through:

= 3 console,

= 3 GUI,

= 3 RESTful API,

= something else, or

= nothing at all?

't depends on the program

s your program batch or steady-state?
Does your program have realtime constraints?

Does your program respond through:

= 3 console,

= 3 GUI,

= 3 RESTful API,

= something else, or

= nothing at all?

|s your program even a program, or reusable library?

Choices, choices!

Choices, choices!

C++ has too many error-handling facilities.

Choices, choices!

C++ has too many error-handling facilities.

But part of the problem is its versatility.

Choices, choices!
C++ has too many error-handling facilities.
But part of the problem is its versatility.

An important consideration is to allow for versatility.

It you're lucky

It you're lucky

acme |

sanitized input ({

¥

1
2
3
4
5
6
.
8

std::optional<sanitized input> digest input (std::span<

std::string do_the thing(sanitized input in);

It you're lucky

std::optional<sanitized input> digest input (std::span<

It you're lucky

11
12 std::string do_the thing(sanitized input in);

It you're lucky

* argv)

args{std::span{argv, argvtargc}};

input{acme::digest input (args) };

(!'input) {
EXIT FAILURE;

std::cout << acme::do the thing(*input);
EXIT SUCCESS;

It you're lucky

args{std::span{argv, argvtargc}};

It you're lucky

input{acme::digest input (args) };

(!'input) {
EXIT FAILURE;

It you're lucky

25 std::cout << acme::do the thing(*input);
26 EXIT SUCCESS;

Some Techniques for Simple Programs

Some Techniques for Simple Programs
e Reporting:

Some Techniques for Simple Programs

e Reporting:
= | og, e.g. print something helpful to "stderr

Some Techniques for Simple Programs

e Reporting:
= | og, e.g. print something helpful to "stderr
e Control Flow (Sad Path):

Some Techniques for Simple Programs

e Reporting:
= | og, e.g. print something helpful to "stderr

e Control Flow (Sad Path):
= Exceptions

Some Techniques for Simple Programs

e Reporting:

= | og, e.g. print something helpful to "stderr
e Control Flow (Sad Path):

= Exceptions

= Return values

Some Techniques for Simple Programs

e Reporting:

= | og, e.g. print something helpful to "stderr
e Control Flow (Sad Path):

= Exceptions

= Return values

= Abnormal program termination

Some Techniques for Simple Programs

e Reporting:

= | og, e.g. print something helpful to "stderr
e Control Flow (Sad Path):

= Exceptions

= Return values

= Abnormal program termination

Example 1: Print result, return success, log details

Example 1: Print result, return success, log details

print file size(* filename)

{
std::ifstream in(filename, std::ios::binary | std::ios::ate);
(!in) |
std::cerr << std::format ("failed to open file \"{}\"\n", filename);

}

std::cout << std::format ("{}\n", in.tellg());

.
4

Example 1: Print result, return success, log details

10 std: :cout << std::format ("{}\n", in.tellg());

Example 1: Print result, return success, log details

Example 1: Print result, return success, log details

std::cerr << std::format ("failed to open file \"{}\"\n", filename);

Example 1: Print result, return success, log details

std::cerr << "failed to print the size of the config file\n";

Example 2: Return result, ??? success, log details

Example 2: Return result, ??? success, log details

file size(* filename)
{
std::ifstream in(filename, std::1ios::binary | std::1os::ate);
(!in) |
std::cerr << std::format ("failed to open file \"{}\"\n", filename);

1
2
3
4
5
6
g
8
9
0
1

1
1

Example 2: Return result, ??? success, log details

Example 2: Return result, ??? success, log details

Example 2: Return result, ??? success, log details

std::cerr << std::format ("failed to open file \"{}\"\n", filename);

Example 3: Return result or failure, log details

Example 3: Return result or failure, log details

file size(* filename)
—-> std::optional<std::ifstream::pos type>
{
std::ifstream in(filename, std::1ios::binary | std::1os::ate);
(lin) |
std::cerr << std::format ("failed to open file \"{}\"\n", filename);
std::nullopt;

in.tellg();

1
2
3
4
5
6
g
8
9
0
1

1
1

Example 3: Return result or failure, log details

2 —> std::optional<std::ifstream::pos type>

Example 3: Return result or failure, log details

Example 3: Return result or failure, log details

std::nullopt;

Example 3: Return result or failure, log details

std::cerr << std::format ("failed to open file \"{}\"\n", filename);

Example 4: Return result, abort on failure, log details

Example 4: Return result, abort on failure, log details

< ... args>
[[noreturn]] fatal (argsé&é&... parameters)
{
std::cerr << std::format (std::forward<args> (parameters)...);
std: :abort () ;
}

Example 4: Return result, abort on failure, log details

EXIT FAILURE;

Example 4: Return result, abort on failure, log details

fatal (
"Wrong number of arguments provided. Expected={}; Actual={}\n",
expected num params, argc);

Example 4: Return result, abort on failure, log details

5 std::cerr << std::format (std::forward<args> (parameters)...);

Functions Are a Track Event

Functions Are a Track Event

There are zero or more obstacles and one finish line.

Functions Are a Track Event

There are zero or more obstacles and one finish line.

do_something (param)

Functions Are a Track Event

There are zero or more obstacles and one finish line.

intermediate thingl = get a thing(param)
(!intermediate thingl) {
failure;

Functions Are a Track Event

There are zero or more obstacles and one finish line.

intermediate thingZ2 = get another thing(intermediate thingl)
(!intermediate thing2) {
failure;

Functions Are a Track Event

There are zero or more obstacles and one finish line.

intermediate thing2;

Exceptions

Exceptions

e Pros:

Exceptions

e Pros:
m versatile/scalable

Exceptions

e Pros:
= versatile/scalable
= very efficient normal path

Exceptions

e Pros:
m versatile/scalable

= very efficient normal path
= hide control flow

Exceptions

e Pros:
= versatile/scalable
= very efficient normal path

= hide control flow
e Cons:

Exceptions

e Pros:
m versatile/scalable

= very efficient normal path
= hide control flow
e Cons:

= exceedingly slow in exceptional path

Exceptions

e Pros:
= versatile/scalable
= very efficient normal path
= hide control flow
e Cons:
= exceedingly slow in exceptional path
= not always optimal in normal path

Exceptions

e Pros:
m versatile/scalable

= very efficient normal path
= hide control flow
e Cons:

= exceedingly slow in exceptional path

= not always optimal in normal path
= hide control flow

Contract Attributes

end user

docs

user

dev

error

Contract Attributes

C++ API

AOoCS

aev

aev

bug

C++ AP| Contracts

C++ API| Contracts

C++ API| Contracts

e The exchange of promises between the developer(s) using and
Implementing a C++ API.

C++ API| Contracts

e The exchange of promises between the developer(s) using and
Implementing a C++ API.
e Violations are bugs.

C++ API| Contracts

e The exchange of promises between the developer(s) using and
Implementing a C++ API.

e Violations are bugs.

e Fixing bugs is as important as fixing compiler errors.

Bugs

Bugs

A program with a bug:

Bugs
A program with a bug:

e |sincorrect

Bugs
A program with a bug:

e |sincorrect
e contains undefined behaviour

Bugs
A program with a bug:

e |sincorrect
e contains undefined behaviour
e isvulnerable

Bugs
A program with a bug:
IS Incorrect
contains undefined behaviour

is vulnerable
violates the End User Contract.

xkcd.com/435

FIELDS arrAncED BY FPORITY
MORE PURE

SOCIOLOGY 15 PSYCHOLOGY 15 BIOLOGY 1S WHICH 1S JUsT
JUST APFLIED JusT APPLIED TUST APPLED APPRUED PHYSICS,
FﬁFtHﬂujG‘r’ Eaﬂu:rmf CHEMISTRY ITS NICE TO

BE ON TOF

BEEE

OH, HEY, T DIODNT
SEE YOU GUYS ALL
THE WAY OVER THERE.

t

SDUGLEGIETE P&?EHDLGGIETE Elﬁ.mﬁnﬁ‘rs EHEHlSTS PHYSICISTS

MATHEMATICIANS

errors errors errors errors errors

bugs

https://xkcd.com/435/

Example of Client C++ AP| Contract Violation #
PID Controller

WIKIPEDIA
PID controller

A proportional—integral—derivative controller (PID controller or three-term controller) is a control loop mechanism employing feedback that is widely used
in industrial control systems and a variety of other applications requiring continuously modulated control. A PID controller continuously calculates an error value e(t)
as the difference between a desired setpoint (SP) and a measured process variable (PV) and applies a correction based on proportional, integral, and derivative terms
(denoted P, I, and D respectively), hence the name.

In practical terms, PID automatically applies an accurate and responsive correction to a control function. An everyday example is the cruise control on a car, where
ascending a hill would lower speed if constant engine power were applied. The controller's PID algorithm restores the measured speed to the desired speed with minimal
delay and overshoot by increasing the power output of the engine in a controlled manner.

The first theoretical analysis and practical application of PID was in the field of automatic steering systems for ships, developed from the early 1920s onwards. It was
then used for automatic process control in the manufacturing industry, where it was widely implemented in at first pneumatic and then electronic controllers. Today the
PID concept is used universally in applications requiring accurate and optimized automatic control.

Contents

Fundamental operation
Mathematical form

Selective use of control terms
Applicability
History
Origins
Industrial control
Electronic analog controllers

Control loop example
Proportional o1 o . ot .
— en.wikipedia.org/wiki/PID_controller
Control damping

https://en.wikipedia.org/wiki/Control_loop
https://en.wikipedia.org/wiki/Feedback
https://en.wikipedia.org/wiki/Industrial_control_system
https://en.wikipedia.org/wiki/Setpoint_(control_system)
https://en.wikipedia.org/wiki/Process_variable
https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Cruise_control
https://en.wikipedia.org/wiki/Controller_(control_theory)
https://en.wikipedia.org/wiki/PID_controller

process_variable and correction

== process_variabhle == correction

50

25

-25

-a0

Kp=1 Ki=5 Kd=0lI, setpoint=10, pv=30

process_variable and correction

== process_variabhle == correction

50 r

25\
0

IV |

-a0

Kp=-1 Ki=5 Kd=0l1, setpoint=10, pv=30

Contract from PID

Mathematical form [edit]

t
The overall control function u(t) = K,e(t) + K; / e(t)dr + Ky
0

where Kp, K, and K4, all non-negative, denote the coefficients for the proportional, integral, and derivative terms

respectively (sometimes denoted P, /, and D).

In the standard form of the equation (see later in article), K; and K4 are respectively replaced by K, /T; and K, Ty; the
advantage of this being that T} and T3 have some understandable physical meaning, as they represent an integration time
and a derivative time respectively. Kp T4 is the time constant with which the controller will attempt to approach the set point.
Kp / T determines how long the controller will tolerate the error being consistently above or below the set point.

o) =Ky (e + 7 [etmar+ S,

en.wikipedia.org/wiki/PID_controller#Mathematical form

https://en.wikipedia.org/wiki/PID_controller#Mathematical_form

Contract from PID

Mathematical form [edit]

t
The overall control function u(t) = K,e(t) + K; / e(t)dr + Ky
0

where Kp, K, and K4, all non-negative, denote the coefficients for the proportional, integral, and derivative terms

respectively (sometimes denoted P, /, and D).

In the standard form of the equation (see later in article), K; and K4 are respectively replaced by K, /T; and K, Ty; the
advantage of this being that T} and T3 have some understandable physical meaning, as they represent an integration time
and a derivative time respectively. Kp T4 is the time constant with which the controller will attempt to approach the set point.
Kp / T determines how long the controller will tolerate the error being consistently above or below the set point.

o) =Ky (e + 7 [etmar+ S,

en.wikipedia.org/wiki/PID_controller#Mathematical form

https://en.wikipedia.org/wiki/PID_controller#Mathematical_form

PID Controller (interface)

PID Controller (interface)

components {
proportional;
integral;
derivative;

PID Controller (interface)

parameters {

components k;

dt;

PID Controller (interface)

components k;

PID Controller (interface)

PID Controller (interface)

process varilable;

PID Controller (interface)

result {

correction;

state current;

i 7

PID Controller (interface)

37 [[nodiscard]] calculate (parameters params, state previous, 1nput 1in)
38 -> result;

PID Controller (implementation)

5 [[nodiscard]] pid: :calculate (parameters params, state previous, input 1in)
6 -> result

PID Controller (implementation)

PID ASSERT (params.k.proportional >= 0);
PID ASSERT (params.k.integral >= 0);
PID ASSERT (params.k.derivative >= 0);

PID Controller (implementation)

11 PID ASSERT (params.dt > 0);

PID Controller (implementation)

error = in.setpoint - in.process variable;
next integral{previous.integral + error * params.dt};
derivative = (error - previous.error) / params.dt;

PID Controller (implementation)

terms {components {
.proportional = params.k.proportional * error,
.ilntegral = params.k.integral * next integral,
.derivative = params.k.derivative * derivative}};

PID Controller (implementation)

output = terms.proportional + terms.integral + terms.derivative;

PID Controller (implementation)

result{
output,
state{next integral, error}};

Example of Client C++ API Contract Violation
(Anecdotal) UID vs Bitmap

Example of Client C++ API Contract Violation
(Anecdotal) UID vs Bitmap

invalid id{uid{-1}};

Example of Client C++ API Contract Violation
(Anecdotal) UID vs Bitmap

Example of Client C++ API Contract Violation
(Anecdotal) UID vs Bitmap

Example of Client C++ API Contract Violation
(Anecdotal) UID vs Bitmap

Example of Client C++ API Contract Violation
(Anecdotal) UID vs Bitmap

UID vs Bitmap

Observations

e Sentinel values,e.g.invalid id, are trouble!
e Defensive or helpful code is unwelcome complexity.
e Trap bugs as they hatch.

Contract Attributes

C++ API

AOoCS

aev

aev

bug

Contract Attributes

standard

ISO/IEC 14882

dev

implementer

bug

C++ Standard

C++ Standard as a Contract

C++ Standard as a Contract

e The exchange of promises between C++ developers and C++
implementers.

C++ Standard as a Contract

e The exchange of promises between C++ developers and C++
implementers.

e The authors of the contract are WG21 - not necessarily the
providers.

C++ Standard as a Contract

e The exchange of promises between C++ developers and C++
implementers.

e The authors of the contract are WG21 - not necessarily the
providers.

e Client violations are bugs.

C++ Standard as a Contract

e The exchange of promises between C++ developers and C++
implementers.

e The authors of the contract are WG21 - not necessarily the
providers.

e Client violations are bugs.

e Aswith C++ APl Contracts, violation is UB.

More Bugs!

Prominent C++ Standard contract violation bugs fall into two main
categories

More Bugs!

Prominent C++ Standard contract violation bugs fall into two main
categories

integer arithmetic

More Bugs!

Prominent C++ Standard contract violation bugs fall into two main
categories

integer arithmetic

e divide-by-zero

More Bugs!

Prominent C++ Standard contract violation bugs fall into two main
categories

integer arithmetic

e divide-by-zero
e overflow

More Bugs!

Prominent C++ Standard contract violation bugs fall into two main
categories

integer arithmetic object litetime

e divide-by-zero
e overflow

More Bugs!

Prominent C++ Standard contract violation bugs fall into two main
categories

integer arithmetic object litetime

e divide-by-zero e null pointer dereference
e overflow

More Bugs!

Prominent C++ Standard contract violation bugs fall into two main

categories
integer arithmetic object litetime
e divide-by-zero e null pointer dereference
e overflow e dangling pointer dereference

(use after free)

More Bugs!

Prominent C++ Standard contract violation bugs fall into two main

categories
integer arithmetic object litetime
e divide-by-zero e null pointer dereference
e overflow e dangling pointer dereference

(use after free)
e out-of-bounds sequence
lookup (e.g. buffer overflow)

More Bugs!

Prominent C++ Standard contract violation bugs fall into two main

categories
integer arithmetic object litetime
e divide-by-zero e null pointer dereference
e overflow e dangling pointer dereference

(use after free)
e out-of-bounds sequence
lookup (e.g. buffer overflow)
e double-deletion

More Bugs!

Prominent C++ Standard contract violation bugs fall into two main

categories
integer arithmetic object litetime
e divide-by-zero e null pointer dereference
e overflow e dangling pointer dereference

(use after free)
e out-of-bounds sequence
lookup (e.g. buffer overflow)

e double-deletion
e leaks

Arithmetic Example 1: Divide by Zero

Arithmetic Example 1: Divide by Zero

Tools to the Rescuel

=+ COMPILE

—s EXPLORE

C++ source #1 X

A~ B +- v £ »
C++

1 int main()

2 A

3 return 1/0;

4}

O

R w w
R Add... More

X

_==‘ Backtrace intel ’ Share ¥ Policies™ Other~
x86-64 gce 11.2 (C++, Editor #1, Compiler #1) # X o X
x86-64 gcc 11.2 v & -03]
A~ ©Output.~ YFilter.~ B Libraries = Addnew..~ 4 Addtool..~
1 main:) B
2 ud2

e E Output (0/4) x86-64 gcc 11.2 1 - 1677ms (2398B) ~147 lines filtered Lanl

Qutput of x86-64 gcc 11.2 (Compiler #1) & X o X
A~ [OWrap lines

<source>: In function 'int main()':
<source>:3:13: warning: division by zero [-Wdiv-by-zero]
3 | return 1/0;
| S,
ASM generation compiler returned: @
<source>: In function 'int main()':
<source»:3:13: warning: division by zero [-Wdiv-by-zero]
3 | return 1/0;
| e
Execution build compiler returned: ©
Program returned: 132

https://godbolt.org/z/dWo8Pevrn

Shift Left

Shift Left

e Preventing bugs in users' programs is essential.

Shift Left

e Preventing bugs in users' programs is essential.
e |[ntercept them as early as possible.

Shift Left

e Preventing bugs in users' programs is essential.
e |[ntercept them as early as possible.
1. Bug-hostile APls, languages and tools make the bug
Inconceivable.

Shift Left

e Preventing bugs in users' programs is essential.
e |[ntercept them as early as possible.

1. Bug-hostile APls, languages and tools make the bug
Inconceivable.

2. Compilers, linters and static analysers can flag potential bugs.

Shift Left

e Preventing bugs in users' programs is essential.
e |[ntercept them as early as possible.
1. Bug-hostile APls, languages and tools make the bug
Inconceivable.
2. Compilers, linters and static analysers can flag potential bugs.
3. Instrumentation detects bugs in executing code.

Shift Left

e Preventing bugs in users' programs is essential.
e |[ntercept them as early as possible.
1. Bug-hostile APls, languages and tools make the bug
Inconceivable.
2. Compilers, linters and static analysers can flag potential bugs.
3. Instrumentation detects bugs in executing code.
4. Automated testing exercises the code.

Shift Left

e Preventing bugs in users' programs is essential.
e |[ntercept them as early as possible.
1. Bug-hostile APls, languages and tools make the bug
Inconceivable.
2. Compilers, linters and static analysers can flag potential bugs.
3. Instrumentation detects bugs in executing code.
4. Automated testing exercises the code.
5. Fuzz testing and coverage metrics guide testing.

Some Useful Flags

flag or intrinsic

-Werror

/WX

-Wall, -Wconversion, -Wextra and -Wpedantic
/W4
-D_LIBCPP_ENABLE_NODISCARD
-fsanitize=undefined,address etc.
-fno-sanitize-recover=all
-fsanitize-recover=all etc.

-ftrapv

-D_LIBCPP_DEBUG=1
-D_GLIBCXX_ASSERTIONS
-D_GLIBCXX_DEBUG or -D_GLIBCXX_DEBUG_PEDANTIC
/D_ITERATOR_DEBUG_LEVEL=2
__builtin_unreachable()
__assume(false)

-DNDEBUG

-00

/0d

-fwrapv

-0, -01, -02, -03, -Os, -Ofast or -Og

/01, /02, /Os, /Ot or /Ox

Clang

S N N N N

GCC MsvC
v

Ve
v

Ve
v
v
v
v
v
v

v
v

v
v v
v

v
v
v

v

Description

turn warnings into errors

turn warnings into errors

enable many warnings

enable many warnings

enable some warnings

flag C++ Standard user contract violations®
trap bugs flagged with -fsanitize=

report bugs flagged with -fsanitize=, then continue
avoid; broken on GCC

trap Standard Library user contract violations
trap Standard Library user contract violations
enable libstdc++ debug mode

trap Standard Library user contract violations
flag Unambiguous Bugs to compiler*

flag Unambiguous Bugs to compiler*

disable assert macro

disable optimisations”

disable optimisations”

disable signed integer overflow

optimise code

optimise code

https://github.com/johnmcfarlane/papers/blob/main/cpp/contractual-disappointment.md#appendix-a---toolchain-specific-recommendations

https://github.com/johnmcfarlane/papers/blob/main/cpp/contractual-disappointment.md#appendix-a---toolchain-specific-recommendations

Testing with Sanitizers is Left of Bug Reports

v{std: :vector{0, 1}};

v.push back(2);
fmt::print ("{}\n", vI[3]);

Testing with Sanitizers is Left of Bug Reports

Testing with Sanitizers is Left of Bug Reports

Testing with Sanitizers is Left of Bug Reports

Testing with Sanitizers is Left of Bug Reports

libstdc++: -D_GLIBCXX_ASSERTIONS

Testing with Sanitizers is Left of Bug Reports

libstdc++: -D_GLIBCXX_ASSERTIONS
MSVC.: /D_ITERATOR_DEBUG_LEVEL=1?

A Funny Thing Happened on the Way to the
Repository

A Funny Thing Happened on the Way to the
Repository

M error test handle abort (

{
}

std::exit (EXIT FAILURE) ;

A Funny Thing Happened on the Way to the
Repository

(std::signal (SIGABRT, error test handle abort) == SIG ERR) {

A Funny Thing Happened on the Way to the
Repository

10 (std::signal (SIGABRT, error test handle abort) == SIG ERR) {
11 std: :abort();
12 }

A Funny Thing Happened on the Way to the
Repository

A Funny Thing Happened on the Way to the
Repository

death tests are hard

Contract Attributes

standard

ISO/IEC 14882

dev

implementer

bug

Contract Attributes

test user

C

OCS

C

ev

implementer

error

Test User Contract

Contract Attributes

test user

C

OCS

C

ev

implementer

error

The Test User Contract

The Test User Contract

e The exchange of promises between C++ developers and C++ tools
providers.

The Test User Contract

e The exchange of promises between C++ developers and C++ tools
providers.

e Provisionis considered a nice-to-have, a 'quality of
implementation' issue'.

The Test User Contract

e The exchange of promises between C++ developers and C++ tools
providers.

e Provisionis considered a nice-to-have, a 'quality of
implementation' issue'.

e Client violations are btes errors.

The Test User Contract

e The exchange of promises between C++ developers and C++ tools
providers.

e Provisionis considered a nice-to-have, a 'quality of
implementation' issue'.

e Client violations are btes errors.

e These errors arise at the point where a bug is discovered.

The Test User Contract

e The exchange of promises between C++ developers and C++ tools
providers.

e Provisionis considered a nice-to-have, a 'quality of
implementation' issue'.

e Client violations are btgs errors.

e These errors arise at the point where a bug is discovered.

e Theuseris adevin need of feedback about correctness.

The Test User Contract

e The exchange of promises between C++ developers and C++ tools
providers.

e Provisionis considered a nice-to-have, a 'quality of
implementation' issue'.

e Client violations are btes errors.

e These errors arise at the point where a bug is discovered.

e Theuseris adevin need of feedback about correctness.

e Onesuchtoolisagoodassert.

Trigger Warning: This Assertion Triggers UB!

Trigger Warning: This Assertion Triggers UB!

Trigger Warning: This Assertion Triggers UB!

Trigger Warning: This Assertion Triggers UB!

Simplicity, Uniformity, Versatility

Simplicity, Uniformity, Versatility

e The choice of how to handle bugs lies in the hands of the developer
using the code.

Simplicity, Uniformity, Versatility

e The choice of how to handle bugs lies in the hands of the developer
using the code.
e Most UB ('good' UB?) is evidence of bugs.

Simplicity, Uniformity, Versatility

e The choice of how to handle bugs lies in the hands of the developer
using the code.

e Most UB ('good' UB?) is evidence of bugs.

e All bugs stink.

Simplicity, Uniformity, Versatility

e The choice of how to handle bugs lies in the hands of the developer
using the code.

e Most UB ('good' UB?) is evidence of bugs.

e All bugs stink.

e |f you are unsure about correctness (which you should be) you are
taking arisk by releasing your product to the client.

Simplicity, Uniformity, Versatility

e The choice of how to handle bugs lies in the hands of the developer
using the code.

e Most UB ('good' UB?) is evidence of bugs.

e All bugs stink.

e |f you are unsure about correctness (which you should be) you are
taking arisk by releasing your product to the client.

e |f you are unsure about correctness (which you should be) you are
taking a risk by enabling optimisations.

Simplicity, Uniformity, Versatility

e The choice of how to handle bugs lies in the hands of the developer
using the code.

e Most UB ('good' UB?) is evidence of bugs.

e All bugs stink.

e |f you are unsure about correctness (which you should be) you are
taking arisk by releasing your product to the client.

e |f you are unsure about correctness (which you should be) you are
taking a risk by enabling optimisations.

e Thedistinction between 'user bugs’, 'language UB', 'hard UB', 'time
travel UB' etc. is false.

Bugs is Bugs

number_to_letter(number)

(number - 1 + 'A'");

Bugs is Bugs

(number - 1 + '"A'");

Bugs is Bugs

7
8 number to letter (OxX7fffffff);

Contracts Protect Interests

lookup_table = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" ;
lookup table[number - 1];

Contracts Protect Interests

lookup table[number - 1];

Strategies

Strategies

e Trap Enforcement Strategy - Bugs are Fatal

Strategies

e Trap Enforcement Strategy - Bugs are Fatal
e Non-enforcement Strategy - Struggle on

Strategies

 Trap Enforcement Strategy - Bugs are Fatal
e Non-enforcement Strategy - Struggle on
e [og-And-Continue Strategy - Bugs happens

Strategies

Trap Enforcement Strategy - Bugs are Fatal
Non-enforcement Strategy - Struggle on
Log-And-Continue Strategy - Bugs happens
Prevention Enforcement Strategy - Bugs, what bugs?

Some Useful Flags, Again

flag or intrinsic

-Werror

/WX

-Wall, -Wconversion, -Wextra and -Wpedantic
/W4
-D_LIBCPP_ENABLE_NODISCARD
-fsanitize=undefined,address etc.
-fno-sanitize-recover=all
-fsanitize-recover=all etc.

-ftrapv

-D_LIBCPP_DEBUG=1
-D_GLIBCXX_ASSERTIONS
-D_GLIBCXX_DEBUG or -D_GLIBCXX_DEBUG_PEDANTIC
/D_ITERATOR_DEBUG_LEVEL=2
__builtin_unreachable()
__assume(false)

-DNDEBUG

-00

/0d

-fwrapv

-0, -01, -02, -03, -Os, -Ofast or -Og
/01, /02, /Os, /Ot or /Ox

Clang

NN N NN

GCC MsvC
v

v
v

v
v
v
v
v
v

v
v
v
v

v
v

v

Trap

CA A A A A&

R Y

Non

N NN

AN NN

Log

A N N N N

AN NN

RO RN

Description

turn warnings into errors

turn warnings into errors

enable many warnings

enable many warnings

enable some warnings

flag C++ Standard user contract violations’
trap bugs flagged with -fsanitize=

report bugs flagged with -fsanitize=, then continue
avoid; broken on GCC

trap Standard Library user contract violations
trap Standard Library user contract violations
enable libstdc++ debug mode

trap Standard Library user contract violations
flag Unambiguous Bugs to compiler*

flag Unambiguous Bugs to compiler*

disable assert macro

disable optimisations”

disable optimisations”

disable signed integer overflow

optimise code

optimise code

https://github.com/johnmcfarlane/papers/blob/main/cpp/contractual-disappointment.md#appendix-a---toolchain-specific-recommendations

https://github.com/johnmcfarlane/papers/blob/main/cpp/contractual-disappointment.md#appendix-a---toolchain-specific-recommendations

Don't Optimise Until You Sanitize!

Don't Optimise Until You Sanitize!

e Test your code before you release it.

Don't Optimise Until You Sanitize!

e Test your code before you release it.
e Make sure it's all tested (coverage).

Don't Optimise Until You Sanitize!

e Test your code before you release it.
e Make sure it's all tested (coverage).
e Make sureiit's all really tested (fuzzing).

Don't Optimise Until You Sanitize!

e Test your code before you release it.

e Make sure it's all tested (coverage).

e Make sureit's all really tested (fuzzing).
e Getyour 9's.

Testing Isn't Debugging

github/workflows/toolchains/linux-gcc.cmake

1 set (CMAKE CXX FLAGS INIT
2 "-Wall -Werror -Wextra -Wno-maybe-uninitialized -Wno-restrict -pedantic")

Testing Isn't Debugging

github/workflows/toolchains/linux-gcc.cmake

5 set (CMAKE CXX FLAGS TEST INIT
6 "-D GLIBCXX ASSERTIONS -DNDEBUG -03 -fsanitize=address,undefined -fno-sanit

lesting Isn't Debugging

github/workflows/toolchains/linux-gcc.cmake

#!/usr/bin/env bash

set -euo pipefail

o oDsw N

PROJECT DIR=$(cd "S$ (dirname "SO0")"/../../..; pwd)

(@)

J

conan install \
--build=missing \
—--env CONAN CMAKE TOOLCHAIN FILE="${PROJECT DIR}/.github/workflows/toolchains/linux-gcc.cmake"
--settings build type=Test \
"${PROJECT_DIR}" \
"$@H

Q
O
0O

9

conan build \
"${PROJECT_DIR}"

lesting Isn't Debugging

github/workflows/toolchains/linux-gcc.cmake

7 conan install \
--build=missing \

9 —--env CONAN CMAKE TOOLCHAIN FILE="${PROJECT DIR}/.github/workflows/toolchains/linux-gcc.cmake"
10 --settings build type=Test \
11 "${PROJECT_DIR}" \
12 nsen

lesting Isn't Debugging

github/workflows/toolchains/linux-gcc.cmake

9 —--env CONAN CMAKE TOOLCHAIN FILE="${PROJECT DIR}/.github/workflows/toolchains/linux-gcc.cmake"

lesting Isn't Debugging

github/workflows/toolchains/linux-gcc.cmake

10 --settings build type=Test \

lesting Isn't Debugging

github/workflows/toolchains/linux-gcc.cmake

Discussion

Mars Code, Gerard J. Holzmann, 2014

e Mars Science Laboratory, writtenin C
e four static analysers run nightly
e used dynamic thread analysis tool
e warnings enabled and enforced in compiler
e all mission-critical code
= had to be 2% assertions
= had to remain enabled after testing

https://cacm.acm.org/magazines/2014/2/171689-mars-code/fulltext

Mars Code, Gerard J. Holzmann, 2014

A failing assertion is now tied in with the fault-
protection system and by default places the
spacecraft into a predefined safe state where the
cause of the failure can be diagnosed carefully
before normal operation is resumed.

https://cacm.acm.org/magazines/2014/2/171689-mars-code/fulltext

Clang-Tidy Avoids Unreachable Paths

Intmaind ™ <@ TN = 4
0 _w,,...,.:‘; DRl THis Is Five.

el
—hulltm_unreacna
" .-L. @

- fong cuma TIDY/2 s
cmm: STATIC' nnnlmn;

godbolt.org/z/oWjPfrKds

"Doesn't look like anything to me"

https://godbolt.org/z/oWjPfrKds

Thank You

John McFarlane

Jaguar Land Rover, Shannon, Ireland

\

github.com/johnmcfarlane/accu-2022-examples

twitter.com/JSAMcFarlane

johnmcfarlane.github.io/slides/2022-accu

https://github.com/johnmcfarlane/accu-2022-examples/
https://twitter.com/JSAMcFarlane
https://johnmcfarlane.github.io/slides/2022-accu

The Stuff | Didn't Get
1o

Naming

e Names matter to contracts
e |[fthe meaning of an element changes, consider changing the name

Bug or Error?

b; 1 ++)

1
2
3
4
5
6
7
8
9
0

1

Bug or Error?

Bug or Error?

Bug or Error?

Bug or Error?

Bug or Error?

maybe a bug, maybe not

accumulate (* numbers,

accumulate (p,

accumulate (p, -1, 1);

it's a bug!

accumulate (p,

accumulate (* numbers,

3 assert (first >= 0);

3 assert (first >= 0);

but...

* center,

sample (p, -1, 1);

what about now?

No Bug!

No Bug!

No Bug!

Naming
e Problem:

= Two functions use the same algorithm
= But they have different contracts

= How do you test different contracts from the same function?
e Solution:

» Different functions?

Naming

accumulate neighborhood (* position, offset first, offset

offset first; i <= offset last; i ++)
r += position|[i];

ry

1
2
3
4
5
6
7
8
9

Naming

sample (* center, first, last)

accumulate neighborhood (center, first, last);

Naming

accumulate neighborhood (center, first, last);

Naming

accumulate subrange (* numbers, first,

assert (first >= 0);
accumulate neighborhood (numbers, first, last);

Naming

18 assert (first >= 0);
19 accumulate neighborhood (numbers, first, last);

Naming

what about now?

Surgery is Now Open

e Q: My project doesn't use analysis tools or modern, quality
toolchains.
e A:Sorry about that. Consider running tests against nice tools.

Surgery is Now Open

e Q: Amillion things would break if | enabled checks.

e A:Disable checks and exclude all files. Then slowly fix things one
check/file at a time until all the checks you want are applied to all
files.

Surgery is Now Open

e Q: My project doesn't test the code.
 A:You're problems are beyond the specialty of this doctor.

Surgery is Now Open

e Q: My dependencies trigger warnings/errors
e A: Think about the contract between you and your dependency
provider; try -isystem.

Surgery is Now Open

e Q: This stuff gets hard in big, old projects maintained by big, young
teams
e A: Agreed. There is no silver bullet.

Surgery is Now Open

e Q: My project doesn't need to be safe/secure. | don't need to worry
about this stuff, right?
e A:..

On Correctness

e Correctness is a consequence of generally-good practices:
= using modern features (std::print, std::optional, std::vector,
owning pointers)
= testing code
= using tools
= healthy team dynamics (mentoring, pairing, reviewing)
= avoiding accidental complexity

On Correctness

e Correctness gives you
= quality - your software works better sooner
= productivity - less time wasted testing changes, debugging, fixing
= knowledge - tools teach you how to avoid mistakes
= safety & security guarantees

In Defence of Simplicity

e Keep all your software simple and correct, including:
= Functional (production) code
= Automated tests
= Documentation
= Build system
e Avoid control flow, especially if statements

e Don't over-engineer or write code you don't need (YAGNI)

Coding Standards

e Commit to modern practices and conventions, e.g.:
s C++ Core Guidelines
= Modern CMake
= Linux-flavour Git commit descriptions

e Enforce with tools, tools, tools!

Keep Your Friends Close; Keep Your Errors Closer

e Minimise distance (in space and time) between bug location
(source code that needs fixing) and point of failure (crash, trap,
unwanted behaviour)

e Being explicit and strict about C++ API Contracts helps this

enormously
e Accordingly assertions help. Language feature will help too.

