

A Practical Approach to Error Handling

1 / 63

Introduction

Errors can happen anywhere

Want reliable program

No time to write error handling

What do we do?

2 / 63

Options for Error Handling

file f("file.txt");

3 / 63

Options for Error Handling

file f("file.txt");

What happens if the file does not exist?

4 / 63

Options for Error Handling

file f("file.txt");

What happens if the file does not exist?

return value

file f;
bool bOk=f.open("file.txt");
if(!bOk) {...}

not for ctor

5 / 63

Options for Error Handling

file f("file.txt");

What happens if the file does not exist?

return value

file f;
bool bOk=f.open("file.txt");
if(!bOk) {...}

not for ctor

out parameter

bool bOk;
file f("text.txt",bOk);
if(!bOk) {...}

clutter code with checks

can forget check - [[nodiscard]] for return values

6 / 63

Options for Error Handling (2)

status: bad flag on first failure

single control path

good if checking at the very end is good enough

writing a file - ok

reading a file - maybe not

default for C++ iostreams

7 / 63

Options for Error Handling (2)

status: bad flag on first failure

single control path

good if checking at the very end is good enough

writing a file - ok

reading a file - maybe not

default for C++ iostreams

monad

goal: same code path for success and error case

like std::variant<result, error> + utilities

P0323R11 std::expected

8 / 63

Options for Error Handling: Exception

exception

9 / 63

Options for Error Handling: Exception

exception

Catch exception objects always by reference

Slicing

Copying of exception may throw -> std::terminate

struct A {...};
struct B : A {...};

try {
 throw B();
} catch(A a) { // B gets sliced and copied into a
 ...
 throw; // throws original B
};

10 / 63

Options for Error Handling: Exception

exception

Catch exception objects always by reference

Slicing

Copying of exception may throw -> std::terminate

struct A {...};
struct B : A {...};

try {
 throw B();
} catch(A const& a) { // no slicing or copying
 ...
 throw; // throws original B
};

11 / 63

Options for Error Handling: Exception (2)

work like multi-level return/goto

add invisible code paths

one reason some code bases do not allow exceptions

auto inc(int i)->int { // throw(char const*)
 if(3==i) throw "Hello";
 return i+1;
}

auto main()->int {
 try {
 int n=3;
 n=inc(n); // throw(char const*)
 } catch(char const* psz) {
 std::cout << psz;
 }
 return 0;
}

12 / 63

Options for Error Handling: Exception (2)

work like multi-level return/goto

add invisible code paths

one reason some code bases do not allow exceptions

auto inc(int i)->int { // throw(char const*)
 if(3==i) throw "Hello";
 return i+1;
}

auto main()->int {
 try {
 int n=3;
 n=inc(n); // throw(char const*)
 } catch(char const* psz) {
 std::cout << psz;
 }
 return 0;
}

13 / 63

Options for Error Handling: Exception (3)

auto inc(int i, char const* & pszException)->int {
 {
 if(3==i) {
 pszException="Hello";
 goto exception;
 }
 return i+1;
 }
exception:
 return 0;
}

14 / 63

Options for Error Handling: Exception (4)

auto main()->int {
 char const* pszException=nullptr;
 {
 int n=3;
 n=inc(n,pszException);
 if(pszException) goto exception;
 return 0;
 }
exception:
 {
 std::cout << pszException;
 return 0;
 }
}

15 / 63

Options for Error Handling: Exception (4)

auto main()->int {
 char const* pszException=nullptr;
 {
 int n=3;
 n=inc(n,pszException);
 if(pszException) goto exception;
 return 0;
 }
exception:
 {
 std::cout << pszException;
 return 0;
 }
}

Stop whining! Of course must write exception-safe code!

16 / 63

Exception Safety Guarantees

(not really exception-specific)

Part of function specification

Never Fails

17 / 63

Exception Safety Guarantees

(not really exception-specific)

Part of function specification

Never Fails

Strong Exception Guarantee:

may fail (throw), but will restore program state to what it was before: transactional

possible and desirable in library functions

very hard in application code

usually too many state changes

18 / 63

Exception Safety Guarantees

(not really exception-specific)

Part of function specification

Never Fails

Strong Exception Guarantee:

may fail (throw), but will restore program state to what it was before: transactional

possible and desirable in library functions

very hard in application code

usually too many state changes

Basic Exception Guarantee:

may fail (throw), but will restore program to some valid state

19 / 63

Basic Exception Safety Guarantee

Customer: "Hello, is this Microsoft Word support? I was writing a book. Suddenly, Word deleted everything."

Microsoft: "Oh, that's ok. Word only provides a basic exception guarantee."

Customer: "Oh, alright then, thank you very much and have a good day!"

20 / 63

The Challenge

Error handling is a lot of effort

in development

must be paranoid

create a lot of extra code

in testing

many codepaths to test

if you don't test them, they won't work

21 / 63

The Challenge

Error handling is a lot of effort

in development

must be paranoid

create a lot of extra code

in testing

many codepaths to test

if you don't test them, they won't work

Little customer gain

22 / 63

The Challenge

Error handling is a lot of effort

in development

must be paranoid

create a lot of extra code

in testing

many codepaths to test

if you don't test them, they won't work

Little customer gain

So what do we do?

23 / 63

So what do we do?

Check everything

check every API call

one wrapper per error reporting method

Windows: GetLastError() , HRESULT

Unix: errno

assert aggressively

asserts stay in Release

noexcept if caller does not handle exception

std::terminate , but unexpected exceptions will terminate anyway

install handler with std::set_terminate for checking

24 / 63

So what do we do?

Check everything

check every API call

one wrapper per error reporting method

Windows: GetLastError() , HRESULT

Unix: errno

assert aggressively

asserts stay in Release

noexcept if caller does not handle exception

std::terminate , but unexpected exceptions will terminate anyway

install handler with std::set_terminate for checking

Assume everything works

25 / 63

So what do we do?

Check everything

check every API call

one wrapper per error reporting method

Windows: GetLastError() , HRESULT

Unix: errno

assert aggressively

asserts stay in Release

noexcept if caller does not handle exception

std::terminate , but unexpected exceptions will terminate anyway

install handler with std::set_terminate for checking

Assume everything works

Goal:

keep set of code paths small

keep set of program states small

26 / 63

If checks fail

prio 1: collect as much information as possible

client: send report with memory dump home

server: halt thread and notify operator

27 / 63

If checks fail

prio 1: collect as much information as possible

client: send report with memory dump home

server: halt thread and notify operator

prio 2: carry on somehow

if check was critical, program behavior now undefined: no further reports

do not terminate when assertion fails

assert s can be wrong, too

if you need safety (nuclear powerplant, etc.), add at higher level

example: server stops processing request categories with too many pending requests

28 / 63

Next: Homework

Reproduce the error at home

29 / 63

Next: Homework

Reproduce the error at home

Add handling code only for errors that are reproducible

Otherwise you write

error handlers that are never used

error handlers that are never tested, do the wrong thing

30 / 63

Next: Homework

Reproduce the error at home

Add handling code only for errors that are reproducible

Otherwise you write

error handlers that are never used

error handlers that are never tested, do the wrong thing

5% of handlers handle 95% of errors

Write high quality error handlers

Bad: show message box

Good: fix the problem

31 / 63

Categories of Errors: Critical

nullptr access

API calls not expected to fail

not with this error code

assertions

32 / 63

Categories of Errors: Critical

nullptr access

API calls not expected to fail

not with this error code

assertions

"never happens"

no handler

like C++ undefined behavior: program is invalid

33 / 63

Categories of Errors: Critical

nullptr access

API calls not expected to fail

not with this error code

assertions

"never happens"

no handler

like C++ undefined behavior: program is invalid

Client: send report, disable future reports

Server: notify operator, enter infinite loop (wait for debugger)

Notify user only if false alarm unlikely

assert s may be wrong

34 / 63

Categories of Errors: Untested

auto RegisterFooHook(Foo foo) {
 errcode_t err=RegisterFoo(foo);
 if(err==SUCCESS) KeepTrackOfFoo(foo);
 return err;
}

If err indicates error, does nothing, no error handling needed

35 / 63

Categories of Errors: Untested

auto RegisterFooHook(Foo foo) {
 errcode_t err=RegisterFoo(foo);
 if(err==SUCCESS) KeepTrackOfFoo(foo);
 return err;
}

If err indicates error, does nothing, no error handling needed

But no reproduction for RegisterFoo failing

Effect on rest of the program?

36 / 63

Categories of Errors: Untested

auto RegisterFooHook(Foo foo) {
 errcode_t err=RegisterFoo(foo);
 if(err==SUCCESS) KeepTrackOfFoo(foo);
 return err;
}

If err indicates error, does nothing, no error handling needed

But no reproduction for RegisterFoo failing

Effect on rest of the program?

Client: send report, throttle future reports

in Debug: notify developer

Server: send report

37 / 63

Categories of Errors: Bad User Experience

3rd party bug

sometimes PowerPoint makes shape disappear

Reproducible, supported and tested

38 / 63

Categories of Errors: Bad User Experience

3rd party bug

sometimes PowerPoint makes shape disappear

Reproducible, supported and tested

Not nice, users may complain

39 / 63

Categories of Errors: Bad User Experience

3rd party bug

sometimes PowerPoint makes shape disappear

Reproducible, supported and tested

Not nice, users may complain

Client/Server: only log, no report

to explain behavior if user calls

40 / 63

Categories of Errors: Indication of broken
environment

Other add-in hooked same function as us

OS reports space as default decimal separator

both fully supported by us

41 / 63

Categories of Errors: Indication of broken
environment

Other add-in hooked same function as us

OS reports space as default decimal separator

both fully supported by us

Could still be cause of a problem

42 / 63

Categories of Errors: Indication of broken
environment

Other add-in hooked same function as us

OS reports space as default decimal separator

both fully supported by us

Could still be cause of a problem

Client during remote support: notify support engineer

maybe reason for support call

43 / 63

Error Analysis

Reports with memory dumps sent to server

automatically

if user opted out, user can send prepared email

44 / 63

Error Analysis

Reports with memory dumps sent to server

automatically

if user opted out, user can send prepared email

Error database

memory dumps opened in debugger

errors automatically categorized by file/line

details and memory dump accessible to devs

45 / 63

Error Analysis

Reports with memory dumps sent to server

automatically

if user opted out, user can send prepared email

Error database

memory dumps opened in debugger

errors automatically categorized by file/line

details and memory dump accessible to devs

Devs can mark errors as fixed

trigger automatic update

or send automatic email - magic!

46 / 63

Cause Analysis

Problem often related to customer environment

Otherwise in-house testing would have found it

47 / 63

Cause Analysis

Problem often related to customer environment

Otherwise in-house testing would have found it

Memory dumps have list of loaded modules (DLLs, dylibs)

Can we identify module causing error?

or versions of module?

48 / 63

Cause Analysis

Problem often related to customer environment

Otherwise in-house testing would have found it

Memory dumps have list of loaded modules (DLLs, dylibs)

Can we identify module causing error?

or versions of module?

Report database with all reports

1 means has particular problem

0 means has different problem

0 1 1 0 0 1 0 1 0 1 1 0 (6 occurrences among 12 reports)

49 / 63

Cause Analysis

Problem often related to customer environment

Otherwise in-house testing would have found it

Memory dumps have list of loaded modules (DLLs, dylibs)

Can we identify module causing error?

or versions of module?

Report database with all reports

1 means has particular problem

0 means has different problem

0 1 1 0 0 1 0 1 0 1 1 0 (6 occurrences among 12 reports)

x - x - - x x - x - x - Module A (with: 3/6, without: 3/6)

- x x - x x - x x - - - Module B (with: 4/6, without: 2/6)

50 / 63

Cause Analysis

Problem often related to customer environment

Otherwise in-house testing would have found it

Memory dumps have list of loaded modules (DLLs, dylibs)

Can we identify module causing error?

or versions of module?

Report database with all reports

1 means has particular problem

0 means has different problem

0 1 1 0 0 1 0 1 0 1 1 0 (6 occurrences among 12 reports)

x - x - - x x - x - x - Module A (with: 3/6, without: 3/6)

- x x - x x - x x - - - Module B (with: 4/6, without: 2/6)

Module B responsible? Or chance?

51 / 63

Minimum Description Length

Compressing

0 1 1 0 0 1 0 1 0 1 1 0 (6/12)

Knowing if reports contain module B helps compressing?

- x x - x x - x x - - - Module B (with: 4/6, without: 2/6)

52 / 63

Minimum Description Length

Compressing

0 1 1 0 0 1 0 1 0 1 1 0 (6/12)

Knowing if reports contain module B helps compressing?

- x x - x x - x x - - - Module B (with: 4/6, without: 2/6)

perfect arithmetic compression (Laplacian estimator)

estimates probability p that report has particular problem

all p in [0,1] equally likely

no. bits to compress N bits with K ones:

log [(N+1) * (N over K)]

no. bits becomes smaller if p is closer to 0 or 1:

12 bits with 6 ones: 13.55 bits

12 bits with no ones: 3.70 bits

53 / 63

Compressing Reports

0 0 1 0 0 1 0 1 0 1 1 0 (6/12)

x - x - - x x - x - x - Module A (with: 3/6, without: 3/6)

- x x - x x - x x - - - Module B (with: 4/6, without: 2/6)

54 / 63

Compressing Reports

0 0 1 0 0 1 0 1 0 1 1 0 (6/12)

x - x - - x x - x - x - Module A (with: 3/6, without: 3/6)

- x x - x x - x x - - - Module B (with: 4/6, without: 2/6)

Compressing all reports together (6/12): 13.55 bits

55 / 63

Compressing Reports

0 0 1 0 0 1 0 1 0 1 1 0 (6/12)

x - x - - x x - x - x - Module A (with: 3/6, without: 3/6)

- x x - x x - x x - - - Module B (with: 4/6, without: 2/6)

Compressing all reports together (6/12): 13.55 bits

Make use of module A

choose module A over B: 1 bit

compressing all reports with A (3/6): 7.13 bits

compressing all reports without A (3/6): 7.13 bits

total: 15.26 bits - module A has nothing to do with problem

56 / 63

Compressing Reports

0 0 1 0 0 1 0 1 0 1 1 0 (6/12)

x - x - - x x - x - x - Module A (with: 3/6, without: 3/6)

- x x - x x - x x - - - Module B (with: 4/6, without: 2/6)

Compressing all reports together (6/12): 13.55 bits

Make use of module B

choose module B over A: 1 bit

compressing all reports with B (4/6): 6.71 bits

compressing all reports without B (2/6): 6.71 bits

total: 14.43 bits - still not relevant enough

57 / 63

Compressing Reports

0 0 1 0 0 1 0 1 0 1 1 0 (6/12)

x - x - - x x - x - x - Module A (with: 3/6, without: 3/6)

- x x - x x - x x - - - Module B (with: 4/6, without: 2/6)

- x x - x x - x - x - - Module C (with: 5/6, without: 1/6)

Compressing all reports together (6/12): 13.55 bits

Make use of module C

choose module C over A and B: log2(3) = 1.58 bits

compressing all reports with C (5/6): 5.39 bits

compressing all reports without C (1/6): 5.39 bits

total: 12.37 bits - relevant!

58 / 63

Compressing Reports

0 0 1 0 0 1 0 1 0 1 1 0 (6/12)

x - x - - x x - x - x - Module A (with: 3/6, without: 3/6)

- x x - x x - x x - - - Module B (with: 4/6, without: 2/6)

- x x - x x - x - x - - Module C (with: 5/6, without: 1/6)

Compressing all reports together (6/12): 13.55 bits

Make use of module C

choose module C over A and B: log2(3) = 1.58 bits

compressing all reports with C (5/6): 5.39 bits

compressing all reports without C (1/6): 5.39 bits

total: 12.37 bits - relevant!

More hypotheses make chance more likely

Also works if certain module fixes problem

Extend to module versions

59 / 63

C++20 Contracts

new language feature

assert on steroids

declarative function pre- and postconditions

void push(int x, queue& q)
[[expects: !q.full()]]
[[ensures: !q.empty()]]
{
...
[[assert: q.is_valid()]]
...
}

60 / 63

C++20 Contracts (2)

When check contract?

debug

release

never

What to do if contract violated?

terminate

carry on

report (what to whom?)

61 / 63

C++20 Contracts (2)

When check contract?

debug

release

never

What to do if contract violated?

terminate

carry on

report (what to whom?)

removed from C++20 at last moment

discussion will continue for C++23

62 / 63

THANK YOU!

for attending.

And yes, we are recruiting:

hr@think-cell.com

63 / 63

