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Abstract

Performance has always been the goal for C++ and that can frequently come in conflict with teachability. Since 
I was a student, twenty years ago, until today C++ has been a staple diet in universities across the globe. But 
“C++ as a first language”... really? 

 
There is a lot of room for us to make C++ more teachable and improve the quality of C++ teaching in UNI, so 
long as we’re not talking about CS1.


First, students have to get over the hurdle of being algorithmic thinkers and then we can give them a language 
that has these sharp edges.


Is this a lost cause? I think not. Modern C++ is simpler and safer and we have numerous opportunities to make 
it more teachable at the same time. 

"The king is dead, long live the king!"
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Online conference

Due to the nature of delivery medium & 

streaming delays, I prefer to take questions at the end.

Q & A
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About me

Advanced Installer Clang Power Tools

@ciura_victor

Free/OSS

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://twitter.com/ciura_victor
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🎓 University of Craiova

🇷🇴
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🎓 UCV - Computer Engineering Department

🇷🇴
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My 🎓 UNIverse

I’m a regular guest at the Computer Engineering Department of my Alma Mater, 
University of Craiova, where I give invited lectures & workshops on using C++, 
STL, algorithms, optimization techniques and programming techniques

http://www.ucv.ro
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My 🎓 UNIverse

For 6 years, I gave a series of workshops on 

“Using C++/STL for Competitive Programming and Software Development” 

(we coached teams for student competitions, eg. ACM ICPC-SEERC)

I’m a regular guest at the Computer Engineering Department of my Alma Mater, 
University of Craiova, where I give invited lectures & workshops on using C++, 
STL, algorithms, optimization techniques and programming techniques

http://www.ucv.ro
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My 🎓 UNIverse

In June-July every year, in collaboration with my friends in academia, I organize 
and teach a free workshop: Open4Tech Summer School for Software 
(college & high-school students)

For 6 years, I gave a series of workshops on 

“Using C++/STL for Competitive Programming and Software Development” 

(we coached teams for student competitions, eg. ACM ICPC-SEERC)

I’m a regular guest at the Computer Engineering Department of my Alma Mater, 
University of Craiova, where I give invited lectures & workshops on using C++, 
STL, algorithms, optimization techniques and programming techniques

http://www.ucv.ro
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My 🎓 UNIverse

Topics I covered over the years in my lectures & workshops:


programming techniques


algorithms


graphs & trees


C++


functional programming (Haskell/C++)
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Student Expectations @ Y1 Sem I

"Software is eating the World"... 


... and I want to be a part of it !
🧑🎓
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Student Expectations @ Y1 Sem I



2021  Victor Ciura  |  @ciura_victor  -  C++ 🎓 UNIverse 11

First Encounter
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First Encounter

C++ as a first language... really? 

CS 1
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C++ as a first language... really? 

C++ as a First Language... Really? - Patrice Roy - CppCon 2019
https://www.youtube.com/watch?v=AyhPigwhwbk

https://www.youtube.com/watch?v=AyhPigwhwbk
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C++ 🎓 UNIverse

Common themes I keep hearing (C++ community):
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C++ 🎓 UNIverse

Common themes I keep hearing (C++ community):

There is a lot of room for us to make C++ more teachable and improve the 
quality of C++ teaching in UNI, so long as we’re not talking about CS1.

First, students have to get over the hurdle of being algorithmic thinkers and 
then we can give them a language that has these sharp edges.
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Curry On Functional Programming
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Curry On Functional Programming
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STL Algorithms: Principles & Practice
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C++

Sharp edges

Language Library

[](){

}();
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C++

Some examples

that perplex students 
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C++ Strings

twitter.com/vzverovich

https://twitter.com/vzverovich/status/1345776339014488064?s=20
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C++ Strings
std::string's constructors

www.youtube.com/watch?v=3MOw1a9B7kc
C++ Weekly - Ep 262

No compiler diagnostics/warnings 😕

https://www.youtube.com/watch?v=3MOw1a9B7kc
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C++ Strings

Enough string_view to Hang Ourselves ?

www.youtube.com/watch?v=xwP4YCP_0q0

It turns out to be easy to convert  [by design]


a std::string to a std::string_view, 


or a std::vector/array to a std::span,


so that dangling is almost the default behavior.

Modern C++

https://www.youtube.com/watch?v=xwP4YCP_0q0
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C++ Strings

void example() 

{

  std::string_view sv = std::string("dangling");

  std::cout << sv;

}

Modern C++
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C++ Strings

void example() 

{

  std::string_view sv = std::string("dangling");

  std::cout << sv;

}

// object backing the pointer will be destroyed

// at the end of the full-expression

Modern C++
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C++ Strings

CppCoreGuidelines
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C++ Strings

Nah, nobody reads docs...


We have tools 🤖📓
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C++ Strings

clang-tidy

bugprone-dangling-handle
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C++ Strings

-Wdangling-gsl diagnosed in Clang 10+

clang -Wlifetime Experimental
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clang-tidy string checks

just string checks

 abseil-string-find-startswith

 boost-use-to-string

 bugprone-string-constructor

 bugprone-string-integer-assignment

 bugprone-string-literal-with-embedded-nul

 bugprone-suspicious-string-compare

 modernize-raw-string-literal

 performance-faster-string-find

 performance-inefficient-string-concatenation

 readability-redundant-string-cstr

 readability-redundant-string-init

 readability-string-compare
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Order From Chaos...

std::sort()

Students


vs.
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Order From Chaos...

std::sort()

template<class RandomIt, class Compare>

constexpr void sort(RandomIt first, RandomIt last, Compare comp);


Students


vs.
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Compare Concept

https://en.cppreference.com/w/cpp/named_req/Compare

Compare << BinaryPredicate << Predicate << FunctionObject << Callable

Why is this one special ?

Because ~50 STL facilities (algorithms & data structures) expect some Compare type.

https://en.cppreference.com/w/cpp/named_req/Compare
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Compare Concept

https://en.cppreference.com/w/cpp/named_req/Compare

Compare << BinaryPredicate << Predicate << FunctionObject << Callable

What are the requirements for a Compare type ?

bool comp(*iter1, *iter2);

But what kind of ordering relationship is needed for the elements of the collection ? 

🤔

https://en.cppreference.com/w/cpp/named_req/Compare
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Compare Concept

But what kind of ordering relationship is needed 🤔

Irreflexivity ∀ a, comp(a,a)==false

Antisymmetry ∀ a, b, if comp(a,b)==true => comp(b,a)==false

Transitivity ∀ a, b, c, if comp(a,b)==true and comp(b,c)==true 

=> comp(a,c)==true
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Compare Concept

But what kind of ordering relationship is needed 🤔

Irreflexivity ∀ a, comp(a,a)==false

Antisymmetry ∀ a, b, if comp(a,b)==true => comp(b,a)==false

Transitivity ∀ a, b, c, if comp(a,b)==true and comp(b,c)==true 

=> comp(a,c)==true

{ Partial ordering }
https://en.wikipedia.org/wiki/Partially_ordered_set

https://en.wikipedia.org/wiki/Partially_ordered_set
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Compare Examples

vector<string> v = { ... };


sort(v.begin(), v.end());


sort(v.begin(), v.end(), less<>());


sort(v.begin(), v.end(), [](const string & s1, const string & s2)

{

  return s1 < s2;

});


sort(v.begin(), v.end(), [](const string & s1, const string & s2)

{

  return stricmp(s1.c_str(), s2.c_str()) < 0;

});
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Compare Examples

struct Point { int x; int y; };

vector<Point> v = { ... };


sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)

{

  return (p1.x < p2.x) && (p1.y < p2.y);

});

Initially, students go for this predicate:
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Compare Examples

struct Point { int x; int y; };

vector<Point> v = { ... };


sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)

{

  return (p1.x < p2.x) && (p1.y < p2.y);

});

Is this a good Compare predicate for 2D points ?

Initially, students go for this predicate:

🚫
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Compare Examples

Let { P1, P2, P3 }

x1 < x2; y1 > y2;

x1 < x3; y1 > y3;

x2 < x3; y2 < y3;

auto comp = [](const Point & p1, 

               const Point & p2)

{

  return (p1.x < p2.x) && (p1.y < p2.y);

}
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Compare Examples

Let { P1, P2, P3 }

x1 < x2; y1 > y2;

x1 < x3; y1 > y3;

x2 < x3; y2 < y3;

auto comp = [](const Point & p1, 

               const Point & p2)

{

  return (p1.x < p2.x) && (p1.y < p2.y);

}

=> 


P2 and P1 are unordered (P2 ? P1) | comp(P2,P1)==false && comp(P1,P2)==false

P1 and P3 are unordered (P1 ? P3) | comp(P1,P3)==false && comp(P3,P1)==false

P2 and P3 are ordered   (P2 < P3) | comp(P2,P3)==true  && comp(P3,P2)==false
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Compare Examples

Definition:


if comp(a,b)==false && comp(b,a)==false

=> a and b are equivalent

auto comp = [](const Point & p1, 

               const Point & p2)

{

  return (p1.x < p2.x) && (p1.y < p2.y);

}

=>


P2 is equivalent to P1

P1 is equivalent to P3

P2 is less than     P3
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Compare Examples

Definition:


if comp(a,b)==false && comp(b,a)==false

=> a and b are equivalent

auto comp = [](const Point & p1, 

               const Point & p2)

{

  return (p1.x < p2.x) && (p1.y < p2.y);

}

=>


P2 is equivalent to P1

P1 is equivalent to P3

P2 is less than     P3 🚫
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Compare Concept

Partial ordering relationship is not enough 🤔

Compare needs a stronger constraint
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Strict weak ordering =  Partial ordering  + Transitivity of Equivalence
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Compare Concept

Partial ordering relationship is not enough 🤔

Compare needs a stronger constraint

Strict weak ordering =  Partial ordering  + Transitivity of Equivalence

where:


equiv(a,b) : comp(a,b)==false && comp(b,a)==false
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Strict weak ordering

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

Irreflexivity ∀ a, comp(a,a)==false

Antisymmetry ∀ a, b, if comp(a,b)==true => comp(b,a)==false

Transitivity ∀ a, b, c, if comp(a,b)==true and comp(b,c)==true 

=> comp(a,c)==true

Transitivity of 
equivalence

∀ a, b, c, if equiv(a,b)==true and equiv(b,c)==true 

=> equiv(a,c)==true

where:


equiv(a,b) : comp(a,b)==false && comp(b,a)==false

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings
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Total ordering relationship

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

 comp() induces a strict total ordering 

on the equivalence classes determined by equiv()

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings
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Total ordering relationship

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

 comp() induces a strict total ordering 

on the equivalence classes determined by equiv()

The equivalence relation and its equivalence classes 

partition the elements of the set, 


and are totally ordered by <

https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings
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Compare Examples

struct Point { int x; int y; };

vector<Point> v = { ... };


sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)

{

  // compare distance from origin

  return (p1.x * p1.x + p1.y * p1.y) <
         (p2.x * p2.x + p2.y * p2.y);
});

Eventually, students gravitate towards this model:
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Compare Examples

struct Point { int x; int y; };

vector<Point> v = { ... };


sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)

{

  // compare distance from origin

  return (p1.x * p1.x + p1.y * p1.y) <
         (p2.x * p2.x + p2.y * p2.y);
});

✅Is this a good Compare predicate for 2D points ?

Eventually, students gravitate towards this model:
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Compare Examples

struct Point { int x; int y; };

vector<Point> v = { ... };


sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)

{

  if (p1.x < p2.x) return true;

  if (p2.x < p1.x) return false;


  return p1.y < p2.y;

});

It takes some back and forth discussions to lead students to comparing by parts
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Compare Examples

struct Point { int x; int y; };

vector<Point> v = { ... };


sort(v.begin(), v.end(), [](const Point & p1, const Point & p2)

{

  if (p1.x < p2.x) return true;

  if (p2.x < p1.x) return false;


  return p1.y < p2.y;

});

This is a really good Compare predicate for 2D points ✅

It takes some back and forth discussions to lead students to comparing by parts
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Compare Examples

The general idea is to pick an order in which to compare elements/parts of the object.


(we first compared by X coordinate, and then by Y coordinate for equivalent X)
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Compare Examples

The general idea is to pick an order in which to compare elements/parts of the object.


(we first compared by X coordinate, and then by Y coordinate for equivalent X)

This strategy is analogous to how a dictionary works, 


so it is often called dictionary order or lexicographical order.
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Compare Examples

The general idea is to pick an order in which to compare elements/parts of the object.


(we first compared by X coordinate, and then by Y coordinate for equivalent X)

std::pair<T, U> defines the six comparison operators 

in terms of the corresponding operators of the pair's components

This strategy is analogous to how a dictionary works, 


so it is often called dictionary order or lexicographical order.
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Tired

😅
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The difference between Efficiency and Performance

Why do we care ?


Because:  “Software is getting slower more 
rapidly than hardware becomes faster.”


“A Plea for Lean Software” - Niklaus Wirth
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The difference between Efficiency and Performance

ℹ  Efficiency and performance are not necessarily dependent on one another.

Efficiency Performance

the amount of work you need to do how fast you can do that work

governed by your algorithm governed by your data structures
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C++ 🎓 UNIverse

2020

😷
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C++ 17/20 STL Essentials
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STL Algorithms: Principles & Practice
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🎓 ONLINE Challenges
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🎓 ONLINE Challenges

When you have a meeting @ WFH, usually 
everyone turns on their camera
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🎓 ONLINE Challenges

When you have a meeting @ WFH, usually 
everyone turns on their camera

In workshops for companies, some trainers claim that 
50-70% of attendees have the camera on

In open workshops (paid) the camera on is 
about 20-50%

In 🎓 UNI courses/seminars, my friends in academia (and myself) 
report an average of ~10% students with camera on
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C++ 🎓 UNIverse

Beyond 
2020-1
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C++ 🎓 UNIverse

Is this a lost cause?
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C++ 🎓 UNIverse

Is this a lost cause?

I think not.

Modern C++ is simpler and safer and we have 
numerous opportunities to make it more teachable at 
the same time. 
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ISO WG21 - SG 20 : Education

You can get involved : SG 20

www.youtube.com/watch?v=nzEPHkUxXZs

https://www.youtube.com/watch?v=nzEPHkUxXZs
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C++ 🎓 UNIverse

The king is dead, long live the king!



@ciura_victor
Victor Ciura


Principal Engineer 

C++ 🎓 UNIverse
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