
@davearonsonCodosaur.us

CURRENT TOTAL TIME: ~1h20m

NOTES TO SELF:
- add example like codemanship's one about needing to handle invalid instruction
- REMEMBER TO Point out times where stricter typing would reduce range of mutations, especially value substitutions.

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

GOOD MORNING BRISTOL!!! I hope you’re not too hung over from last night’s party! Oops, maybe you are, maybe I should do my Late Night Jazz Radio
DJ impression. (very soft, low smooth) good morning, bristol. i hope you’re not too hung over from last night’s party. Naah, I can’t do that, it would take too
long and put you to sleep. Hi everybody, I’m Dave Aronson, the T. Rex of Codosaurus, and I flew all the way overhere on my pet pterodactyl to teach you to
KILL MUTANTS!!!

But first, a few caveats. First, this talk is about the overarching concepts of mutation testing, rather than using any particular . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://publicdomainvectors.org/en/free-clipart/Hammer-and-spanner-tools-vector-image/8108.html

. . . tools. So, there’s not very much code, just a few snippets to test, some tests, and a bit of supporting configuration. You could say it’s . . .

https://twitter.com/davearonson
http://Codosaur.us
https://publicdomainvectors.org/en/free-clipart/Hammer-and-spanner-tools-vector-image/8108.html

@davearonsonCodosaur.us

#include <stdio.h>
int main(int args, char * argv[]) {
 printf(“Hello, world!”); }

. . . low-code.

Second, I know this is mainly a . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

C
. . . C, and even more so, . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

C++
. . . C++ conference, and I do have a lot of experience in C, and a bit in C++, but all that was a looong time ago. So, what code there is, is in . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us
Image: shamelessly swiped from https://blog.devgenius.io/ruby-newbie-f1eb87795b52 which has no

license details dagnabit!

. . . Ruby, the main language I’ve been using for the past thirteen years. If you object to the code being in another language, you can think of it as being in
pseudocode, since Ruby is very readable, close to plain English. I’m not here to evangelize for Ruby, but I’m quite confident you’ll understand it very easily.

Next, I’d like to . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/photos/level-tool-equipment-repair-2202311/

. . . level-set some expectations.

This talk is listed on the agenda as an advanced talk, which could be considered a bit misleading. Calling it a beginner-level talk, however, would be even
more misleading. What this is, is an introduction, to an advanced topic. So, if you're already well versed in mutation testing, I won't be too offended if you go
seek better learning opportunities at another talk. But, I'd still prefer you stick around, so you can correct my mistakes . . . later . . . in private.

Second, I mention mistakes, because I do not consider myself an . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/illustrations/smiley-nerd-glasses-pc-expert-1914523/

. . . expert on mutation testing. One of the dirty little secrets of public speaking is that you don't really have to be an expert on your topic! You just have to
know a little bit more about it than the audience does, enough to make it worth their time to listen to you, and be able to convey it to them. And mutation
testing is still rare enough, that most developers have never even heard of it!

So let's start with the basics. What on Infinite Earths is . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/vectors/genetic-testing-gene-panel-genetics-2316642

. . . mutation testing? In our universe, that of software development, not comic books, it's a software testing technique. (Surprise!) But why is this software
testing technique different from all other software testing techniques? One might look at the name and think "well obviously it's about testing the mutations
used in . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://commons.wikimedia.org/wiki/File:Evolutionary_Algorithm.svg

. . . genetic algorithms!" But no, that's not correct. The big difference is that most other software testing techniques are about checking whether or not our
code . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/illustrations/tick-green-tick-correct-642162/

. . . is correct. Mutation testing . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://xkcd.com/1339/

. . . assumes that our code is correct, at least in the sense of passing its tests. (This sort of means it also assumes that we already have tests. More on that
later.) And I figure you probably know what happens when you ASSUME, since I first learned it from Benny Hill! Anyway, mutation testing is instead about
checking for two different qualities. One is about our regular production code, as you might expect, but the other is in fact about our test suite! In my
opinion, the more important, interesting, and helpful of these two qualities is that our test suite is . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

"use strict";

. . . strict. Now you may be thinking, “But Dave, isn’t that what code coverage is for? If we have 100% code coverage, doesn’t that mean that all the code is
fully tested?” Long story short . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: generated by me on imgflip.com

. . . NO! (PAUSE!) Phil Nash mentioned in his talk on software quality, right here on Wednesday afternoon, that test coverage is misleading because it
shows lines of code, not data paths. To expand on that a bit, the only thing that code coverage tells us . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

42 def next_state(state, neighbors)
43 if state == ALIVE
44 [3, 4].include?(neighbors)
45 else
46 neighbors == 3
47 end
48 end

. . . is that at least one test executed that code. It tells us NOTHING about whether the correctness of that code made any difference to whether the test
passed or failed.

Let that sink in for a moment. It’s the fundamental flaw in relying on code coverage. To recap: code coverage only tells us that some test executed that
green code, NOT whether the correctness of that code made any difference to whether any test passed or failed.

By way of illustration, let’s look at . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

def test_live_with_3_survives
 expected = ALIVE
 actual = next_state(ALIVE, 3)
 assert actual == expected
end

. . . a possible test for the code from the prior slide. It's pretty straightforward, once you realize what the code does. It's calculating the next state of a given
grid cell, in Conway's Game of Life. If you're not familiar with that, don't worry, we're not going to delve into it, I just want you to think about what happens if
we do . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

def test_live_with_3_survives
 expected = ALIVE
 actual = next_state(ALIVE, 3)
 # assert actual == expected
end

. . . this, to comment out the assertion. Our test still runs the function, but we're throwing away the answer, not bothering to check it. (Let's leave aside any
quibbles about whether our test framework should even let us do this.) This may seem like an unrealistic thing to do, so let's take a poll -- who's actually
seen assertions commented out, or removed, because a test was failing? I'm not asking who's done it, just who's seen it, so no shame! It's pretty easy to
imagine cases where the assertions were not even written in the first place, because of any number of causes, like sloppiness, inability to figure out just how
to obtain or check the result, or because the tests were only written to game the system and satisfy some pointy-haired manager’s demand for high test
coverage. Any of these scenarios, amply demonstrate the fallacy of relying on coverage. It's what I call a . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

-
. . . negative indicator, more useful in its absence than its presence. The code that isn’t covered, is definitely not tested. That is a useful or at least usable
fact. But what about the rest of it, the parts that are covered? Is that tested? Who knows? It might be properly tested, or poorly tested, or not tested at all!

So how can we tell if the covered code being correct or not, made any difference to whether the test passes or fails? That . . . is where mutation testing
comes in.

To check that our test suite is strict, a mutation testing tool will . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://commons.wikimedia.org/wiki/File:Mind_the_gap_2.JPG

. . . find the gaps in our test suite, that let our code get away with unwanted behavior. Once we find gaps, we can improve our test suite, by either adding
tests or improving existing tests, to close the gaps. Lack of strictness comes mainly from lack of tests, poorly written tests, or poorly maintained tests, such
as ones that didn't keep pace with changes in the code.

Speaking of which, the other thing mutation testing checks is that our code is . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pxhere.com/en/photo/825760

. . . meaningful, by which I mean that any change to the code, will produce a noticeable change in its behavior. Lack of meaningfulness, or meaning if you
are into the whole brevity thing, comes mainly from code being unreachable, redundant with other code, or otherwise just not having any real effect. Once
we find "meaningless" code, we can make it meaningful, if that fits our intent, or just remove it.

Mutation testing . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.flickr.com/photos/garryknight/2565937494

. . . puts these two together, by checking that every possible tiny little change to the code does indeed result in a noticeable change to its behavior, and that
the test suite is indeed strict enough notice that change, and fail. Not all of the tests have to fail, but each change should make at least one test fail.

That's the positive side, but there are some drawbacks. As Fred Brooks told us back in 1986, there's no . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.flickr.com/photos/sdasmarchives/4590226412

. . . silver bullet! Besides, those are for killing . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.publicdomainpictures.net/en/view-image.php?image=199986

. . . werewolves, not mutants!

The first drawback is that it's rather . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.jtfb.southcom.mil/Media/Photos/igphoto/2000888525/

. . . hard labor for the CPU, and therefore usually ra-ther sloooow. We certainly won’t want to mutation-test our whole codebase on every save! Maybe over
a lunch break for a smallish system, or overnight for a larger one, maybe even a weekend. Fortunately, most tools let us just check specific files, classes,
modules, functions, and so on, plus they usually include some kind of . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.maxpixel.net/Progress-Graph-Growth-Achievement-Analyst-Diagram-3078543

. . . incremental mode, so that we can test only whatever has changed since the last mutation testing run, or the last git commit, or the difference from the
main git branch, or some other such milestone. That, maybe we can do on each save, for a very small system, or at least over a shorter break for the rest.

Also, its CPU-intensive nature can really . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/illustrations/clouds-dollar-symbol-characters-96588/

. . . run up our bills on cloud platforms such as AWS or Azure! (Or aZURE, however you PROnounce it.)

Another drawback is that mutation testing is . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.flickr.com/photos/ell-r-brown/5866767106

. . . not at all a beginner-friendly technique! It tells us that some particular change to the code made no difference to the test results, but what does that even
mean? It takes a lot of interpretation to figure out what a mutant is trying to tell us. Their accent is verrah straynge, and they’re almost as incoherent as . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/vectors/zombie-halloween-dead-monster-521243/

. . . zombies, but with a much bigger vocabulary, so they’re not always on about braaaaaaains. They're usually trying to tell us that our code is meaningless,
or our tests are lax, or both, but it can be very hard to figure out exactly how! Even worse, sometimes it's a . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.flickr.com/photos/jared422/19116202568

The Boy who
Cried Wolf

. . . false alarm, because the mutation didn't make a test fail, but it didn't make any real difference in the first place. It can still take quite a lot of time and
effort to figure that out.

Even if a mutation does make a difference, there is normally quite a lot of code that we . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/fi/vectors/työ-rekisteröidy-laiska-47200/

. . . shouldn't bother to test. For instance, if we have a debugging log message that says "The value of X is" and then the value of X, that constant part will
get mutated, but we don't really care! Fortunately, most tools have ways to say "don't bother mutating this line", or even this whole function . . . but that's
usually with comments, which can clutter up the code, and make it less readable.

Now that we've seen the pros and cons, how does mutation testing work, unlike the guy in this silhouette? It . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://commons.wikimedia.org/wiki/File:Thrust_with_fault_propagation_fold.svg

. . . mutates copies of our code, hence the name. It does this to create test failures, also known as . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://commons.wikimedia.org/wiki/File:Thrust_with_fault_propagation_fold.svg

. . . faults. So, mutation testing can be categorized as a fault-based testing technique. This means it is related to something you might already be familiar
with:

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us
Image: https://github.com/Netflix/chaosmonkey/raw/master/docs/logo.png

(used for educational Fair Use purposes)

. . . Chaos Monkey, from Netflix. Just like Chaos Monkey helps Netflix discover flaws in their error recovery, mutation testing helps us discover flaws in our
tests and our code. But the way mutation testing does it, is sort of . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us
Image: https://github.com/Netflix/chaosmonkey/raw/master/docs/logo.png

(used for educational Fair Use purposes)

. . . upside down from what Chaos Monkey does. Chaos Monkey is best known for . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/vectors/injection-vaccine-shot-medical-40696/ + my text

FAULTS

. . . injecting faults, such as dropped connections, into Netflix's . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://commons.wikimedia.org/wiki/File:Edvard_Munch,_1893,_The_Scream,
_oil,_tempera_and_pastel_on_cardboard,_91_x_73_cm,_National_Gallery_of_Norway.jpg

. . . production network.

If all still goes well, in the sense that Netflix's customers don't notice, and their metrics are still good, then Netflix knows that their error recovery is working
fine. Mutation testing, however, injects semantic . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.flickr.com/photos/funkblast/16937812322

 Before After

. . . changes, not necessarily problems. It doesn't usually know whether these semantic changes will create faults or not. We certainly hope they all will, but
that depends on the test suite. It injects them into . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/vectors/gene-editing-icon-crispr-icon-2375787/

. . . copies of our code, not our actual network. It does its work in our . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://sservi.nasa.gov/articles/ladee-vibration-testing-complete/

. . . test environment, not production. (Whew!) And if everything still goes well, in the sense that . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

. . . our units tests all still pass, that . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

. . . doesn't mean that all is well, that means that there . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

X
. . . is a problem! Remember, each change to our code should make at least one test fail.

Mutation testing has also been compared to . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.wannapik.com/vectors/15576 plus gradient-filled rounded rectangle

. . . fuzzing, short for fuzz testing, a security penetration technique involving throwing random data at an application. Mutation testing is somewhat like
fuzzing our code rather than fuzzing the data, but it's generally . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.wannapik.com/vectors/15576 plus gradient-filled rounded rectangle

. . . not random. Most mutation testing engines apply all the mutations that they know how to do. The smarter ones can use the results from some simpler
mutations to know they don't need to bother with more complex mutations, but still, it's not random.

But enough about differences. What exactly does mutation testing do, and how? Let's start with a high-level view. First, ideally, our chosen tool . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://commons.wikimedia.org/wiki/File:Disassembled-rubix-1.jpg

. . . breaks our code apart into pieces to test. Usually, these are our functions -- or methods if we're using an object-oriented language, but I'm just going to
say functions. Some tools don't do this, but operate on a file-by-file basis, or maybe even the whole program. Both of these are less efficient for reasons
we'll see in a moment. From here on, I'll assume that our tool is operating on a function-by-function basis. So, then, for each function, it tries to find . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/fi/photos/testi-testaus-kupla-muoto-986935/

. . . the tests that cover that function. If the tool can't find any applicable tests, most will simply skip this function. Better yet, most of those will warn us, so
we know we should go add or annotate some tests. (More on that later.) Some, though, will use the whole test suite, which is horribly inefficient, because
it's running a lot more tests than it needs to.

Anyway, assuming we aren't skipping this function, next the tool . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.deviantart.com/polaris-xforce/art/The-Brotherhood-of-Evil-Mutants-390550995 (used by permission)

. . . makes the mutants. To do that, it looks closely at this function to see how it can be changed. For each tiny little way the tool sees to change this
function, the tool makes . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/en/genetic-modification-mutant-mutation-549889/

. . . one mutant, with that one tiny little change.

Once our tool is done creating all the mutants it can for a given function, it iterates over . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.flickr.com/photos/39160147@N03/15074089655

. . . that list. And now we get to the heart of the concept.

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Mutating function whatever, at something.rb:42
Test #

Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔ ✔ ✔ ✔ ⏳ In Progress

2 To Do

3 To Do

4 To Do

5 To Do

This chart represent the progress of our tool. The tools generally don't give us any such sort of thing, but it's a conceptual model I'm using to help illustrate
the point.

For each . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Mutating function whatever, at something.rb:42
Test #

Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔ ✔ ✔ ✔ ⏳ In Progress

2 To Do

3 To Do

4 To Do

5 To Do

. . . mutant, derived from . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Mutating function whatever, at something.rb:42
Test #

Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔ ✔ ✔ ✔ ⏳ In Progress

2 To Do

3 To Do

4 To Do

5 To Do

. . . a given function, the tool runs the function's . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Mutating function whatever, at something.rb:42
Test #

Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔ ✔ ✔ ✔ ⏳ In Progress

2 To Do

3 To Do

4 To Do

5 To Do

. . . tests, but it runs them . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Mutating function whatever, at something.rb:42
Test #

Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔ ✔ ✔ ✔ ⏳ In Progress

2 To Do

3 To Do

4 To Do

5 To Do

. . . using the current mutant in place of the original function.

(PAUSE) If any test . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Mutating function whatever, at something.rb:42
Test #

Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔ ✔ ✔ ✔ ❌ In Progress

2 To Do

3 To Do

4 To Do

5 To Do

. . . fails, this is called, in the standard industry terminology, by the unfortunate name of . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/id/illustrations/tengkorak-dan-tulang-bersilang-mawar-693484/

. . . “killing the mutant”. Here, I’m going to take a bit of a detour, because some people . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/id/illustrations/tengkorak-dan-tulang-bersilang-mawar-693484/

. . . object to this “violent communication”, especially since, in the comic books, mutants are often metaphors for marginalized groups of people, and the tech
industry is finally starting to become more sensitive to such issues. So, I’m trying to come up with some nicer terminology. So far, I'm leaning towards terms
like rescuing, or better yet . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/vectors/turtle-tortoise-cartoon-animal-152082/

. . . "covering" the mutant. This makes sense if you think about it in terms of what really happens in mutation testing. In normal use of test coverage, normal
code should be "covered" by at least one test, and let all tests pass. By way of analogy, in mutation testing, mutants should be "covered" by at least one
failing test. Remember, each change should make at least one test fail.

Unfortunately, the term "covered" is already used, to mean that the mutated code is run by at least one test, whether failing or not, much like the normal
concept of test coverage, that we discussed earlier. So, I'd like to replace that with saying that the mutant is . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us
Images: https://freesvg.org/treadmill-runner and

https://pixabay.com/vectors/turtle-hat-run-tortoise-walking-35148/

. . . exercised, or possibly . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Images: as on prior slide, plus https://pixabay.com/vectors/detective-investigation-man-police-311684/

. . . inspected, or . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us
Images: https://freesvg.org/treadmill-runner and

https://pixabay.com/vectors/turtle-hat-run-tortoise-walking-35148/

✅

. . . checked. But, it's a long hard . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://upload.wikimedia.org/wikipedia/commons/d/d5/Scene_of_the_Battle_of_Plataea.jpg

. . . uphill battle, trying to change terminology that people are already using. Oh well.

Anyway, whatever we call it when a mutant makes a test fail, and I'm going to stick to the standard term of "killing" it in this presentation, each mutant should
make at least one test fail. So when it does, that's a . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/vectors/turtle-tortoise-cartoon-animal-152079/

✅ X
X

. . . good thing. It means that our code is meaningful enough that the tiny change that the tool made, to create this mutant, actually made a noticeable
difference in the function's behavior. It also means that our test suite is strict enough that at least one test actually noticed that difference, and failed. Then,
the tool will . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Mutating function whatever, at something.rb:42
Test #

Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔ ✔ ✔ ✔ ❌ Killed

2 To Do

3 To Do

4 To Do

5 To Do

. . . mark that mutant killed, stop running any more tests against it, and . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Mutating function whatever, at something.rb:42
Test #

Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔ ✔ ✔ ✔ ❌ Killed

2 ⏳ In Progress

3 To Do

4 To Do

5 To Do

. . . move on to the next one. Once a mutant has made one test fail, we don't care how many more it could make fail, like perhaps some of . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Mutating function whatever, at something.rb:42
Test #

Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔ ✔ ✔ ✔ ❌ Killed

2 ⏳ In Progress

3 To Do

4 To Do

5 To Do

. . . tests six through ten for Mutant #1. Like so much in computers, we only care about ones and zeroes.

On the other claw, if a mutant . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Mutating function whatever, at something.rb:42
Test #

Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔ ✔ ✔ ✔ ❌ Killed

2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ In Progress

3 To Do

4 To Do

5 To Do

. . . lets all the tests pass, then the mutant is said to have . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Mutating function whatever, at something.rb:42
Test #

Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔ ✔ ✔ ✔ ❌ Killed

2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Survived!

3 To Do

4 To Do

5 To Do

. . . survived. That means that the mutant has the . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://nl.wikipedia.org/wiki/Bestand:Mimic_Octopus2.jpg

. . . superpower of mimicry, skilled enough to fool our tests! This usually means that our code is meaningless, or our tests are lax, or both — and now it’s up
to us to figure out how.

Now let's peel back one . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/fi/photos/avaruusolento-marsin-vihreä-hirviö-722415/

. . . layer of the onion, and look at some technical details of how this works. First, our tool . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://commons.wikimedia.org/wiki/File:Abstract_syntax_tree_for_Euclidean_algorithm.svg

def euclid(a, b)
 while b != 0
 if a > b
 a -= b
 else
 b -= a
 end
 end
 a
end

. . . parses our code, usually into an Abstract Syntax Tree. There are some tools that work differently, like working on bytecode, and some even work on the
actual written source code, but most use an AST, so let's roll with that. (I know those boxes are too small to read easily, but we don't need to understand this
one in detail.)

A brief refresher in case you haven't dealt with an AST lately: it's a tree structure that represents the semantic meaning of our code. The . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

. . . leaf nodes are generally values such as variables, literals, or symbolic constants. The other nodes and their children are generally things such as . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

. . . an operation and its operands, such as these additions and comparisons, a function call and its arguments (though we don't have any of those on this
AST), . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

. . . an assignment and its source and destination, or a layer of structure, such as . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

. . . a branch and its conditions and statements, like this if-else . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

. . . a loop and its conditions and statements, like this while-loop, . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

. . . a function declaration and its parameters (not shown on this AST) and statements, or a class or module declaration and its functions, variables, constants
and so on (but we don't have an example of that on this AST).

After our mutation testing tool creates an AST out of our code, then it . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.needpix.com/photo/download/667144/cat-tree-climb-young-cat-pet-nature-cat-in-the-tree-domestic-cat-in-the-free

. . . traverses the tree, looking for sub-trees, or branches if you will, that represent our functions. After finding them, it handles them as I described before,
starting with looking for each one's tests, but how does it do that? That usually relies mainly on us developers, either . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

@mumu tests-for foo
describe "#foo" do
 it "turns 3 into 6" do
 foo(3).must_equal 6
 end

 it "turns 4 into 10" do
 foo(4).must_equal 10
 end
end

. . . annotating our tests, as I hinted at earlier, or following some kind of . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

describe "#foo" do
 it "turns 3 into 6" do
 foo(3).must_equal 6
 end

 it "turns 4 into 10" do
 foo(4).must_equal 10
 end
end

. . . convention in naming the tests, the files, or perhaps both. These manual techniques are often supplemented and sometimes even replaced by . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

describe "#foo" do
 it "turns 3 into 6" do
 foo(3).must_equal 6
 end

 it "turns 4 into 10" do
 foo(4).must_equal 10
 end
end

. . . the tool looking at what tests call what functions. However, that can get tricky if . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

describe "#foo" do
 it "turns 3 into 6" do
 foo_test_helper(3, 6)
 end

 it "turns 4 into 10" do
 foo_test_helper(4, 10)
 end
end

. . . the function isn't called directly from the test. In that case, it usually involves looking at the test coverage data or some such gathered information.
(PAUSE!) After the tool has found the function's tests, then, assuming it won't skip this function because it didn't find any tests, it makes the mutants. To
make mutants from an AST subtree, it . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pxhere.com/en/photo/1230969

. . . traverses that subtree, just like it did to the whole thing. However, now, instead of looking for even smaller subtrees it can extract, like twigs or
something, it looks for nodes where it can change something. Each time it finds one, then for each way it can change that node, it makes one copy of the
function's AST subtree, with that one node changed, in that one way. For instance, suppose our tool has started traversing the AST I showed earlier, and
has only gotten down to . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

. . . this while loop, following that arrow. Some tools, in the interests in speed, will only make one change per node, usually the smallest one it can. But most
tools will apply a much larger range of changes, and we'll see some examples in a moment. Either way, for each way this tool could change that node, it
would make a fresh copy, of this whole subtree, with only that one node changed, in that one way. After it's done making as many mutants as it can from that
node, it would continue traversing the subtree, down to . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

. . . that node's first child-node, the conditional that controls it, a not-equal comparison. Again, for each way it could change that node, it would make a copy
of this whole subtree, with only that mutation. And so on, until it has . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

. . . traversed the entire subtree.

Now, I've been talking a lot about mutating things and changing them. So what kind of changes are we talking about? There are quite a lot!

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

x + y could become: x - y
x * y
x / y
x ** y

x || y could become: x && y
x ^ y

x | y could become: x & y
x ^ y

Maybe even swap between sets!

It could change a mathematical, logical, or bitwise operator from one to another.

In languages and situations where we can do so, it could even substitute an operator from a different category. For instance, in many languages, we can
treat anything as booleans, so x times y could become, for instance, x and y, or x exclusive-or y.

But remember, some tools will only make one change per node, so for instance a plus will only be mutated into a minus, while with other tools it may be
mutated into all of these, or at least some larger subset.

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

x - y could also become y - x

x / y could also become y / x

x ** y could also become y ** x

"x" + "y" could also become “y" + "x"

When the order of operands matters, such as in subtraction, division, exponentiation, or string concatenation, it could swap them.

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

x < y

could become:

x <= y
x == y
x != y
x >= y
x > y

It could change a comparison from one to another.

Again, some tools only make one change per node, so for instance less-than will only be mutated into greater-than, or possibly less-than-or-equal, while with
other tools it may be mutated into any other comparison. I think you get that idea by now, so I'm not going to repeat it. Also, some tools use only semantic
substitution or reduction but never addition, so some might turn less-than into greater-than or into equals, but never less-or-equal or greater-or-equal, since
that could be interpreted as adding semantics, in the “or” part.

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

x

could become:

-x
!x
~x

. . . or vice-versa!

It could insert or remove a mathematical, logical, or bitwise negation.

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

a = foo(x)
b = bar(y)

could become:

a = foo(x)

or

b = bar(y)

It can remove entire lines of code, though usually because it's a statement, rather than looking at the physical written lines of the source code.

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

if (x == y) { foo(z) }

could become:

foo(z)

It can remove a condition, so that something that might be skipped or done, is always done.

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

while (x == y) { foo(z) }

could become:

foo(z)

It can remove a loop control, so that something that might be skipped, done once, or done multiple times, is always done exactly once.

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

f(x, y)

could also become:

f(y, x)
f(x)
f(y)
f()
etc.

It could theoretically, but very few do, scramble or truncate argument lists of function calls. Truncation will often result in a syntax error, from having the
wrong number of arguments. However, if our language allows default or variadic arguments, as most modern languages do, this could be perfectly fine.

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

def f(x, y); x * y; end

could become:

def f(y, x); x * y; end
def f(x) ; x * y; end
def f(y) ; x * y; end
def f() ; x * y; end

It could also (theoretically but rarely) scramble or truncate argument lists of function declarations. This will usually result in a syntax error where it's called
from, because of the call having too many arguments, or inside the function, from having an unknown variable, but sometimes not! When the call still works,
that can help reveal times when we’re shadowing a variable in an outer scope, IOW, using the same name. That isn't necessarily wrong, but it can be
dangerous, or at least confusing, making for bad maintainability. Of course, any decent compiler or interpreter should warn us about that anyway, but we
don't always have good tools, or pay attention to all the warnings. Moving on . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

def f(x, y); x * y ; end
could become:

def f(x, y); 0 ; end
def f(x, y); Integer::MAX; end
def f(x, y); "a string" ; end
def f(x, y); nil ; end
def f(x, y); x ; end
def f(x, y); fail("boom"); end
def f(x, y); end

etc.

It could replace a function’s entire contents with returning a constant, or any of the arguments, or raising an error, or nothing at all, if the language permits.
There is even a style called EXTREME Mutation Testing, that only uses complete removal of the function body! This means a lot fewer mutants so it’s faster,
and it’s clearer what should be done about it, and there are fewer false alarms, so it makes a great quick and dirty first pass… but of course it’s nowhere near
so thorough so you’ll want to follow it up with regular-style.

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

[1, 2, 3] could become
any of:

[1, 2, 3, 4]
[1, 2]
[]

{fname: "joe",
 lname: "shmoe"}

could become
any of:

{fname: "joe",
 lname: "shmoe",
 ho_ho: “ho"}

{fname: "joe"}

{}

It could add things to, remove things from, or completely empty out, collections such as lists, tuples, maps, vectors, and so on. And of course it could mutate
each item in the contents. For instance: . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

42
num
num + 42
f(num, 42)
etc.
could become:

-num
1
0
-1
num + 1
num - 1
num / 2
num * 2
num ** 2
sqrt(num)

Integer::MIN
Integer::MAX
Float::MIN
Float::MAX
Float::INFINITY
Float::EPSILON
Object.new
"a string"
nil
etc.

It could change a constant or variable or expression or function call to some other value. It could even change it to something of an entirely different and
incompatible type, such as changing a number into a, if I may quote . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.flickr.com/photos/herval/50674160

. . . Smeagol, “string, or nothing!”

There are many many more, but I trust you get the idea!

From here on, there are no more low-level details I want to add, so let’s finally walk through some examples! We’ll start with an easy one. Suppose we have
a function . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

def power(x, y)
 x ** y
end

. . . like so.

Think about what a mutant made from this might return, since that's what our tests would probably be looking at, as this doesn't have any side-effects.

Mainly it could return results such as . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

x + y
x - y
x * y
x / y
y ** x
(x ** y) / 0
x
y
0
1
-1

0.1
-0.1
Integer::MIN
Integer::MAX
Float::MAX
Float::MIN
Float::INFINITY
Float::EPSILON
raise(DeliberateError)
"some random string"
nil

. . . any of these expressions or constants, and many more but I had to stop somewhere.

Now suppose we had only one test . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

assert power(2, 2) == 4

. . . like so. This is a rather poor test, and I think why is immediately obvious to most of you, but even so, most of those mutants on the previous slide would
get killed by this test, the ones shown . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

x + y
x - y
x * y
x / y
y ** x
(x ** y) / 0
x
y
0
1
-1

0.1
-0.1
Integer::MIN
Integer::MAX
Float::MIN
Float::MAX
Float::INFINITY
Float::EPSILON
raise(Deliberate_Error)
“some random string”
nil

. . . here in crossed-out green. The ones returning constants, are very unlikely to match. There's no particular reason a tool would put a 4 there, as opposed
to zero, 1, and other significant numbers. Subtracting gets us zero, dividing gets us one, returning either argument alone gets us two, and the error
conditions will at least make the test not pass. But . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

x + y
x - y
x * y
x / y
y ** x
(x ** y) / 0
x
y
0
1
-1

0.1
-0.1
Integer::MIN
Integer::MAX
Float::MIN
Float::MAX
Float::INFINITY
Float::EPSILON
raise(Deliberate_Error)
“some random string”
nil

. . . addition, multiplication, and exponentiation in the reverse order, all get us the correct answer. Mutants based on these mutations will therefore "surivive"
this test.

So how do we see that happening? When we run our tool, it gives us a report, that looks roughly like . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

function "power" (demo.rb:42)
has 4 surviving mutants:

42 - def power(x, y)
42 + def power(y, x)

43 - x ** y
43 + x + y

43 - x ** y
43 + x * y

43 - x ** y
43 + y ** x

. . . this. The exact words, format, amount of context, etc., will depend on exactly which tool we use, but the information should be pretty much the same.
The minus or plus signs to the left of the actual code, denote lines removed or added, so together they mean a change. You may have seen this notation in
some diff tools. Others may use less than and greater than signs, but the meaning is the same.

To fully unpack this, it's saying that if we changed . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

function "power" (demo.rb:42)
has 4 surviving mutants:

42 - def power(x, y)
42 + def power(y, x)

43 - x ** y
43 + x + y

43 - x ** y
43 + x * y

43 - x ** y
43 + y ** x

. . . the function called power, which is in . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

function "power" (demo.rb:42)
has 4 surviving mutants:

42 - def power(x, y)
42 + def power(y, x)

43 - x ** y
43 + x + y

43 - x ** y
43 + x * y

43 - x ** y
43 + y ** x

. . . file demo.rb, and starts at line 42 . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

function "power" (demo.rb:42)
has 4 surviving mutants:

42 - def power(x, y)
42 + def power(y, x)

43 - x ** y
43 + x + y

43 - x ** y
43 + x * y

43 - x ** y
43 + y ** x

. . . in any of four different ways, then all its tests would still pass, and those four ways are: . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

function "power" (demo.rb:42)
has 4 surviving mutants:

42 - def power(x, y)
42 + def power(y, x)

43 - x ** y
43 + x + y

43 - x ** y
43 + x * y

43 - x ** y
43 + y ** x

. . . to change line 42 to swap the arguments, or . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

function "power" (demo.rb:42)
has 4 surviving mutants:

42 - def power(x, y)
42 + def power(y, x)

43 - x ** y
43 + x + y

43 - x ** y
43 + x * y

43 - x ** y
43 + y ** x

. . . change line 43 to change the exponentiation into addition or multiplication, or . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

function "power" (demo.rb:42)
has 4 surviving mutants:

42 - def power(x, y)
42 + def power(y, x)

43 - x ** y
43 + x + y

43 - x ** y
43 + x * y

43 - x ** y
43 + y ** x

. . . to change line 43 to to swap the operands.

So what is . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

function "power" (demo.rb:42)
has 4 surviving mutants:

42 - def power(x, y)
42 + def power(y, x)

43 - x ** y
43 + x + y

43 - x ** y
43 + x * y

43 - x ** y
43 + y ** x

. . . this set of surviving mutants trying to tell us? The very high level message is that our test suite is not sufficient, either because there aren’t enough tests,
or the ones we have just aren’t very good, or both. But we knew that!

The question boils down to, how are these mutants surviving? Are they . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/fi/photos/varkaat-varkaus-ryöstö-nyytti-2012532/

. . . pulling heists? Are they living at the . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/fi/photos/varkaat-varkaus-ryöstö-nyytti-2012532/

. . . Xavier Institute? Or what?

The usual answer is that . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

original_power(x, y)
==

mutant_power(y, x)

. . . they give the same result as the original function. Or if it’s not a “pure function”, maybe they have the same side effect — whatever it is that our tests are
looking at. To determine how that happens, we can take a closer look, at one mutant, and a test it passes. Let's start with . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

the change:

43 - x ** y
43 + x + y

our test:

assert power(2, 2) == 4

. . . the "plus" mutant. Looking at the change, together with our test, makes it much clearer that this one survives because . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: meme going around, original source unfindable, sorry

. . . two plus two equals two to the second power. (And so does two times two, but he's in the background, so we'll save him for later.)

So how can we kill . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

the change:

43 - x ** y
43 + x + y

our test:

assert power(2, 2) == 4

. . . this mutant, in other words, make it return a different answer, than the original code, given some set of inputs? It's quite simple in this case. We need to
make at least one test use arguments such that x to the y is different from x plus y. For instance, we could add a test or change our test to . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

assert power(2, 4) == 16

. . . assert that two to the fourth power is sixteen. All the mutants that our original test killed, this would still kill. Two plus four is six, not sixteen, so this
should kill the plus mutant just fine. For that matter, two times four is eight, which is also not sixteen, so this should kill the "times" mutant as well.

However, . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/vectors/teenage-mutant-ninja-turtles-turtle-151715/

. . . the (ahem) pair of argument-swapping mutants survive! How can that be? It's because . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

24 == 42 == 16

. . . two to the fourth power, and four to the second, are both sixteen! Since the function deals with powers, it probably would have been smarter to avoid
argument pairs where . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

22 == 4
Oops!

. . . one of them is a power of the other. But anyway, we can . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://publicdomainvectors.org/en/free-clipart/Superhero-in-red-uniform/45131.html

. . . attack the argument-swapping mutants separately, no need to kill all the mutants at once and be some kind of superhero about it. To do that, again, we
can either add a test, or adjust an existing test, such as . . .

https://twitter.com/davearonson
http://Codosaur.us
https://publicdomainvectors.org/en/free-clipart/Superhero-in-red-uniform/45131.html

@davearonsonCodosaur.us

assert power(2, 3) == 8

. . . this, to assert that two to the third power is eight. Three squared is nine, not eight, so this kills the argument-swapping mutants. Two plus three is five,
two times three is six, and both of those are, guess what, not eight, so the "plus" and "times" mutants stay dead, and we don't get any . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/vectors/zombie-undead-monster-living-dead-156138/ (modified by me)

. . . zombie mutants wandering around. (PAUSE!) With . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

assert power(2, 3) == 8

. . . these inputs, the correct operation is the only simple common one that yields the correct answer. This isn't the only solution, though; we could have used
two to the fifth, three squared, three to the fifth, vice-versa, and many many more. There are lots of ways to skin . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.flickr.com/photos/greyloch/48214242842

. . . that flerken!

This may make mutation testing sound . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://commons.wikimedia.org/wiki/File:Simple_Simon_LCCN2003677693.jpg

. . . simple, but this is a downright trivial example, so we could easily think up arguments to make all mutants, within reason, behave differently from the
original code.

So let’s look at a more complex example! Suppose we have a function to send a message, . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

 def send_message(buf, len)
 sent = 0
 while sent < len
 sent_now = send_bytes(buf + sent,
 len - sent)
 sent += sent_now
 end
 sent
 end

. . . like so. This function, send_message, uses a loop that sends as much data as send_bytes can handle in one chunk, over and over, picking up where it
left off, until the message is all sent. This is a very common pattern in communication software.

A mutation testing tool could make lots and lots of mutants from this, but one of them, of particular interest, would be . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

 def send_message(buf, len)
 sent = 0
- while sent < len
 sent_now = send_bytes(buf + sent,
 len - sent)
 sent += sent_now
- end
 sent
 end

. . . this, removing those lines with the minus signs, an example of removing a loop control. That would make it effectively read like . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

 def send_message(buf, len)
 sent = 0

 sent_now = send_bytes(buf + sent,
 len - sent)
 sent += sent_now

 sent
 end

. . . this. Now suppose that this mutant does indeed survive our test suite, which consists mainly of . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

send_message(msg, size).
 must_equal size

. . . this. (PAUSE!) There's a bit more that I'm not going to show you quite yet, dealing with setting the size and creating the message. Even without seeing
that test code though, what does the survival of that non-looping mutant tell us? (PAUSE!)

If a mutant that only goes through . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

def send_message(buf, len)
 sent = 0
 while sent < len
 sent_now = send_bytes(buf + sent,
 len - sent)
 sent += sent_now
 end
 sent
end

. . . that while-loop once, acts the same as our normal code, as far as our tests can tell, that means that our tests are only making our code go through that
while-loop once. So what does that mean? (PAUSE!) By the way, you'll find that interpreting mutants involves a lot of asking "so what does that mean",
often recursively!

In this case, it means that we’re not testing sending a message larger than send_bytes can handle in one chunk! The most likely cause of that, is that we
simply didn’t test with a big enough message. For instance, . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

in module Network:

MaxChunkSize = 10_000

in test_send_message:

msg = "foo"
size = msg.length
other setup, like stubbing send_bytes
send_message(msg, size).must_equal size

. . . suppose our maximum chunk size, what send_bytes can handle in one chunk, is 10,000 bytes. However, for whatever reason, . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

in module Network:

MaxChunkSize = 10_000

in test_send_message:

msg = "foo"
size = msg.length
other setup, like stubbing send_bytes
send_message(msg, size).must_equal size

. . . we’re only testing with a tiny little three byte message. (Or maybe four if we include a null terminator. Whatever.) (PAUSE!)

The obvious fix is to use a message larger than our maximum chunk size. We can easily construct one, as shown . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

in module Network:

MaxChunkSize = 10_000

in test_send_message:

size = Network::MaxChunkSize + 1
msg = "x" * size
other setup, like stubbing send_bytes
send_message(msg, size).must_equal size

. . . here. (PAUSE!) We just take the maximum size, add one, and construct that big a message.

But perhaps, to paraphrase Shakespeare, the fault, dear $CITY, is not in our tests, but in our code, that these mutants are survivors. Perhaps we DID test
with the largest permissible message, out of a set of predefined messages or at least message sizes. For instance, . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

in module Message:

SmallMsg = msg_class(SmallMsgSize)
LargeMsg = msg_class(LargeMsgSize)

in test_send_message:

size = Message::LargeMsgSize
msg = LargeMsg.new("a" * size)
other setup, like stubbing send_bytes
send_message(msg, size).must_equal size

. . . here we have Small and Large message sizes. We test with a Large, and yet, this mutant survives! In other words, we're still sending the whole
message in one chunk. What could possibly be wrong with that? What is this mutant trying to tell us now? (PAUSE!)

It’s trying to tell us that a version of send_message with the looping removed will do the job just fine. If we remove the loop control, we wind up with . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

 def send_message(buf, len)
 sent = 0

 sent_now = send_bytes(buf + sent,
 len - sent)
 sent += sent_now

 sent
 end

. . . this code I showed you earlier. If we rerun our mutation testing tool, it will show a lot of other stuff as now being redundant, because we only needed it to
support the looping. If we also remove all of that, and lather rinse repeat, then it boils down to . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

def send_message(buf, len)
 send_bytes(buf, len)
end

. . . this. (PAUSE!) Now it’s pretty clear: the entire send_message function may well be redundant, so we can just use send_bytes directly! It might not be,
though, because, in real-world code, there may be some logging, error handling, and so on, needed in send_message, but at least the looping was
redundant. Fortunately, when it's this kind of problem, with unreachable or redundant code, the solution is clear and easy, just rip out the extra junk that the
mutant doesn't have. This will also make our code more maintainable, by getting rid of useless cruft.

Now that we've seen a few different examples, of spotting bad tests and redundant code, some of you might do better staring at code than hearing me talk
about it, so . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

for function in application.functions
 if function.tests.any?
 for mutant in function.make_mutants
 for test in function.tests do
 if test.fail_with(mutant) next mutant
 end
 report_mutant(mutant)
 end
 else warn(function.name, "has no tests!")
end

. . . here's some pseudocode, showing how mutation testing works, from a very high level view. I'll pause a moment for you to read it or take pictures.

Next up, I'd like to address some . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

?????
. . . occasionally asked questions. (Mutation testing is still rare enough that I don't think there are any frequently asked questions!) First, this all sounds
pretty weird, deliberately making tests fail, to prove that the code succeeds! Where did this whole bizarro idea come from anyway? Mutation testing has a
surprisingly . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/photos/egypt-education-history-egyptian-1826822/

. . . long history -- at least in the context of computers. It was first proposed in 1971, in Richard Lipton's term paper titled “Fault Diagnosis of Computer
Programs”, at Carnegie-Mellon University. The first tool didn't appear until nine years later, in 1980, as part of Timothy Budd's PhD work at Yale. Even
so, it was not practical for most people, with consumer-grade computers, until recently, maybe the past couple decades, with advances in CPU speed,
multi-core CPUs, larger and cheaper memory, and so on.

That leads us to the next question: why is it so CPU-intensive? To answer that, we need do some math, but don't worry, it's pretty basic. Suppose our
functions have, on average, . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

10 lines

. . . about ten lines each. And each line has about . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

10 lines
x 5 mutation points

. . . five places where it can be mutated, to any of about . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

10 lines
x 5 mutation points
x 20 alternatives

. . . twenty alternatives. That works out to about . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

10 lines
x 5 mutation points
x 20 alternatives
= 1000 mutants/function!

. . . a thousand mutants for each function! And for each one, we'll have to run somewhere between one test, if we're lucky and kill it on the first try, and all of
that function's tests, if we kill it on the last try, or worse yet, it survives.

Suppose we wind up running just . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

10 lines
x 5 mutation points
x 20 alternatives
= 1000 mutants/function!
x 10 % of the tests, each

. . . one tenth of the tests for each mutant. Since we start with a thousand mutants, that's still . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

10 lines
x 5 mutation points
x 20 alternatives
= 1000 mutants/function!
x 10 % of the tests, each
= 100 x as many test runs!

. . . a hundred times the test runs for that function. If our test suite normally takes a zippy ten seconds, mutation testing will take about a thousand seconds.
That might not sound like much, because I'm saying "seconds", but do the math and it's almost 17 minutes!

But there is some . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.flickr.com/photos/akuchling/50310316

. . . good news! Over the past decade or so, there has been a lot of research on trimming down the number of mutants, mainly by weeding out ones that are
semantically equivalent to the original code, redundant with other mutants, or trivial in various ways such as creating an obvious error condition. Such things
have reduced the mutant horde by up to about two thirds! But even with that rare level of success, it's still . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.flickr.com/photos/cavenagh/15815117738/

. . . no silver bullet, as this takes lots of CPU time itself -- and the remaining mutants are still quite a lot.

The next question is, when making each mutant, why change it in only . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/vectors/arrow-one-way-right-sign-road-759223/

. . . one way? (NOTE TO SELF: THIS IS ONGOING DEBATE, LOOK INTO HOW THEY MAKE IT OK!)

There are multiple reasons. First off, the main theoretical underpinning is . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://commons.wikimedia.org/wiki/File:Competence_Hierarchy_adapted_from_Noel_Burch_by_Igor_Kokcharov.jpg

. . . the Competent Programmer hypothesis. Let’s give that a quick check. Raise your hand if you’re competent! (PAUSE!) Okay, looks like most of us,
enough to confirm the hypothesis. The rest of you, you probably really are competent, so you might want to read up on Impostor Syndrome.

But anyway, what is the Competent Programmer Hypothesis? Long story short, it’s the idea that we generally have a pretty good clue what we’re doing, and
when we make a mistake, it’s usually a single small mistake, like a typo, or adding when we should subtract, or saying “less than or equal” when we mean
“strictly less than”, or greater than, or whatever. Does this kind of simple substitution sound familiar? It’s more or less exactly the kind of substitutions that a
mutation testing tool makes. You can think of mutation testing as sort of a “did you mean” function, like how Google suggests something else if your search
didn’t have many hits.

Another reason is that it helps us poor humans . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/vectors/arrow-one-way-right-sign-road-759223/

. . . FOCUS! It's much easier to tell what a surviving mutant is trying to say, if we're only talking about one thing in the first place. You can think of it like
using the Single Responsibility Principle.

Another reason is that multiple changes may . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.needpix.com/photo/download/600681/balance-brass-court-justice-law-lawyer-measure-scales-weight

. . . balance each other out, leading to more false alarms. For instance, remember that . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

def power(x, y)
 x ** y
end

. . . first simple example, and . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

function "power" (demo.rb:42)
has 2 exposed mutants:

42 - def power(x, y)
42 + def power(y, x)

43 - x ** y
43 + y ** x

. . . its argument-swapping mutants? If one mutant . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

def power(y, x)
 y ** x
end

. . . had both of these mutations, . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Old x: y
Old y: x

. . . the first would swap the arguments, and the other would . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Old x: x
Old y: y

. . . swap them right back, for no net effect. (SKIP: There has actually been some research into weeding out redundant multi-change mutants, but the whole
idea of multi-change mutants is not widely accepted.)

Another trivial example would be if . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Original value: 42
Mutated once: 43

. . . one mutation incremented something, . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Original value: 42
Mutated once: 43
Mutated again:42

. . . and another decremented it, right back to its original value.

Lastly, allowing multiple mutations would create a combinatorial . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixnio.com/miscellaneous/fireworks/explosion-party-firework-festival

. . . explosion of mutants, with the tool making many orders of magnitude more mutants per function, which would make it even more CPU-intensive. I'll
spare you the math, but with our earlier code size assumptions, even if we manage to weed the mutants down by 2/3 at each step, with . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

1:

Mutations/Mutant vs
 Mutants/Function

. . . one mutation per mutant, we'd have . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

1: 333

Mutations/Mutant vs
 Mutants/Function

. . . 333 mutants per function (and a third, but I'm rounding). With . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

1: 333
2:

Mutations/Mutant vs
 Mutants/Function

. . . two, we'd already have . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

1: 333
2: almost 110_000

Mutations/Mutant vs
 Mutants/Function

. . . almost 110,000, and with . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

1: 333
2: almost 110_000
3:

Mutations/Mutant vs
 Mutants/Function

. . . three we'd still have . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

1: 333
2: almost 110_000
3: over 35_000_000

Mutations/Mutant vs
 Mutants/Function

. . . over 35 million! Never mind actually running the tests, just creating the mutants would get to be quite a heavy workload! But we can avoid this huge
workload, and the increased false alarms, and the lack of focus, if we just . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

LIMIT:
ONE PER

CUSTOMER

. . . limit it to one mutation per mutant.

The next question is: this sounds like mutation testing only makes sure that our . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

. . . test suite as a whole is strict. Is there any way it can help us assess the quality of . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.cleanpng.com/png-smiley-emojipedia-pictogram-happy-and-sad-3806862/

. . . individual tests?

Yes there is, but it would take a lot longer. You may remember how I said early on, that when . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Mutating function whatever, at something.rb:42
Test #

Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔ ✔ ✔ ✔ ❌ In Progress

2 To Do

3 To Do

4 To Do

5 To Do

. . . a mutant makes a test fail, the tool will . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Mutating function whatever, at something.rb:42
Test #

Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔ ✔ ✔ ✔ ❌ Killed

2 To Do

3 To Do

4 To Do

5 To Do

. . . mark that mutant killed, stop running any more tests against it, and . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Mutating function whatever, at something.rb:42
Test #

Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔ ✔ ✔ ✔ ❌ Killed

2 ⏳ In Progress

3 To Do

4 To Do

5 To Do

. . . move on to the next one. So when we're done with a given function, we wind up with a chart like . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Mutating function whatever, at something.rb:42
Test #

Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔ ✔ ✔ ✔ ❌ Killed

2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Survived!

3 ✔ ✔ ❌ Killed

4 ❌ Killed

5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Survived!

. . . this. If we were to run the rest of the tests, that would take a lot longer, but it would give us . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Mutating function whatever, at something.rb:42
Test #

Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔ ✔ ✔ ✔ ❌ ✔ ✔ ❌ ✔ ❌ Killed

2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Survived!

3 ✔ ✔ ❌ ✔ ✔ ❌ ❌ ❌ ✔ ✔ Killed

4 ❌ ❌ ✔ ✔ ❌ ❌ ✔ ✔ ✔ ✔ Killed

5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Survived!

. . . some useful information, that we can use to assess the quality of some individual tests. I don't know for sure of any tools that will do this, but I think
Muzak Pro, for Elixir will, and I was recently told that Stryker for JavaScript, not for either of the other languages it does, will too. Look at . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Mutating function whatever, at something.rb:42
Test #

Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔ ✔ ✔ ✔ ❌ ✔ ✔ ❌ ✔ ❌ Killed

2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Survived!

3 ✔ ✔ ❌ ✔ ✔ ❌ ❌ ❌ ✔ ✔ Killed

4 ❌ ❌ ✔ ✔ ❌ ❌ ✔ ✔ ✔ ✔ Killed

5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Survived!

. . . tests four and nine. None of the mutants make either of those tests fail! This isn't an absolute indication that they're no good, but it does mean that they
may merit a closer look, somewhat like a code smell. However, remember, the tools don't actually give us a chart, it's just a conceptual model I'm using to
illustrate the situation. If you find one that gives you this full of a report, and lets you run all applicable tests against all mutants, you could do this. In fact,
you could even take this concept a step further and look next at those that only stop one mutant, then two, and so on, but I think it would rapidly reach a point
of diminishing returns, probably at one.

The last question is: as mentioned earlier, mutation testing assumes that we have . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

. . . tests already. What if . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

$ run_tests

0 tests, 0 assertions, 0 failures, 0 errors, 0 skips

. . . we don't? Can mutation testing be of any help in that case?

Well, first of all, whoever wrote a substantial production codebase with no tests needs some educating about the value of tests. But yes, mutation testing
can help you . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://www.pxfuel.com/en/free-photo-qzzxl

. . . build your test suite in the first place! You can start with a . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

def test_nothing
 assert(true)
end

. . . meaningless test, and run your mutation testing tool. You'll probably get a . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://commons.wikimedia.org/wiki/File:The_mutants!_(9363719694).jpg

. . . lot of mutants, including many that are essentially duplicates, telling about the same problem. Out of the mutants for each function, . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/photos/mutant-daisy-flower-bloom-macro-593712/

. . . pick one. You can just pick it randomly, no need to overthink it. Try to kill the mutant, by adding one test. This will probably kill many other mutants as
well. Then lather, rinse, repeat, though on further iterations you might improve a test rather than add any. Now, this won't . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us Image: https://pixabay.com/illustrations/satisfaction-guarantee-2109235/

. . . guarantee that you wind up with a great test suite. Many mutation testing tools don't do anywhere near all the possible mutations I showed you earlier,
so a lot of code will probably remain . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

def next_state(alive, neighbors)
 if alive
 [3, 4].include?(neighbors)
 else
 neighbors == 3
 end
end

. . . untested, if not in statements, like this, then at least in semantics. However, this idea will get you off to a decent start. Then you can look at what code is
untested, and write more tests to fill in the holes.

To summarize at last, mutation testing is a powerful technique to . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

😀 Ensures our code is meaningful

. . . ensure that our code is meaningful and . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

😀 Ensures our code is meaningful
😀 Ensures our tests are strict

. . . our tests are strict. It's . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

😀 Ensures our code is meaningful
😀 Ensures our tests are strict
😀 Easy to get started with

easy to get started with, in terms of setting up most of the tools and annotating our tests if needed
(which may be tedious but at least it's easy),
but it's . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

😀 Ensures our code is meaningful
😀 Ensures our tests are strict
😀 Easy to get started with
😩 Difficult to interpret results

. . . not so easy to interpret the results, nor is it . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

😀 Ensures our code is meaningful
😀 Ensures our tests are strict
😀 Easy to get started with
😩 Difficult to interpret results
😩 Hard labor on the CPU

. . . easy on the CPU.
Even if these drawbacks mean it's not a good fit for our particular current projects, though,
I still think it's just . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

😀 Ensures our code is meaningful
😀 Ensures our tests are strict
😀 Easy to get started with
😩 Difficult to interpret results
😩 Hard labor on the CPU
😎 Fascinating concept! 🤓

. . . a really cool idea . . . in a geeky kind of way.

If you'd like to try mutation testing for yourself . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Alloy:
Android:

C:
C/C++:
C#/.NET/Mono:
Clojure:
Crystal:
Elixir:
Erlang:
Etherium:
FORTRAN-77:
Go:
Haskell:
Java:
JavaScript:
PHP:
Python:
Ruby:
Rust:
Scala:
Smalltalk:
SQL:
Swift:

Anything on LLVM:
Tool to make more:

MuAlloy
mdroid+

mutate.py, SRCIROR
accmut, dextool, MART, MuCPP, Mutate++, mutate_cpp, SRCIROR
nester, NinjaTurtles, Stryker.NET, Testura.Mutation, VisualMutator
mutant
crytic
exavier, exmen, mutation, Muzak [Pro]
mu2
vertigo
Mothra (written in mid 1980s!)
go-mutesting
fitspec, muCheck
jumble, major, metamutator, muJava, pit/pitest, and many more
stryker, grunt-mutation-testing
infection, humbug
cosmic-ray, mutmut, xmutant
mutant, mutest, heckle
mutagen
scalamu, stryker4s
mutalk
SQLMutation
muter

llvm-mutate, mull
Wodel-Test (https://gomezabajo.github.io/Wodel/Wodel-Test/)

->
->

->

. . . here is a list of tools for some popular languages and platforms . . . and some others; I doubt many of you are doing FORTRAN-77 these days. I'll talk a
bit so you can take pictures. Just be aware that many of these are outdated; I don't know or follow quite all of these languages and platforms. The ones I
know are outdated, are crossed out. There's also a promising tool called Wodel-Test, a language-independent mutation engine, with which you can make
language-specific mutation testing tools. (Sorry, I haven't looked into it much myself.)

FOR C/C++ CONFS: For plain old C, there is mutate.py, yes it’s written in Python but it’s for mutation-testing C code. For both C and C++, there are
accmut, dextool, MART, MuCPP, Mutate++, mutate_cpp, and SRCIROR, in just alphabetical order, nothing else implied there. And if you’re using the LLVM
toolchain, you can also use llvm-mutate, or mull.

Is everybody done taking pictures? Before we get to Q&A, I'd like to give a shoutout to . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

Thanks to Toptal and their Speakers Network!

https://toptal.com/#accept-only-candid-coders

Images: Toptal logo, used by permission; QR code for my referral link

. . . Toptal, a consulting network I'm in, whose Speakers Network helped me prepare and practice previous versions of this presentation. (Please use that
referral link if you want to hire us or join us, and that's also where that QR code goes.)

Also, many thanks to . . .

https://twitter.com/davearonson
http://Codosaur.us
https://www.toptal.com/#accept-only-candid-coders
https://toptal.com/#accept-only-candid-coders

@davearonsonCodosaur.us

Thank you Markus Schirp!

https://github.com/mbj
Images: Markus, from his Github profile

. . . Markus Schirp, who created mutant, the main mutation testing tool I've actually used, for Ruby. He has also been very willing to answer my ignorant
questions and critique the original version of this presentation.

And now, . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonsonCodosaur.us

https://www.Codosaur.us
T.Rex-2022@Codosaur.us
@DaveAronson (Twitter)

linkedin.com/in/DaveAronson
Slides: TBD

. . . it's almost your turn! If you have any questions, I'll take them in just a moment. If you think of anything later, I'll be around for the rest of the conference.
If it's too late by then, there's my contact information up there, plus the URL where you can get the slides, complete with script. And of course I have cards.
Any questions?

https://twitter.com/davearonson
http://Codosaur.us
https://www.Codosaur.us

