

@ciura_victor
Victor Ciura

Principal Engineer

C++ 🎓 UNIverse

https://twitter.com/ciura_victor

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse X

Abstract

Performance has always been the goal for C++ and that can frequently come in conflict with teachability. Since
I was a student, twenty years ago, until today C++ has been a staple diet in universities across the globe. But
“C++ as a first language”... really?

 
There is a lot of room for us to make C++ more teachable and improve the quality of C++ teaching in UNI, so
long as we’re not talking about CS1.

First, students have to get over the hurdle of being algorithmic thinkers and then we can give them a language
that has these sharp edges.

Is this a lost cause? I think not. Modern C++ is simpler and safer and we have numerous opportunities to make
it more teachable at the same time.

"The king is dead, long live the king!"

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 3

Online conference

Due to the nature of delivery medium &

streaming delays, I prefer to take questions at the end.

Q & A

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 4

About me

Advanced Installer Clang Power Tools

@ciura_victor

Free/OSS

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://twitter.com/ciura_victor

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 5

🎓 University of Craiova

🇷🇴

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 6

🎓 UCV - Computer Engineering Department

🇷🇴

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 7

My 🎓 UNIverse

I’m a regular guest at the Computer Engineering Department of my Alma Mater,
University of Craiova, where I give invited lectures & workshops on using C++,
STL, algorithms, optimization techniques and programming techniques

http://www.ucv.ro

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 7

My 🎓 UNIverse

For 6 years, I gave a series of workshops on

“Using C++/STL for Competitive Programming and Software Development”

(we coached teams for student competitions, eg. ACM ICPC-SEERC)

I’m a regular guest at the Computer Engineering Department of my Alma Mater,
University of Craiova, where I give invited lectures & workshops on using C++,
STL, algorithms, optimization techniques and programming techniques

http://www.ucv.ro

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 7

My 🎓 UNIverse

In June-July every year, in collaboration with my friends in academia, I organize
and teach a free workshop: Open4Tech Summer School for Software
(college & high-school students)

For 6 years, I gave a series of workshops on

“Using C++/STL for Competitive Programming and Software Development”

(we coached teams for student competitions, eg. ACM ICPC-SEERC)

I’m a regular guest at the Computer Engineering Department of my Alma Mater,
University of Craiova, where I give invited lectures & workshops on using C++,
STL, algorithms, optimization techniques and programming techniques

http://www.ucv.ro

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 8

My 🎓 UNIverse

Topics I covered over the years in my lectures & workshops:

programming techniques

algorithms

graphs & trees

C++

functional programming (Haskell/C++)

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 9

Student Expectations @ Y1 Sem I

"Software is eating the World"...

... and I want to be a part of it !
🧑🎓

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 10

Student Expectations @ Y1 Sem I

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 11

First Encounter

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 12

First Encounter

C++ as a first language... really?

CS 1

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 13

C++ as a first language... really?

C++ as a First Language... Really? - Patrice Roy - CppCon 2019
https://www.youtube.com/watch?v=AyhPigwhwbk

https://www.youtube.com/watch?v=AyhPigwhwbk

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 14

C++ 🎓 UNIverse

Common themes I keep hearing (C++ community):

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 14

C++ 🎓 UNIverse

Common themes I keep hearing (C++ community):

There is a lot of room for us to make C++ more teachable and improve the
quality of C++ teaching in UNI, so long as we’re not talking about CS1.

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 14

C++ 🎓 UNIverse

Common themes I keep hearing (C++ community):

There is a lot of room for us to make C++ more teachable and improve the
quality of C++ teaching in UNI, so long as we’re not talking about CS1.

First, students have to get over the hurdle of being algorithmic thinkers and
then we can give them a language that has these sharp edges.

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 15

Curry On Functional Programming

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 16

Curry On Functional Programming

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 17

STL Algorithms: Principles & Practice

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 18

C++

Sharp edges

Language Library

[](){

}();

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 19

C++

Some examples

that perplex students

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 20

C++ Strings

twitter.com/vzverovich

https://twitter.com/vzverovich/status/1345776339014488064?s=20

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 21

C++ Strings
std::string's constructors

www.youtube.com/watch?v=3MOw1a9B7kc
C++ Weekly - Ep 262

No compiler diagnostics/warnings 😕

https://www.youtube.com/watch?v=3MOw1a9B7kc

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 22

C++ Strings

Enough string_view to Hang Ourselves ?

www.youtube.com/watch?v=xwP4YCP_0q0

It turns out to be easy to convert [by design]

a std::string to a std::string_view,

or a std::vector/array to a std::span,

so that dangling is almost the default behavior.

Modern C++

https://www.youtube.com/watch?v=xwP4YCP_0q0

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 23

C++ Strings

void example()

{

 std::string_view sv = std::string("dangling");

 std::cout << sv;

}

Modern C++

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 23

C++ Strings

void example()

{

 std::string_view sv = std::string("dangling");

 std::cout << sv;

}

// object backing the pointer will be destroyed

// at the end of the full-expression

Modern C++

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 24

C++ Strings

CppCoreGuidelines

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 25

C++ Strings

Nah, nobody reads docs...

We have tools 🤖📓

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 26

C++ Strings

clang-tidy

bugprone-dangling-handle

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 27

C++ Strings

-Wdangling-gsl diagnosed in Clang 10+

clang -Wlifetime Experimental

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 28

clang-tidy string checks

just string checks

 abseil-string-find-startswith

 boost-use-to-string

 bugprone-string-constructor

 bugprone-string-integer-assignment

 bugprone-string-literal-with-embedded-nul

 bugprone-suspicious-string-compare

 modernize-raw-string-literal

 performance-faster-string-find

 performance-inefficient-string-concatenation

 readability-redundant-string-cstr

 readability-redundant-string-init

 readability-string-compare

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 29

Order From Chaos...

std::sort()

Students

vs.

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 29

Order From Chaos...

std::sort()

template<class RandomIt, class Compare>

constexpr void sort(RandomIt first, RandomIt last, Compare comp);

Students

vs.

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 30

Compare Concept

https://en.cppreference.com/w/cpp/named_req/Compare

Compare << BinaryPredicate << Predicate << FunctionObject << Callable

Why is this one special ?

Because ~50 STL facilities (algorithms & data structures) expect some Compare type.

https://en.cppreference.com/w/cpp/named_req/Compare

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 31

Compare Concept

https://en.cppreference.com/w/cpp/named_req/Compare

Compare << BinaryPredicate << Predicate << FunctionObject << Callable

What are the requirements for a Compare type ?

bool comp(*iter1, *iter2);

But what kind of ordering relationship is needed for the elements of the collection ?

🤔

https://en.cppreference.com/w/cpp/named_req/Compare

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 32

Compare Concept

But what kind of ordering relationship is needed 🤔

Irreflexivity ∀ a, comp(a,a)==false

Antisymmetry ∀ a, b, if comp(a,b)==true => comp(b,a)==false

Transitivity ∀ a, b, c, if comp(a,b)==true and comp(b,c)==true

=> comp(a,c)==true

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 32

Compare Concept

But what kind of ordering relationship is needed 🤔

Irreflexivity ∀ a, comp(a,a)==false

Antisymmetry ∀ a, b, if comp(a,b)==true => comp(b,a)==false

Transitivity ∀ a, b, c, if comp(a,b)==true and comp(b,c)==true

=> comp(a,c)==true

{ Partial ordering }
https://en.wikipedia.org/wiki/Partially_ordered_set

https://en.wikipedia.org/wiki/Partially_ordered_set

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 33

Compare Examples

vector<string> v = { ... };

sort(v.begin(), v.end());

sort(v.begin(), v.end(), less<>());

sort(v.begin(), v.end(), [](const string & s1, const string & s2)

{

 return s1 < s2;

});

sort(v.begin(), v.end(), [](const string & s1, const string & s2)

{

 return stricmp(s1.c_str(), s2.c_str()) < 0;

});

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 34

Compare Examples

struct Point { int x; int y; };

vector<Point> v = { ... };

sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)

{

 return (p1.x < p2.x) && (p1.y < p2.y);

});

Initially, students go for this predicate:

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 34

Compare Examples

struct Point { int x; int y; };

vector<Point> v = { ... };

sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)

{

 return (p1.x < p2.x) && (p1.y < p2.y);

});

Is this a good Compare predicate for 2D points ?

Initially, students go for this predicate:

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 34

Compare Examples

struct Point { int x; int y; };

vector<Point> v = { ... };

sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)

{

 return (p1.x < p2.x) && (p1.y < p2.y);

});

Is this a good Compare predicate for 2D points ?

Initially, students go for this predicate:

🚫

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 35

Compare Examples

Let { P1, P2, P3 }

x1 < x2; y1 > y2;

x1 < x3; y1 > y3;

x2 < x3; y2 < y3;

auto comp = [](const Point & p1,

 const Point & p2)

{

 return (p1.x < p2.x) && (p1.y < p2.y);

}

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 35

Compare Examples

Let { P1, P2, P3 }

x1 < x2; y1 > y2;

x1 < x3; y1 > y3;

x2 < x3; y2 < y3;

auto comp = [](const Point & p1,

 const Point & p2)

{

 return (p1.x < p2.x) && (p1.y < p2.y);

}

=>

P2 and P1 are unordered (P2 ? P1) | comp(P2,P1)==false && comp(P1,P2)==false

P1 and P3 are unordered (P1 ? P3) | comp(P1,P3)==false && comp(P3,P1)==false

P2 and P3 are ordered (P2 < P3) | comp(P2,P3)==true && comp(P3,P2)==false

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 36

Compare Examples

Definition:

if comp(a,b)==false && comp(b,a)==false

=> a and b are equivalent

auto comp = [](const Point & p1,

 const Point & p2)

{

 return (p1.x < p2.x) && (p1.y < p2.y);

}

=>

P2 is equivalent to P1

P1 is equivalent to P3

P2 is less than P3

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 36

Compare Examples

Definition:

if comp(a,b)==false && comp(b,a)==false

=> a and b are equivalent

auto comp = [](const Point & p1,

 const Point & p2)

{

 return (p1.x < p2.x) && (p1.y < p2.y);

}

=>

P2 is equivalent to P1

P1 is equivalent to P3

P2 is less than P3 🚫

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 37

Compare Concept

Partial ordering relationship is not enough 🤔

Compare needs a stronger constraint

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 37

Compare Concept

Partial ordering relationship is not enough 🤔

Compare needs a stronger constraint

Strict weak ordering = Partial ordering + Transitivity of Equivalence

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 37

Compare Concept

Partial ordering relationship is not enough 🤔

Compare needs a stronger constraint

Strict weak ordering = Partial ordering + Transitivity of Equivalence

where:

equiv(a,b) : comp(a,b)==false && comp(b,a)==false

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 38

Strict weak ordering

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

Irreflexivity ∀ a, comp(a,a)==false

Antisymmetry ∀ a, b, if comp(a,b)==true => comp(b,a)==false

Transitivity ∀ a, b, c, if comp(a,b)==true and comp(b,c)==true

=> comp(a,c)==true

Transitivity of
equivalence

∀ a, b, c, if equiv(a,b)==true and equiv(b,c)==true

=> equiv(a,c)==true

where:

equiv(a,b) : comp(a,b)==false && comp(b,a)==false

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 39

Total ordering relationship

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

 comp() induces a strict total ordering

on the equivalence classes determined by equiv()

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 39

Total ordering relationship

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

 comp() induces a strict total ordering

on the equivalence classes determined by equiv()

The equivalence relation and its equivalence classes

partition the elements of the set,

and are totally ordered by <

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 40

Compare Examples

struct Point { int x; int y; };

vector<Point> v = { ... };

sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)

{

 // compare distance from origin

 return (p1.x * p1.x + p1.y * p1.y) <
 (p2.x * p2.x + p2.y * p2.y);
});

Eventually, students gravitate towards this model:

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 40

Compare Examples

struct Point { int x; int y; };

vector<Point> v = { ... };

sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)

{

 // compare distance from origin

 return (p1.x * p1.x + p1.y * p1.y) <
 (p2.x * p2.x + p2.y * p2.y);
});

Is this a good Compare predicate for 2D points ?

Eventually, students gravitate towards this model:

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 40

Compare Examples

struct Point { int x; int y; };

vector<Point> v = { ... };

sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)

{

 // compare distance from origin

 return (p1.x * p1.x + p1.y * p1.y) <
 (p2.x * p2.x + p2.y * p2.y);
});

✅Is this a good Compare predicate for 2D points ?

Eventually, students gravitate towards this model:

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 41

Compare Examples

struct Point { int x; int y; };

vector<Point> v = { ... };

sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)

{

 if (p1.x < p2.x) return true;

 if (p2.x < p1.x) return false;

 return p1.y < p2.y;

});

It takes some back and forth discussions to lead students to comparing by parts

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 41

Compare Examples

struct Point { int x; int y; };

vector<Point> v = { ... };

sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)

{

 if (p1.x < p2.x) return true;

 if (p2.x < p1.x) return false;

 return p1.y < p2.y;

});

This is a really good Compare predicate for 2D points

It takes some back and forth discussions to lead students to comparing by parts

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 41

Compare Examples

struct Point { int x; int y; };

vector<Point> v = { ... };

sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)

{

 if (p1.x < p2.x) return true;

 if (p2.x < p1.x) return false;

 return p1.y < p2.y;

});

This is a really good Compare predicate for 2D points ✅

It takes some back and forth discussions to lead students to comparing by parts

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 42

Compare Examples

The general idea is to pick an order in which to compare elements/parts of the object.

(we first compared by X coordinate, and then by Y coordinate for equivalent X)

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 42

Compare Examples

The general idea is to pick an order in which to compare elements/parts of the object.

(we first compared by X coordinate, and then by Y coordinate for equivalent X)

This strategy is analogous to how a dictionary works,

so it is often called dictionary order or lexicographical order.

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 42

Compare Examples

The general idea is to pick an order in which to compare elements/parts of the object.

(we first compared by X coordinate, and then by Y coordinate for equivalent X)

std::pair<T, U> defines the six comparison operators

in terms of the corresponding operators of the pair's components

This strategy is analogous to how a dictionary works,

so it is often called dictionary order or lexicographical order.

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 43

Tired

😅

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse X

The difference between Efficiency and Performance

Why do we care ?

Because: “Software is getting slower more
rapidly than hardware becomes faster.”

“A Plea for Lean Software” - Niklaus Wirth

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse X

The difference between Efficiency and Performance

ℹ Efficiency and performance are not necessarily dependent on one another.

Efficiency Performance

the amount of work you need to do how fast you can do that work

governed by your algorithm governed by your data structures

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 44

C++ 🎓 UNIverse

2020

😷

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 45

C++ 17/20 STL Essentials

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 46

STL Algorithms: Principles & Practice

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 47

🎓 ONLINE Challenges

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 48

🎓 ONLINE Challenges

When you have a meeting @ WFH, usually
everyone turns on their camera

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 48

🎓 ONLINE Challenges

When you have a meeting @ WFH, usually
everyone turns on their camera

In workshops for companies, some trainers claim that
50-70% of attendees have the camera on

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 48

🎓 ONLINE Challenges

When you have a meeting @ WFH, usually
everyone turns on their camera

In workshops for companies, some trainers claim that
50-70% of attendees have the camera on

In open workshops (paid) the camera on is
about 20-50%

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 48

🎓 ONLINE Challenges

When you have a meeting @ WFH, usually
everyone turns on their camera

In workshops for companies, some trainers claim that
50-70% of attendees have the camera on

In open workshops (paid) the camera on is
about 20-50%

In 🎓 UNI courses/seminars, my friends in academia (and myself)
report an average of ~10% students with camera on

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 49

C++ 🎓 UNIverse

Beyond
2020-1

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 50

C++ 🎓 UNIverse

Is this a lost cause?

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 50

C++ 🎓 UNIverse

Is this a lost cause?

I think not.

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 50

C++ 🎓 UNIverse

Is this a lost cause?

I think not.

Modern C++ is simpler and safer and we have
numerous opportunities to make it more teachable at
the same time.

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 51

ISO WG21 - SG 20 : Education

You can get involved : SG 20

www.youtube.com/watch?v=nzEPHkUxXZs

https://www.youtube.com/watch?v=nzEPHkUxXZs

2021 Victor Ciura | @ciura_victor - C++ 🎓 UNIverse 52

C++ 🎓 UNIverse

The king is dead, long live the king!

@ciura_victor
Victor Ciura

Principal Engineer

C++ 🎓 UNIverse

https://twitter.com/ciura_victor

