

X

Abstract

Clang-tidy is the go-to assistant for most C++ programmers looking to improve their code, whether to
modernize it or to find hidden bugs with its built-in checks. Static analysis is great, but you also get tons of
false positives.

Now that you’re hooked on smart tools, you have to try dynamic/runtime analysis. After years of improvements
and successes for Clang and GCC users, LLVM AddressSanitizer (ASan) is finally available on Windows, in the
latest Visual Studio 2019 versions. Let's find out how this experience is for MSVC projects.

We’ll see how AddressSanitizer works behind the scenes (compiler and ASan runtime) and analyze the
instrumentation impact, both in perf and memory footprint. We’ll examine a handful of examples diagnosed by
ASan and see how easy it is to read memory snapshots in Visual Studio, to pinpoint the failure.

Want to unleash the memory vulnerability beast? Put your test units on steroids, by spinning fuzzing jobs with
ASan in Azure, leveraging the power of the Cloud from the comfort of your Visual Studio IDE.

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

22021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Do you think you have

good unit tests & coverage

on your project ?

32021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Probably not...

I have yet to find a team

happy about this topic

42021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

But I reckon you have

at least one component

that you're pretty confident about

52021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Would you be surprised

to find out there are obvious bugs/vulnerabilities

in that well tested component ?

62021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Probably not  
¯_(ツ)_/¯

72021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

I bet you'd like to quickly dig up

something like this:

82021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

heap-buffer-overflow on address 0x0a2301b4 at pc 0x005b7a35 bp 0x011df078 sp 0x011df06c

READ of size 5 at 0x0a2301b4 thread T0

 #0 0x5b7a4d in __asan_wrap_strlen crt\asan\llvm\compiler-rt\lib\sanitizer_common\sanitizer_common_interceptors.inc:365

 #1 0x278eeb in ATL::CSimpleStringT<char,0>::StringLength MSVC\14.28.29333\atlmfc\include\atlsimpstr.h:726

 #2 0x278a35 in ATL::CSimpleStringT<char,0>::SetString MSVC\14.28.29333\atlmfc\include\atlsimpstr.h:602

 #3 0x274d69 in ATL::CSimpleStringT<char,0>::operator= MSVC\14.28.29333\atlmfc\include\atlsimpstr.h:314

 #4 0x274d99 in ATL::CStringT<char,ATL::StrTraitATL<char,ATL::ChTraitsCRT<char>>>::operator=

 MSVC\14.28.29333\atlmfc\include\cstringt.h:1315

 #5 0x27469c in ATL::CStringT<char,ATL::StrTraitATL<char,ATL::ChTraitsCRT<char>>>::CStringT

 MSVC\14.28.29333\atlmfc\include\cstringt.h:1115

 #6 0x27641a in SerValUtil::DecryptString C:\JobAI\advinst\msicomp\serval\SerValUtil.cpp:85

 #7 0x3e1660 in TestSerVal C:\JobAI\testunits\serval\SerValTests.cpp:60

 #8 0x5880e5 in FunctionTest::Run C:\JobAI\testunits\Tester.cpp:71

 #9 0x5889b1 in Tester::RunTest C:\JobAI\testunits\Tester.cpp:186

 #10 0x586ddb in Tester::ExecuteCommandLine C:\JobAI\testunits\Tester.cpp:558

 #11 0x5798d1 in main C:\JobAI\testunits\comps\TestComponents.cpp:2236

0x0a2301b4 is located 0 bytes to the right of 4-byte region [0x0a2301b0,0x0a2301b4)

allocated by thread T0

92021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Stay with me for this 90 minute infomercial

and I'll show you how easy it is

@ciura_victor
Victor Ciura

Principal Engineer

Address Sanitizer on Windows

https://twitter.com/ciura_victor

112021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Due to the nature of delivery medium &

streaming delays, I prefer to take questions at the end.

Q & A

122021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

132021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

142021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Humans Depend on Tools

152021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Get to know your tools

well

162021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Programmers Depend on Tools
good code editor 

(or IDE)
recent compiler(s) 
[conformant/strict]

powerful (visual) debugger

linter/formatter

test framework

perf profiler

CI/CD service

SCM client

package manager

static analyzer

dynamic analyzer

(runtime)

automated refactoring tools

build system

+ fuzzing
code reviews platform

I'm a tool maker

17

Advanced Installer Clang Power Tools

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

@ciura_victor

Free/OSS

https://www.advancedinstaller.com
http://www.clangpowertools.com
https://twitter.com/ciura_victor

182021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Vignette in 3 parts

Static Analysis

Dynamic Analysis

Warm Fuzzy Feelings

192021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Part I

Static Analysis

202021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

C++ Core Guidelines Checker

docs.microsoft.com/en-us/cpp/code-quality/quick-start-code-analysis-for-c-cpp

docs.microsoft.com/en-us/cpp/code-quality/code-analysis-for-cpp-corecheck

devblogs.microsoft.com/cppblog/new-safety-rules-in-c-core-check/

VS 16.7

https://docs.microsoft.com/en-us/cpp/code-quality/quick-start-code-analysis-for-c-cpp?view=vs-2019
https://docs.microsoft.com/en-us/cpp/code-quality/code-analysis-for-cpp-corecheck?view=vs-2019
https://devblogs.microsoft.com/cppblog/new-safety-rules-in-c-core-check/

212021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

docs.microsoft.com/en-us/cpp/code-quality/code-analysis-for-cpp-corecheck
...

https://docs.microsoft.com/en-us/cpp/code-quality/code-analysis-for-cpp-corecheck?view=vs-2019

222021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

ICYMI

232021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

clang-tidy

clang.llvm.org/extra/clang-tidy/checks/list.html

~ 300 checks

https://clang.llvm.org/extra/clang-tidy/checks/list.html

24

clang-tidy

modernize-use-nullptr

modernize-loop-convert

modernize-use-override

readability-redundant-string-cstr

modernize-use-emplace

modernize-use-auto

modernize-make-shared & modernize-make-unique

modernize-use-equals-default & modernize-use-equals-delete

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

25

clang-tidy

modernize-use-default-member-init

readability-redundant-member-init

modernize-pass-by-value

modernize-return-braced-init-list

modernize-use-using

cppcoreguidelines-pro-type-member-init

readability-redundant-string-init & misc-string-constructor

misc-suspicious-string-compare & misc-string-compare

misc-inefficient-algorithm

cppcoreguidelines-*

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

26

string checks

 abseil-string-find-startswith

 boost-use-to-string

 bugprone-string-constructor

 bugprone-string-integer-assignment

 bugprone-string-literal-with-embedded-nul

 bugprone-suspicious-string-compare

 modernize-raw-string-literal

 performance-faster-string-find

 performance-inefficient-string-concatenation

 readability-redundant-string-cstr

 readability-redundant-string-init

 readability-string-compare

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

clang-tidy

27

clang-tidy

checks

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

28

https://clang.llvm.org/extra/clang-tidy/checks/bugprone-dangling-handle.html

clang-tidy bugprone-dangling-handle

〝 Detect dangling references in value handles like std::string_view

These dangling references can be a result of constructing handles from
temporary values, where the temporary is destroyed soon after the handle
is created.

Options:

HandleClasses

A semicolon-separated list of class names that should be treated as handles.  
By default only std::string_view is considered.

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

👉

https://clang.llvm.org/extra/clang-tidy/checks/bugprone-dangling-handle.html

29

Lifetime profile v1.0

https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf

This is important because it turns out to be easy to convert [by design]

a std::string to a std::string_view,

or a std::vector/array to a std::span,

so that dangling is almost the default behavior.

CppCoreGuidelines

Lifetime safety: Preventing common dangling

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf

30

Lifetime profile v1.0

https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf

CppCoreGuidelines

void example()

{

 std::string_view sv = std::string("dangling"); // A

 std::cout << sv;

}

clang -Wlifetime Experimental

Lifetime safety: Preventing common dangling

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf

30

Lifetime profile v1.0

https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf

CppCoreGuidelines

void example()

{

 std::string_view sv = std::string("dangling"); // A

 std::cout << sv;

}

clang -Wlifetime

// ERROR (lifetime.3): ‘sv’ was invalidated when

// temporary was destroyed (line A)

Experimental

Lifetime safety: Preventing common dangling

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf

31

https://clang.llvm.org/docs/DiagnosticsReference.html#wdangling-gsl

void example()

{

 std::string_view sv = std::string("dangling");

 std::cout << sv;

}

Lifetime safety: Preventing common dangling

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

warning: initializing pointer member to point to a temporary object whose
lifetime is shorter than the lifetime of the constructed object

[-Wdangling-gsl] diagnosed by default in Clang 10

https://clang.llvm.org/docs/DiagnosticsReference.html#wdangling-gsl

31

https://clang.llvm.org/docs/DiagnosticsReference.html#wdangling-gsl

void example()

{

 std::string_view sv = std::string("dangling");

 std::cout << sv;

}

// warning: object backing the pointer will be destroyed

// at the end of the full-expression [-Wdangling-gsl]

Lifetime safety: Preventing common dangling

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

warning: initializing pointer member to point to a temporary object whose
lifetime is shorter than the lifetime of the constructed object

[-Wdangling-gsl] diagnosed by default in Clang 10

https://clang.llvm.org/docs/DiagnosticsReference.html#wdangling-gsl

32

Lifetime profile
https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf

https://www.youtube.com/watch?v=d67kfSnhbpA

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

https://github.com/isocpp/CppCoreGuidelines/blob/master/docs/Lifetime.pdf
https://www.youtube.com/watch?v=d67kfSnhbpA

332021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Checks are organized in modules, which can be linked into clang-tidy

with minimal or no code changes in clang-tidy

clang-tidy

332021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Checks are organized in modules, which can be linked into clang-tidy

with minimal or no code changes in clang-tidy

Checks can plug into the analysis on the preprocessor level using PPCallbacks

or on the AST level using AST Matchers

clang-tidy

332021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Checks are organized in modules, which can be linked into clang-tidy

with minimal or no code changes in clang-tidy

Checks can plug into the analysis on the preprocessor level using PPCallbacks

or on the AST level using AST Matchers

Checks can report issues in a similar way to how Clang diagnostics work.

A fix-it hint can be attached to a diagnostic message

clang-tidy

34

Custom clang-tidy checks

⬅ your custom
clang-tidy build

⬅ your custom checks

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

352021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Write custom checks for your needs
(project specific)

Run them regularly !

36

Explore Further

https://steveire.wordpress.com/2019/01/02/refactor-with-clang-tooling-at-codedive-2018/

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

https://steveire.wordpress.com/2019/01/02/refactor-with-clang-tooling-at-codedive-2018/

37

Explore Further

https://www.youtube.com/watch?v=JPnN2c2odNY

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

https://www.youtube.com/watch?v=JPnN2c2odNY

382021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

www.youtube.com/watch?v=Iz4C29yul2U

https://www.youtube.com/watch?v=Iz4C29yul2U

X

Explore Further

https://blogs.msdn.microsoft.com/vcblog/2018/09/18/exploring-clang-tooling-part-0-building-your-code-with-clang/

A new series of blog articles on Visual C++ Team blog by Stephen Kelly

Exploring Clang Tooling, Part 0: Building Your Code with Clang

https://blogs.msdn.microsoft.com/vcblog/2018/10/19/exploring-clang-tooling-part-1-extending-clang-tidy/
Exploring Clang Tooling, Part 1: Extending Clang-Tidy

https://blogs.msdn.microsoft.com/vcblog/2018/10/23/exploring-clang-tooling-part-2-examining-the-clang-ast-with-clang-query/
Exploring Clang Tooling, Part 2: Examining the Clang AST with clang-query

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

X

Explore Further

https://blogs.msdn.microsoft.com/vcblog/2018/11/06/exploring-clang-tooling-part-3-rewriting-code-with-clang-tidy/

A new series of blog articles on Visual C++ Team blog by Stephen Kelly

Exploring Clang Tooling, Part 3: Rewriting Code with clang-tidy

https://blogs.msdn.microsoft.com/vcblog/2018/11/27/exploring-clang-tooling-using-build-tools-with-clang-tidy/
Exploring Clang Tooling: Using Build Tools with clang-tidy

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

X

Explore Further

https://steveire.wordpress.com/2018/11/11/future-developments-in-clang-query/

More blog articles by Stephen Kelly

Future Developments in clang-query

https://steveire.wordpress.com/2018/11/20/composing-ast-matchers-in-clang-tidy/

Composing AST Matchers in clang-tidy

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

392021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

since v16.2

Clang/LLVM support
for MSBuild & CMake Projects

Ships with Clang (as optional component)

clang-cl.exe

https://devblogs.microsoft.com/cppblog/clang-llvm-support-for-msbuild-projects/📖

https://devblogs.microsoft.com/cppblog/clang-llvm-support-for-msbuild-projects/

402021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

since v16.2

412021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

v16.9

👈

422021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

since v16.2

clang-cl.exe

432021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

since v16.4

clang-tidy

code analysis

https://devblogs.microsoft.com/cppblog/code-analysis-with-clang-tidy-in-visual-studio/📖

https://devblogs.microsoft.com/cppblog/code-analysis-with-clang-tidy-in-visual-studio/

442021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

since v16.4

👉

452021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

since v16.4

https://devblogs.microsoft.com/cppblog/code-analysis-with-clang-tidy-in-visual-studio/📖

clang-tidy warnings

https://devblogs.microsoft.com/cppblog/code-analysis-with-clang-tidy-in-visual-studio/

462021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

since v16.4

clang-tidy warnings also display as in-editor squiggles

Code Analysis runs automatically in the background

472021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

NOT on  
Visual Studio 2019 v16.4+ yet ?

No problem

48

= ->

LLVM

clang-tidy

clang++

clang-format

clang-check/query

Visual Studio

2015 / 2017 / 2019www.clangpowertools.com

Clang Power Tools

2021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Free/OSS

http://www.clangpowertools.com

492021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Static vs Dynamic

Analysis

502021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Static Analysis

502021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

offline (out of the normal compilation cycle) => can take longer to process source code

Static Analysis

502021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

offline (out of the normal compilation cycle) => can take longer to process source code

is intimately linked to the used programming language

Static Analysis

502021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

offline (out of the normal compilation cycle) => can take longer to process source code

is intimately linked to the used programming language

can detect a lot of semantic issues

Static Analysis

502021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

offline (out of the normal compilation cycle) => can take longer to process source code

is intimately linked to the used programming language

can detect a lot of semantic issues

can yield a lot of false positive results (sometimes you go on a wild goose chase)

Static Analysis

502021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

offline (out of the normal compilation cycle) => can take longer to process source code

is intimately linked to the used programming language

can detect a lot of semantic issues

can yield a lot of false positive results (sometimes you go on a wild goose chase)

very poor at whole program analysis (follow connections in different TUs)

Static Analysis

502021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

offline (out of the normal compilation cycle) => can take longer to process source code

is intimately linked to the used programming language

can detect a lot of semantic issues

can yield a lot of false positive results (sometimes you go on a wild goose chase)

very poor at whole program analysis (follow connections in different TUs)

almost helpless around virtual functions (difficult to de-virtualize calls)

Static Analysis

502021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

offline (out of the normal compilation cycle) => can take longer to process source code

is intimately linked to the used programming language

can detect a lot of semantic issues

can yield a lot of false positive results (sometimes you go on a wild goose chase)

very poor at whole program analysis (follow connections in different TUs)

almost helpless around virtual functions (difficult to de-virtualize calls)

weak analysis ability around global pointers

Static Analysis

502021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

offline (out of the normal compilation cycle) => can take longer to process source code

is intimately linked to the used programming language

can detect a lot of semantic issues

can yield a lot of false positive results (sometimes you go on a wild goose chase)

very poor at whole program analysis (follow connections in different TUs)

almost helpless around virtual functions (difficult to de-virtualize calls)

weak analysis ability around global pointers

pointer aliasing makes it hard to prove things (alias analysis is hard problem)

Static Analysis

502021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

offline (out of the normal compilation cycle) => can take longer to process source code

is intimately linked to the used programming language

can detect a lot of semantic issues

can yield a lot of false positive results (sometimes you go on a wild goose chase)

very poor at whole program analysis (follow connections in different TUs)

almost helpless around virtual functions (difficult to de-virtualize calls)

weak analysis ability around global pointers

pointer aliasing makes it hard to prove things (alias analysis is hard problem)

vicious cycle: type propagation <> alias analysis

Static Analysis

512021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Dynamic Analysis

512021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode

512021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode

runtime overhead (performance impact: depending on tool, from 2x up to 10x)

512021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode

runtime overhead (performance impact: depending on tool, from 2x up to 10x)

extra-memory usage (for memory related tools/instrumentation), 2x or more

512021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode

runtime overhead (performance impact: depending on tool, from 2x up to 10x)

extra-memory usage (for memory related tools/instrumentation), 2x or more

sometimes difficult to map error reports into source code for Release/optimized builds

(symbols info, line numbers, inlined functions)

512021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode

runtime overhead (performance impact: depending on tool, from 2x up to 10x)

extra-memory usage (for memory related tools/instrumentation), 2x or more

sometimes difficult to map error reports into source code for Release/optimized builds

(symbols info, line numbers, inlined functions)

some tools require to recompile the whole program in instrumented mode

512021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode

runtime overhead (performance impact: depending on tool, from 2x up to 10x)

extra-memory usage (for memory related tools/instrumentation), 2x or more

sometimes difficult to map error reports into source code for Release/optimized builds

(symbols info, line numbers, inlined functions)

some tools require to recompile the whole program in instrumented mode

must integrate runtime analysis with Test Units

512021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode

runtime overhead (performance impact: depending on tool, from 2x up to 10x)

extra-memory usage (for memory related tools/instrumentation), 2x or more

sometimes difficult to map error reports into source code for Release/optimized builds

(symbols info, line numbers, inlined functions)

some tools require to recompile the whole program in instrumented mode

must integrate runtime analysis with Test Units

must ensure good code coverage for the runtime analysis (all possible scenarios)

512021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode

runtime overhead (performance impact: depending on tool, from 2x up to 10x)

extra-memory usage (for memory related tools/instrumentation), 2x or more

sometimes difficult to map error reports into source code for Release/optimized builds

(symbols info, line numbers, inlined functions)

some tools require to recompile the whole program in instrumented mode

must integrate runtime analysis with Test Units

must ensure good code coverage for the runtime analysis (all possible scenarios)

the biggest impact when combined with fuzzing

512021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

0 false positives!

Dynamic Analysis

sometimes intrusive: you need to compile the program in a special mode

runtime overhead (performance impact: depending on tool, from 2x up to 10x)

extra-memory usage (for memory related tools/instrumentation), 2x or more

sometimes difficult to map error reports into source code for Release/optimized builds

(symbols info, line numbers, inlined functions)

some tools require to recompile the whole program in instrumented mode

must integrate runtime analysis with Test Units

must ensure good code coverage for the runtime analysis (all possible scenarios)

the biggest impact when combined with fuzzing

522021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Part II

Dynamic Analysis

532021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Control Flow GuardICYMI

https://aka.ms/cpp/cfg-llvm

/guard:cf

Enforce control flow integrity (Windows 8.1 & Windows 10)

MSVC

CFG is now supported in LLVM 10+

CFG is complementary to other exploit mitigations, such as:

Address Space Layout Randomization (ASLR)

Data Execution Prevention (DEP)

C++ & Rust

https://aka.ms/cpp/cfg-llvm

542021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Sanitizers

552021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Sanitizers

AddressSanitizer - detects addressability issues

LeakSanitizer - detects memory leaks

ThreadSanitizer - detects data races and deadlocks

MemorySanitizer - detects use of uninitialized memory

HWASAN - hardware-assisted AddressSanitizer (consumes less memory)

UBSan - detects Undefined Behavior
github.com/google/sanitizers

https://github.com/google/sanitizers

562021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

meetingcpp.com/mcpp/survey/?q=19

https://meetingcpp.com/mcpp/survey/?q=19

572021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Common Vulnerabilities and Exposures

youtube.com/watch?v=0EsqxGgYOQU

Memory safety continues to dominate

https://www.youtube.com/watch?v=0EsqxGgYOQU

582021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Address Sanitizer (ASan)

github.com/google/sanitizers/wiki/AddressSanitizer

De facto standard for detecting memory safety issues

It’s important for basic correctness and sometimes true vulnerabilities

https://github.com/google/sanitizers/wiki/AddressSanitizer

592021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Address Sanitizer (ASan)

Detects:

Use after free (dangling pointer dereference)

Heap buffer overflow

Stack buffer overflow

Global buffer overflow

Use after return

Use after scope

Initialization order bugs

Memory leaks
github.com/google/sanitizers/wiki/AddressSanitizer

https://github.com/google/sanitizers/wiki/AddressSanitizer

602021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Address Sanitizer (ASan)

Started in LLVM by a team @ Google

and quickly took off as a de facto industry standard

for runtime program analysis

github.com/google/sanitizers/wiki/AddressSanitizer

https://github.com/google/sanitizers/wiki/AddressSanitizer

612021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Address Sanitizer (ASan)

LLVM starting with version 3.1 (2012)

GCC starting with version 4.8 (2013)

MSVC starting with VS 16.4 (late 2019, exp.)

http://llvm.org/
http://gcc.gnu.org/
https://visualstudio.com

622021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Address Sanitizer

(ASan)

Visual Studio 2019

since v16.4

devblogs.microsoft.com/cppblog/addresssanitizer-asan-for-windows-with-msvc/📖

🎉

October 2019

https://devblogs.microsoft.com/cppblog/addresssanitizer-asan-for-windows-with-msvc/

632021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

https://www.youtube.com/watch?v=0EsqxGgYOQU

sneak
peek

https://www.youtube.com/watch?v=0EsqxGgYOQU

642021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

since v16.4

👈

652021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

since v16.4

👈

👈

662021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

since v16.4

👈
Just x86/Release :(

Tech Preview
October 2019

672021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

since v16.7

👈

x64 & Debug builds
August 2020

Tech Preview

682021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

since v16.7

x64 & Debug builds

August 2020

docs.microsoft.com/en-us/visualstudio/releases/2019/release-notes#16.7.0

support all Debug runtimes: /MTd /MDd

+

Tech Preview

https://docs.microsoft.com/en-us/visualstudio/releases/2019/release-notes#16.7.0

692021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

stack-use-after-scope

stack-buffer-overflow

stack-buffer-underflow

heap-buffer-overflow (no underflow)

heap-use-after-free

calloc-overflow

dynamic-stack-buffer-overflow (alloca)

global-overflow (C++ source code)

new-delete-type-mismatch

memcpy-param-overlap

allocation-size-too-big

invalid-aligned-alloc-alignment

use-after-poison

intra-object-overflow

initialization-order-fiasco

double-free

alloc-dealloc-mismatch

ASan features:

702021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

v16.8-9

global ‘C’ variables  
(in C a global can be declared many times, and each declaration can be of a different type and size)

__declspec(no_sanitize_address)  
(opt-out of instrumenting entire functions or specific variables)

automatically link appropriate ASan libs  
(eg. when building from command-line with /fsanitize:address)

use-after-return (opt-in)  
(requires code gen that utilizes two stack frames for each function)

New ASan features:

712021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

v16.9

NEW

devblogs.microsoft.com/visualstudio/vs2019-v16-9-and-v16-10-preview-1/

March 2021

https://devblogs.microsoft.com/visualstudio/vs2019-v16-9-and-v16-10-preview-1/

722021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

ASAN is out of Experimental => GA

🎉

Visual Studio 2019

v16.9

NEW

March 2021

devblogs.microsoft.com/cppblog/address-sanitizer-for-msvc-now-generally-available

https://devblogs.microsoft.com/cppblog/address-sanitizer-for-msvc-now-generally-available/

732021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

v16.9

NEW

March 2021

732021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

v16.9

NEW

March 2021

expanded RtlAllocateHeap support (fixed compatibility issue with RtlCreateHeap and

RtlAllocateHeap interceptors when creating executable memory pools)

732021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

v16.9

NEW

March 2021

expanded RtlAllocateHeap support (fixed compatibility issue with RtlCreateHeap and

RtlAllocateHeap interceptors when creating executable memory pools)

support for the legacy GlobalAlloc and LocalAlloc family of memory functions  

(ASAN_OPTIONS=windows_hook_legacy_allocators=true)

732021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

v16.9

NEW

March 2021

expanded RtlAllocateHeap support (fixed compatibility issue with RtlCreateHeap and

RtlAllocateHeap interceptors when creating executable memory pools)

support for the legacy GlobalAlloc and LocalAlloc family of memory functions  

(ASAN_OPTIONS=windows_hook_legacy_allocators=true)

explicit error messages for shadow memory interleaving and interception failure

732021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

v16.9

NEW

March 2021

expanded RtlAllocateHeap support (fixed compatibility issue with RtlCreateHeap and

RtlAllocateHeap interceptors when creating executable memory pools)

support for the legacy GlobalAlloc and LocalAlloc family of memory functions  

(ASAN_OPTIONS=windows_hook_legacy_allocators=true)

explicit error messages for shadow memory interleaving and interception failure

IDE integration can now handle the complete collection of exceptions which ASan can report

732021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

v16.9

NEW

March 2021

expanded RtlAllocateHeap support (fixed compatibility issue with RtlCreateHeap and

RtlAllocateHeap interceptors when creating executable memory pools)

support for the legacy GlobalAlloc and LocalAlloc family of memory functions  

(ASAN_OPTIONS=windows_hook_legacy_allocators=true)

explicit error messages for shadow memory interleaving and interception failure

IDE integration can now handle the complete collection of exceptions which ASan can report

compiler/linker will suggest emitting debug information when building with ASan

742021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

NEW

March 2021

📓
docs.microsoft.com/en-us/cpp/sanitizers/asan

https://docs.microsoft.com/en-us/cpp/sanitizers/asan?view=msvc-160

752021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio ASan

Very tall order to bring ASAN to Windows

😅

762021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Challenges bringing
ASan to Windows

the surface area of the Microsoft platform is enormous

762021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Challenges bringing
ASan to Windows

the surface area of the Microsoft platform is enormous

non-standard C++

762021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Challenges bringing
ASan to Windows

the surface area of the Microsoft platform is enormous

non-standard C++ {

762021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Challenges bringing
ASan to Windows

Structured Exception Handling (SEH) /EHa

the surface area of the Microsoft platform is enormous

non-standard C++ {

762021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Challenges bringing
ASan to Windows

Structured Exception Handling (SEH) /EHa

AV traps 0xc0000005

the surface area of the Microsoft platform is enormous

non-standard C++ {

762021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Challenges bringing
ASan to Windows

Structured Exception Handling (SEH) /EHa

vast amount of legacy code (really, really, really OLD code)

AV traps 0xc0000005

the surface area of the Microsoft platform is enormous

non-standard C++ {

762021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Challenges bringing
ASan to Windows

Structured Exception Handling (SEH) /EHa

vast amount of legacy code (really, really, really OLD code)

AV traps 0xc0000005

the surface area of the Microsoft platform is enormous

COM
non-standard C++ {

762021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Challenges bringing
ASan to Windows

Structured Exception Handling (SEH) /EHa

vast amount of legacy code (really, really, really OLD code)

AV traps 0xc0000005

the surface area of the Microsoft platform is enormous

Managed C++

COM
non-standard C++ {

762021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Challenges bringing
ASan to Windows

Structured Exception Handling (SEH) /EHa

vast amount of legacy code (really, really, really OLD code)

AV traps 0xc0000005

ASan runtime interop with managed code (.NET)

the surface area of the Microsoft platform is enormous

Managed C++

COM
non-standard C++ {

772021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio ASan

"Thank you" to Microsoft team

tirelessly working on this

🙏

782021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Everyone will continue to invest heavily in this area (sanitizers)  

just because it’s so effective at just finding correctness issues

Microsoft is contributing back to LLVM

all the work they've done to make ASan runtime work on Windows

github.com/llvm/llvm-project/tree/master/compiler-rt

https://github.com/llvm/llvm-project/tree/master/compiler-rt

792021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio 2019

aka.ms/asan

ASan Visual Studio integration:

MSBuild & CMake support for both Windows & Linux

Debugger integration for MSVC and Clang/LLVM

https://aka.ms/asan

802021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Visual Studio ASan

CMake

CMakeSettings.json

// eg. under the x86-Release configuration

{

 "addressSanitizerEnabled": true

}

> build with /fsanitize:address

812021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Address Sanitizer (ASan)

822021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Address Sanitizer (ASan)

IDE Exception Helper will be displayed when an issue is encountered
=> program execution will stop

ASan logging information => Output window

832021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

==27748==ERROR: AddressSanitizer: stack-use-after-scope on address 0x0055fc68 at pc 0x793d62de bp 0x0055fbf4 sp 0x0055fbe8

WRITE of size 80 at 0x0055fc68 thread T0

 #0 0x793d62f6 in __asan_wrap_memset d:_work\5\s\llvm\projects\compiler-rt\lib\sanitizer_common\sanitizer_common_interceptors.inc:764

 #1 0x77dd46e7 (C:\WINDOWS\SYSTEM32\ntdll.dll+0x4b2c46e7)

 #2 0x77dd4ce1 (C:\WINDOWS\SYSTEM32\ntdll.dll+0x4b2c4ce1)

 #3 0x75d408fe (C:\WINDOWS\System32\KERNELBASE.dll+0x100f08fe)

 #4 0xa5ada0 in try_get_first_available_module minkernel\crts\ucrt\src\appcrt\internal\winapi_thunks.cpp:271

 #5 0xa5ae99 in try_get_function minkernel\crts\ucrt\src\appcrt\internal\winapi_thunks.cpp:326

 #6 0xa5b028 in __acrt_AppPolicyGetProcessTerminationMethodInternal minkernel\crts\ucrt\src\appcrt\internal\winapi_thunks.cpp:737

 #7 0xa606ad in __acrt_get_process_end_policy minkernel\crts\ucrt\src\appcrt\internal\win_policies.cpp:84

 #8 0xa52dcb in exit_or_terminate_process minkernel\crts\ucrt\src\appcrt\startup\exit.cpp:134

 #9 0xa52da7 in common_exit minkernel\crts\ucrt\src\appcrt\startup\exit.cpp:280

 #10 0xa52fb6 in exit minkernel\crts\ucrt\src\appcrt\startup\exit.cpp:293

 #11 0xa2deb3 in _scrt_common_main_seh d:\agent_work\2\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:295

 #12 0x75ef6358 (C:\WINDOWS\System32\KERNEL32.DLL+0x6b816358)

 #13 0x77df7a93 (C:\WINDOWS\SYSTEM32\ntdll.dll+0x4b2e7a93)

Address 0x0055fc68 is located in stack of thread T0

SUMMARY: AddressSanitizer: stack-use-after-scope d:\compiler-rt\lib\sanitizer_common\sanitizer_common_interceptors.inc:764 in __asan_wrap_memset

Shadow bytes around the buggy address:

 0x300abf30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 0x300abf70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

=>0x300abf80: 00 00 00 00 00 00 00 00 00 00 00 00 00[f8]00 00

 0x300abf90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 0x300abfd0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Shadow byte legend (one shadow byte represents 8 application bytes):

 Addressable: 00

 Partially addressable: 01 02 03 04 05 06 07

 Heap left redzone: fa

 Freed heap region: fd

 Stack left redzone: f1

 Stack mid redzone: f2

 Stack right redzone: f3

 Stack after return: f5

 Stack use after scope: f8

 Global redzone: f9

 Global init order: f6

 Poisoned by user: f7

 Container overflow: fc

 Array cookie: ac

 Intra object redzone: bb

 ASan internal: fe

 Left alloca redzone: ca

 Right alloca redzone: cb

 Shadow gap: cc

==27748==ABORTING

Clang/LLVM

842021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Snapshot File
Game changer!

Minidump file (*.dmp) <= Windows snapshot process (program virtual memory/heap + metadata)

VS can parse & open this => Points at the location the error occurred.

Changes the way you report a bug, in general

➡

+ Live Share

852021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Snapshot
Loaded

862021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

How does it work ?

872021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

ASan is just Malware,
used for Good

😈

872021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

ASan is just Malware,
used for Good

😈

882021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Compiler

 instrumentation code, stack layout, and calls into runtime

 meta-data in OBJ for the runtime

Sanitizer Runtime

 hooking malloc(), free(), memset(), etc.

 error analysis and reporting

 does not require complete recompile => great for interop

 zero false positives

Address Sanitizer (ASan)

892021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

==23364==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x12ac01b801d0 at

pc 0x7ff6e3a627be bp 0x0097d4b4fac0 sp 0x0097d4b4fac8

WRITE of size 4 at 0x12ac01b801d0 thread T0

#0 0x7ff6e3a627bd in main C:\Asana\Asana.cpp:10

#1 0x7ff6e3a66ce8 in invoke_main D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:78

#2 0x7ff6e3a66bcd in __scrt_common_main_seh D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:288

#3 0x7ff6e3a66a8d in __scrt_common_main D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:330

#4 0x7ff6e3a66d78 in mainCRTStartup D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_main.cpp:16

#5 0x7ffee9a76fd3 in BaseThreadInitThunk+0x13 (C:\WINDOWS\System32\KERNEL32.DLL+0x180016fd3)

#6 0x7ffeea97cec0 in RtlUserThreadStart+0x20 (C:\WINDOWS\SYSTEM32\ntdll.dll+0x18004cec0)

0x12ac01b801d0 is located 0 bytes to the right of 400-byte region [0x12ac01b80040,0x12ac01b801d0)

allocated by thread T0 here:

#0 0x7ffe83be7e91 in _asan_loadN_noabort+0x55555 (...\bin\HostX64\x64\clang_rt.asan_dbg_dynamic-x86_64.dll+0x180057e91)

#1 0x7ff6e3a62758 in main C:\Asana\Asana.cpp:9

#2 0x7ff6e3a66ce8 in invoke_main D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:78

#3 0x7ff6e3a66bcd in __scrt_common_main_seh D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:288

#4 0x7ff6e3a66a8d in __scrt_common_main D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:330

#5 0x7ff6e3a66d78 in mainCRTStartup D:\agent_work\9\s\src\vctools\crt\vcstartup\src\startup\exe_main.cpp:16

#6 0x7ffee9a76fd3 in BaseThreadInitThunk+0x13 (C:\WINDOWS\System32\KERNEL32.DLL+0x180016fd3)

#7 0x7ffeea97cec0 in RtlUserThreadStart+0x20 (C:\WINDOWS\SYSTEM32\ntdll.dll+0x18004cec0)

ASan Report

902021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

SUMMARY: AddressSanitizer: heap-buffer-overflow C:\Asana\Asana.cpp:10 in main()

Shadow bytes around the buggy address:

 0x04d981eeffe0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x04d981eefff0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x04d981ef0000: fa fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00
 0x04d981ef0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0x04d981ef0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x04d981ef0030: 00 00 00 00 00 00 00 00 00 00[fa]fa fa fa fa fa

 0x04d981ef0040: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
 0x04d981ef0050: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
 0x04d981ef0060: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

 0x04d981ef0070: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
 0x04d981ef0080: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

 Addressable: 00
 Partially addressable: 01 02 03 04 05 06 07
 Heap left redzone: fa

 Freed heap region: fd
 Stack left redzone: f1
 Stack mid redzone: f2
 Stack right redzone: f3
 Stack after return: f5
 Stack use after scope: f8
 Global redzone: f9
 Global init order: f6
 Poisoned by user: f7
 Container overflow: fc
 Array cookie: ac
 Intra object redzone: bb
 ASan internal: fe
 Left alloca redzone: ca
 Right alloca redzone: cb
 Shadow gap: cc

912021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Shadow byte legend

(one shadow byte represents 8 application bytes)

(of the 8 application bytes, how many are accessible)

issues & markers

👍

922021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Shadow Mapping

Process Memory Shadow Memory

👈Red zones

my allocated memory

➡ 🧪☣
Poisoned memory

932021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

if (ShadowByte::IsBad(p))

 AsanRt::Report(p, sz)

*p = 0xbadf00d

Code Generation
(simplified)

*p = 0xbadf00d ➡

If the shadow byte is poisoned,

ASAN runtime reports the problem and crashes the application

942021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Code Generation
(simplified)

 *() = 0xF8;(User_Address >> 3) + 0x30000000A Shadow Byte:

Stack use after scope

ASAN maintains a lookup table where every 8 bytes of user memory are tracked by 1 shadow byte

=> 1/8 of the address space (shadow region)

Lookups into shadow memory need to be very fast

952021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

bool ShadowByte::IsBad(Addr) // is poisoned ?
{  
 Shadow = Addr >> 3 + Offset;  
 return (*Shadow) != 0;

}

Code Generation
(simplified)

 *() = 0xF8;(User_Address >> 3) + 0x30000000A Shadow Byte:

Stack use after scope

Lookups into shadow memory need to be very fast

Location of shadow region in memory

Process Memory Shadow Memory

962021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Shadow Mapping

if (ShadowByte::IsBad(p))

 AsanRt::Report(p, sz);

*p = 0xf00d

p ShadowByte(p)

Process Memory Shadow Memory

972021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Shadow Mapping

if (ShadowByte::IsBad(p))

 AsanRt::Report(p, sz);

*p = 0xbadf00d

p ShadowByte(p)

982021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Heap Red Zones

alloc 1 alloc 2 alloc 3 alloc 4 alloc 5

alloc 1 alloc 2 alloc 3 alloc 4 alloc 5

malloc()

ASAN malloc()

992021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Heap Red Zones

alloc 1 alloc 2 alloc 3 alloc 4 alloc 5

ASAN malloc()

alloc 1 alloc 2 alloc 3 alloc 4 alloc 5

Shadow Memory

Poisoned memory

1002021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Heap Red Zones

alloc 1 alloc 2 alloc 4 alloc 5

ASAN malloc()

alloc 1 alloc 2 alloc 4 alloc 5

Shadow Memory

Poisoned memory

When an object is deallocated,

its corresponding shadow byte is poisoned

(delays reuse of freed memory)

Detect:
heap underflows/overflows
use-after-free & double free

1012021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Stack Red Zones

my_buffer

my_integer

void Func()

{

 std::byte my_buffer[12];

 int my_integer = 5;

 ...

 ...

 ...

 ...

 my_buffer[12] = 0;
}

Stack

1022021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Stack Red Zones

my_buffer

my_integer

void Func()

{

 std::byte my_buffer[12];

 int my_integer = 5;

 ...

 if (AsanRt::IsPoisoned(&my_buffer[12]))

 AsanRt::Report(my_buffer);
 my_buffer[12] = 0;

}

at runtime, the stack is poisoned when entering the function

Stack

stack red zones are un-poisoned when exiting the function

0xf1
0xf1

0xf3

0xf2

left

red zone

mid

red zone

right

red zone

libc++

libstdc++

1032021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

AddressSanitizer ContainerOverflow

with the help of code annotations in std::vector

std::vector<T>

begin() end()

capacity()

https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow

https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow

1042021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

AddressSanitizer ContainerOverflow

https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow

std::vector<T>

begin() end()

capacity()

container-overflow

poisoned memory

std::vector<int> v;

v.push_back(0);

v.push_back(1);

v.push_back(2);

assert(v.capacity() >= 4);

assert(v.size() == 3);

T * p = &v[0];

std::cout << p[3];

v[3] could be detected by
simple checks in std::vector

0xfc

0xfc

https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow

1052021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Address Sanitizer (ASan)

Very fast instrumentation 

The average slowdown of the instrumented program is ~2x

github.com/google/sanitizers/wiki/AddressSanitizerPerformanceNumbers

https://github.com/google/sanitizers/wiki/AddressSanitizerPerformanceNumbers

1062021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Problems & Gotchas

VS 16.7-16.9

Stuff you need to know

1072021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Compiling/Linking from command-line

 Compiling a single static EXE  
 link the static runtime asan-i386.lib and the cxx library

 Compiling an EXE with /MT runtime which will use ASan-instrumented DLLs  
 the EXE needs to have asan-i386.lib linked and  
 the DLLs need the clang_rt.asan_dll_thunk-i386.lib

 When compiling with the /MD dynamic runtime  
 all EXE and DLLs with instrumentation should be linked with  
 asan_dynamic-i386.lib and clang_rt.asan_dynamic_runtime_thunk-i386.lib  
 At runtime, these libraries will refer to the  
 clang_rt.asan_dynamic-i386.dll shared ASan runtime.

devblogs.microsoft.com/cppblog/asan-for-windows-x64-and-debug-build-support/

Manual CLI compile/link can be tedious

(choosing the correct ASan libraries to link against)

Check here for all the details:

Eg.

fixed in v16.9
/fsanitize:address

🪄

https://devblogs.microsoft.com/cppblog/asan-for-windows-x64-and-debug-build-support/

1082021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

error MSB8059:

-fsanitize=address (Enable Address Sanitizer) is incompatible with option

'edit-and-continue' debug information /ZI

/ZI

Edit and Continue (Debug)

1092021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

error MSB8059:

-fsanitize=address (Enable Address Sanitizer) is incompatible with option
'incremental linking (/INCREMENTAL)'

Link /INCREMENTAL
Debug builds

1102021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

ASan + /NODEFAULTLIB

The linker will be very mad at you

CRT

1112021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

ASan + /NODEFAULTLIB

CRT The linker will be very mad at you:

ASan runtime assumes
CRT is linked

1122021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

ASan + /NODEFAULTLIB

The linker will be very mad at you

if you have a custom entry point

(bypass CRT main)

CRT

1132021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Access Violation Exceptions

Debugger may break frequently and you may see a lot of SEH access violation exceptions

👉uncheck

This is normal (x64). It's how ASAN traps memory allocations to instrument its own shadow memory

Just tell the Debugger to stop breaking on this type of exception:

1142021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Problem:

A non-ASan built executable can NOT call LoadLibrary() on a DLL built with ASAN.

Reason:

ASan runtime is tracking memory and the non-ASan executable might have done something like
HeapAlloc()

devblogs.microsoft.com/cppblog/asan-for-windows-x64-and-debug-build-support/

Mixing ASan & non-ASan modules

This limitation is a problem if you're building a plugin (DLL)

MSVC team is considering dealing with this issue in a later release

https://devblogs.microsoft.com/cppblog/asan-for-windows-x64-and-debug-build-support/

1152021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

twitter.com/ciura_victor/status/1296499633825492992

warning C5059:

runtime checks and address sanitizer is not currently supported - disabling runtime checks

If you use /WX this harmless/informative warning becomes a build blocker :(

=> we had to disable /RTCs and /RTC1 so we could do the ASan experiments

/RTCs and /RTC1 Runtime Checks

https://twitter.com/ciura_victor/status/1296499633825492992

1162021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

It appears some ASan runtime PDBs were not included in the VS installer:

[Debug]

vcasand.lib(vcasan.obj) : warning LNK4099: PDB 'vcasand.pdb' was not found with 'vcasand.lib(vcasan.obj)'  
linking object as if no debug info

[Release]

vcasan.lib(vcasan.obj) : warning LNK4099: PDB 'vcasan.pdb' was not found with 'vcasan.lib(vcasan.obj)'  
linking object as if no debug info

Building an EXE

Missing PDBs from VS
v16.7

fixed in v16.9

1172021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

It appears some PDBs were not included in the VS installer:

[Debug]

libvcasand.lib(vcasan.obj) : warning LNK4099: PDB 'libvcasand.pdb' was not found with
'libvcasand.lib(vcasan.obj)

[Release]

libvcasan.lib(vcasan.obj) : warning LNK4099: PDB 'libvcasan.pdb' was not found with
'libvcasan.lib(vcasan.obj)'

Building a static LIB, linked into an EXE

Missing PDBs from VS
v16.7

fixed in v16.9

1182021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

creates metadata the IDE will parse to support error reporting in its sub-panes

metadata is stored in .dmp files produced when a program is terminated by ASan

vcasan(d).lib

IDE integration for ASan-reported exceptions now handles the complete collection of
reportable ASan exceptions

1192021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

[Debug | x64]

>libucrtd.lib(debug_heap.obj) : warning LNK4006: _calloc_dbg already defined in clang_rt.asan_dbg-x86_64.lib(asan_malloc_win.cc.obj); second definition ignored

>libucrtd.lib(debug_heap.obj) : warning LNK4006: _expand_dbg already defined in clang_rt.asan_dbg-x86_64.lib(asan_malloc_win.cc.obj); second definition ignored

>libucrtd.lib(debug_heap.obj) : warning LNK4006: _free_dbg already defined in clang_rt.asan_dbg-x86_64.lib(asan_malloc_win.cc.obj); second definition ignored

>libucrtd.lib(debug_heap.obj) : warning LNK4006: _malloc_dbg already defined in clang_rt.asan_dbg-x86_64.lib(asan_malloc_win.cc.obj); second definition ignored

>libucrtd.lib(debug_heap.obj) : warning LNK4006: _realloc_dbg already defined in clang_rt.asan_dbg-x86_64.lib(asan_malloc_win.cc.obj); second definition ignored

>libucrtd.lib(debug_heap.obj) : warning LNK4006: _recalloc_dbg already defined in clang_rt.asan_dbg-x86_64.lib(asan_malloc_win.cc.obj); second definition ignored

>libucrtd.lib(expand.obj) : warning LNK4006: _expand already defined in clang_rt.asan_dbg-x86_64.lib(asan_malloc_win.cc.obj); second definition ignored

[Debug | x86]

>libucrtd.lib(debug_heap.obj) : warning LNK4006: __calloc_dbg already defined in clang_rt.asan_dbg-i386.lib(asan_malloc_win.cc.obj); second definition ignored

>libucrtd.lib(debug_heap.obj) : warning LNK4006: __expand_dbg already defined in clang_rt.asan_dbg-i386.lib(asan_malloc_win.cc.obj); second definition ignored

>libucrtd.lib(debug_heap.obj) : warning LNK4006: __free_dbg already defined in clang_rt.asan_dbg-i386.lib(asan_malloc_win.cc.obj); second definition ignored

>libucrtd.lib(debug_heap.obj) : warning LNK4006: __malloc_dbg already defined in clang_rt.asan_dbg-i386.lib(asan_malloc_win.cc.obj); second definition ignored

>libucrtd.lib(debug_heap.obj) : warning LNK4006: __realloc_dbg already defined in clang_rt.asan_dbg-i386.lib(asan_malloc_win.cc.obj); second definition ignored

>libucrtd.lib(debug_heap.obj) : warning LNK4006: __recalloc_dbg already defined in clang_rt.asan_dbg-i386.lib(asan_malloc_win.cc.obj); second definition ignored

>libucrtd.lib(expand.obj) : warning LNK4006: __expand already defined in clang_rt.asan_dbg-i386.lib(asan_malloc_win.cc.obj); second definition ignored

Linker Trouble?

Building a static LIB, linked into an EXE

1202021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

developercommunity.visualstudio.com/content/problem/1144525/mfc-application-fails-to-link-with-address-sanitiz.html

ASan+
>uafxcw.lib(afxmem.obj) : error LNK2005: "void * __cdecl operator new(unsigned int)" (??2@YAPAXI@Z) already
defined in clang_rt.asan_cxx-i386.lib(asan_new_delete.cc.obj)

>uafxcw.lib(afxmem.obj) : error LNK2005: "void __cdecl operator delete(void *)" (??3@YAXPAX@Z) already
defined in clang_rt.asan_cxx-i386.lib(asan_new_delete.cc.obj)

>uafxcw.lib(afxmem.obj) : error LNK2005: "void * __cdecl operator new[](unsigned int)" (??_U@YAPAXI@Z)
already defined in clang_rt.asan_cxx-i386.lib(asan_new_delete.cc.obj)

>uafxcw.lib(afxmem.obj) : error LNK2005: "void __cdecl operator delete[](void *)" (??_V@YAXPAX@Z) already
defined in clang_rt.asan_cxx-i386.lib(asan_new_delete.cc.obj)

⚠ if you link statically to MFC lib

https://developercommunity.visualstudio.com/content/problem/1144525/mfc-application-fails-to-link-with-address-sanitiz.html

1212021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

ASan+

Workarounds:

set /FORCE:MULTIPLE in the linker command line (settings)

temporarily set your MFC application to link to shared MFC DLLs for testing with ASan

void* operator new(size_t size);

In general, if you have overrides for:

1222021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

ASAN Finds bugs

Really !

1232021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

AddressSanitizer: heap-buffer-overflow on address 0x0a2301b4 pc 0x005b7a35 bp 0x011df078 sp 0x011df06c

READ of size 5 at 0x0a2301b4 thread T0

 #0 0x5b7a4d in __asan_wrap_strlen crt\asan\llvm\compiler-rt\lib\sanitizer_common\sanitizer_common_interceptors.inc:365

 #1 0x278eeb in ATL::CSimpleStringT<char,0>::StringLength MSVC\14.28.29333\atlmfc\include\atlsimpstr.h:726

 #2 0x278a35 in ATL::CSimpleStringT<char,0>::SetString MSVC\14.28.29333\atlmfc\include\atlsimpstr.h:602

 #3 0x274d69 in ATL::CSimpleStringT<char,0>::operator= MSVC\14.28.29333\atlmfc\include\atlsimpstr.h:314

 #4 0x274d99 in ATL::CStringT<char,ATL::StrTraitATL<char,ATL::ChTraitsCRT<char>>>::operator=

 MSVC\14.28.29333\atlmfc\include\cstringt.h:1315

 #5 0x27469c in ATL::CStringT<char,ATL::StrTraitATL<char,ATL::ChTraitsCRT<char>>>::CStringT

 MSVC\14.28.29333\atlmfc\include\cstringt.h:1115

 #6 0x27641a in SerValUtil::DecryptString C:\JobAI\advinst\msicomp\serval\SerValUtil.cpp:85

 #7 0x3e1660 in TestSerVal C:\JobAI\testunits\serval\SerValTests.cpp:60

 #8 0x5880e5 in FunctionTest::Run C:\JobAI\testunits\Tester.cpp:71

 #9 0x5889b1 in Tester::RunTest C:\JobAI\testunits\Tester.cpp:186

 #10 0x586ddb in Tester::ExecuteCommandLine C:\JobAI\testunits\Tester.cpp:558

 #11 0x5798d1 in main C:\JobAI\testunits\comps\TestComponents.cpp:2236

0x0a2301b4 is located 0 bytes to the right of 4-byte region [0x0a2301b0,0x0a2301b4)

allocated by thread T0

1242021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Fun with ATL::CString

ATL::CSimpleArray<BYTE> decrypted;

X::DecryptString(encrypted, decrypted);

ATL::CStringA decryptedStr(&decrypted[0]);

decryptedStr.ReleaseBufferSetLength(decrypted.GetSize());

1252021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Fun with ATL::CString

ATL::CSimpleArray<BYTE> decrypted;

X::DecryptString(encrypted, decrypted);

ATL::CStringA decryptedStr(&decrypted[0]);

decryptedStr.ReleaseBufferSetLength(decrypted.GetSize());

1262021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Fun with ATL::CString

GetData()->nDataLength = nLength;

m_pszData[nLength] = 0;

...

Somewhere inside

ATL::CString::ReleaseBufferSetLength(int nLength)

{

1272021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Fun with ATL::CString

Classic story: null-terminated string.

Array of chars to string class - size has a different meaning, because of the ending \0

1282021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Easy fix

ATL::CSimpleArray<BYTE> decrypted;

X::DecryptString(encrypted, decrypted);

ATL::CStringA decryptedStr(decrypted.GetData(), decrypted.GetSize());

It's actually more efficient, too.

1292021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

AddressSanitizer: stack-buffer-overflow on address 0x00b3f766 at pc 0x00181b07 bp 0x00b3f6bc sp
0x00b3f6b0

WRITE of size 2 at 0x00b3f766 thread T0

 #0 0x181b06 in CommonCrt::ItoaT<wchar_t> C:\JobAI\platform\util\CommonCrt.h:402

 #1 0x183e02 in CommonCrt::Itoa C:\JobAI\platform\util\CommonCrt.cpp:119

 #2 0x190696 in TestCommonCrtItoa C:\JobAI\testunits\common_crt\CommonCrtTests.cpp:93

 #3 0x194821 in Tester::RunTest<int (__cdecl*)(void)> C:\JobAI\testunits\common_crt\tester\Tester.h:55

 #4 0x194b65 in main C:\JobAI\testunits\common_crt\main.cpp:22

 #5 0x1cc142 in invoke_main crt\vcstartup\src\startup\exe_common.inl:78

 #6 0x1cc046 in __scrt_common_main_seh crt\vcstartup\src\startup\exe_common.inl:288

 #7 0x1cbeec in __scrt_common_main crt\vcstartup\src\startup\exe_common.inl:330

 #8 0x1cc1a7 in mainCRTStartup crt\vcstartup\src\startup\exe_main.cpp:16

 #9 0x7645fa28 in BaseThreadInitThunk+0x18 (C:\WINDOWS\System32\KERNEL32.DLL+0x6b81fa28)

 #10 0x773e76b3 in RtlGetAppContainerNamedObjectPath+0xe3 (C:\WINDOWS\SYSTEM32\ntdll.dll+0x4b2e76b3)

 #11 0x773e7683 in RtlGetAppContainerNamedObjectPath+0xb3 (C:\WINDOWS\SYSTEM32\ntdll.dll+0x4b2e7683)

Address 0x00b3f766 is located in stack of thread T0 at offset 30 in frame

 #0 0x1905ef in TestCommonCrtItoa C:\JobAI\testunits\common_crt\CommonCrtTests.cpp:84

 This frame has 2 object(s):

 [16, 30) 'result1' <== Memory access at offset 30 overflows this variable

 [32, 46) 'result2' <== Memory access at offset 30 underflows this variable

1302021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Naive Test Unit

 const LONG kNumber1 = 21474835;

 TCHAR result1[kMaxSize];

 const TCHAR * compare1 = L"21474835";

 const LONG kNumber2 = -2100;

 TCHAR result2[kMaxSize];

 const TCHAR * compare2 = L"-2100";

 CommonCrt::Itoa(kNumber1, result1);

 ASSERT_EQ(CompareStrings(result1, compare1));

 ...

1312021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Naive Test Unit

 const LONG kNumber1 = 21474835;

 TCHAR result1[kMaxSize];

 const TCHAR * compare1 = L"21474835";

 const LONG kNumber2 = -2100;

 TCHAR result2[kMaxSize];

 const TCHAR * compare2 = L"-2100";

 CommonCrt::Itoa(kNumber1, result1);

 ASSERT_EQ(CompareStrings(result1, compare1));

 ...

1322021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

AddressSanitizer: stack-buffer-overflow on address 0x00843b3ae544 at pc 0x7ff6da711d86 bp 0x00843b3ae180
sp 0x00843b3ae188

READ of size 1 at 0x00843b3ae544 thread T0

#0 0x7ff6da711d85 in std::_Char_traits<unsigned char,long>::length MSVC\14.28.29333\include\xstring:143

 #1 0x7ff6da711667 in std::basic_string<unsigned char,std::char_traits<unsigned char>,std::allocator<unsigned char> >::assign

 MSVC\14.28.29333\include\xstring:3062

 #2 0x7ff6da70af94 in std::basic_string<unsigned char...> MSVC\14.28.29333\include\xstring:2417

 #3 0x7ff6da70c163 in TestStringUtilAsciiToUnicode C:\JobAI\testunits\strings\StringEncodingTests.cpp:26

 #4 0x7ff6da98db80 in FunctionTest::Run C:\JobAI\testunits\Tester.cpp:71

 #5 0x7ff6da98fb05 in Tester::RunTest C:\JobAI\testunits\Tester.cpp:186

 #6 0x7ff6da98b3b4 in Tester::ExecuteCommandLine C:\JobAI\testunits\Tester.cpp:558

 #7 0x7ff6da97b59e in main C:\JobAI\testunits\comps\TestComponents.cpp:2236

 #8 0x7ff6dac2a8d8 in invoke_main d:\agent_work\63\s\src\vctools\crt\vcstartup\src\startup\exe_common.inl:78

Address 0x00843b3ae544 is located in stack of thread T0 at offset 564 in frame

 #0 0x7ff6da70badf in TestStringUtilAsciiToUnicode C:\JobAI\testunits\strings\StringEncodingTests.cpp:14

This frame has 12 object(s):

 [32, 72) 'result1'

 [48, 88) 'kTextString1'

 [64, 104) 'result2'

 [80, 120) 'kTextString3'

 [96, 136) 'result3'

 [112, 152) 'compiler temporary'

 [128, 144) 'compiler temporary'

 [144, 160) 'compiler temporary'

 [160, 164) 'uChars'

 [176, 177) 'compiler temporary'

 [192, 216) 'compiler temporary'

 [208, 232) 'compiler temporary' <== Memory access at offset 564 overflows this variable

1332021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Naive Test Unit

1342021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Naive Test Unit

1342021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Naive Test Unit

It's worth paying attention to your squiggles !

VS analyzer does a pretty good job keeping you safe.

1352021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

AddressSanitizer: global-buffer-overflow on address 0x00c158ca at pc 0x00838b91 bp 0x016fef98 sp
0x016fef8c

READ of size 2 at 0x00c158ca thread T0

 #0 0x838b90 in StringUtil::StoreNULLSeparatedStrings C:\JobAI\platform\util\strings\StringProcessing.cpp:430

 #1 0x67edfb in TestStringUtilStoreNULLSeparatedStrings C:\JobAI\testunits\strings\StringProcessingTests.cpp:563

 #2 0x7e8035 in FunctionTest::Run C:\JobAI\testunits\Tester.cpp:71

 #3 0x7e8901 in Tester::RunTest C:\JobAI\testunits\Tester.cpp:186

 #4 0x7e6d2b in Tester::ExecuteCommandLine C:\JobAI\testunits\Tester.cpp:558

 #5 0x7d9821 in main C:\JobAI\testunits\comps\TestComponents.cpp:2236

 #6 0x9d92f2 in invoke_main crt\vcstartup\src\startup\exe_common.inl:78

 #7 0x9d91f6 in __scrt_common_main_seh crt\vcstartup\src\startup\exe_common.inl:288

 #8 0x9d909c in __scrt_common_main crt\vcstartup\src\startup\exe_common.inl:330

 #9 0x9d9357 in mainCRTStartup crt\vcstartup\src\startup\exe_main.cpp:16

0x00c158ca is located 0 bytes to the right of global variable '<C++ string literal>' defined in
'StringProcessingTests.cpp:561:9' (0xc158a0) of size 42

SUMMARY:

AddressSanitizer: global-buffer-overflow StringProcessing.cpp:430 in StringUtil::StoreNULLSeparatedStrings

1362021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Use the full power of your Debugger

1372021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Use the full power of your Debugger

1382021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Excessive Test Unit

...

buff = L"token0\0token1\0token2\0";

list.clear();

StringUtil::StoreNULLSeparatedStrings(buff, list);

if (list.size() != 3)

 return -1;

if (list[2] != L"token2")

 return -1;

...

1392021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Excessive Test Unit

...

buff = L"token0\0token1\0token2\0";

list.clear();

StringUtil::StoreNULLSeparatedStrings(buff, list);

if (list.size() != 3)

 return -1;

if (list[2] != L"token2")

 return -1;

...

1402021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Excessive Test Unit

/**

 * Creates a vector with strings that are separated by \0

 * aBuff - buffer containing NULL separated strings

 * aLen - the length of buffer

 * aSection - vector that contains the strings from aBuff

 */

void StoreNULLSeparatedStrings(const wchar_t * aBuff, DWORD aLen,

 vector<wstring> & aStringList);

/**

 * Creates a vector with strings that are separated by \0 and end with \0\0

 * aBuff - buffer containing NULL separated strings

 * aSection - vector that contains the strings from aBuff

 */

void StoreNULLSeparatedStrings(const wchar_t * aBuff, vector<wstring> & aStringList);

1402021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Excessive Test Unit

/**

 * Creates a vector with strings that are separated by \0

 * aBuff - buffer containing NULL separated strings

 * aLen - the length of buffer

 * aSection - vector that contains the strings from aBuff

 */

void StoreNULLSeparatedStrings(const wchar_t * aBuff, DWORD aLen,

 vector<wstring> & aStringList);

/**

 * Creates a vector with strings that are separated by \0 and end with \0\0

 * aBuff - buffer containing NULL separated strings

 * aSection - vector that contains the strings from aBuff

 */

void StoreNULLSeparatedStrings(const wchar_t * aBuff, vector<wstring> & aStringList);

OUT OF CONTRACT CALL

1412021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Just enough to wet your appetite

Go explore on your own...

🔎

1422021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Explore Further

devblogs.microsoft.com/cppblog/addresssanitizer-asan-for-windows-with-msvc/

devblogs.microsoft.com/cppblog/asan-for-windows-x64-and-debug-build-support/

AddressSanitizer (ASan) for Windows with MSVC

AddressSanitizer for Windows: x64 and Debug Build Support

📖

by Augustin Popa
@augustin_popa

https://devblogs.microsoft.com/cppblog/addresssanitizer-asan-for-windows-with-msvc/
https://devblogs.microsoft.com/cppblog/asan-for-windows-x64-and-debug-build-support/
https://twitter.com/augustin_popa

1432021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Part III

Warm Fuzzy Feelings

1442021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Sanitizers + Fuzzing
💪

Automatically generate inputs to you program to crash it.

1452021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Sanitizers + Fuzzing
Case study at Microsoft Windows scale

https://sched.co/e7C0

https://sched.co/e7C0

1462021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Sanitizers + Fuzzing
Case study at Microsoft Windows scale

https://sched.co/e7C0

https://sched.co/e7C0

1472021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

https://sched.co/e7C0

Sanitizers + Fuzzing
Case study at Microsoft Windows scale

https://sched.co/e7C0

1482021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Compile + Asan RT Fuzzing

Workflow

1492021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

1502021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

{ ASan + Fuzzing } => Azure

1512021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

youtube.com/watch?v=0EsqxGgYOQU

https://www.youtube.com/watch?v=0EsqxGgYOQU

1522021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Microsoft OneFuzz
a platform you will be able to download from Github

and run fuzzing on premise or in Azure

1532021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

1542021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Project OneFuzz

microsoft.com/security/blog/2020/09/15/microsoft-onefuzz-framework-open-source-developer-tool-fix-bugs/

A self-hosted Fuzzing-As-A-Service platform

https://www.microsoft.com/security/blog/2020/09/15/microsoft-onefuzz-framework-open-source-developer-tool-fix-bugs/

1552021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

A self-hosted
Fuzzing-As-A-Service platform

github.com/microsoft/onefuzz

https://github.com/microsoft/onefuzz

1562021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Project OneFuzz
CI/CD

New unique crashes create notifications:

Teams

ADO work items

Azure DevOps Pipeline GitHub Actions

github.com/microsoft/onefuzz-samples

🔥🔥🔥

http://github.com/microsoft/onefuzz-samples

1572021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

{ ASan + Fuzzing } => Azure

Azure MSRD service

1582021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

{ ASan + Fuzzing }

https://sched.co/e7C0

https://sched.co/e7C0

1592021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

ASAN cloud / distributed testing

docs.microsoft.com/en-us/cpp/sanitizers/asan-offline-crash-dumps

You can create the dump on test or production infrastructure
where the failure occurs, and debug it later on your developer PC

☁

Crash dumps are created upon AddressSanitizer failures

by setting the following environment variable:

set ASAN_SAVE_DUMPS=MyFileName.dmp

💻

https://docs.microsoft.com/en-us/cpp/sanitizers/asan-offline-crash-dumps?view=msvc-160

1602021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

I hope you're now as excited

as I am for leveraging the power

of ASan on Windows

1612021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Looking forward to many
days of bug-fixing ahead 😬

🔥🔥🔥

1622021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

😈

ASan Testing 🚗💨 Dieselgate style :)

1632021 Victor Ciura | @ciura_victor - Address Sanitizer on Windows

Q & A

@ciura_victor
Victor Ciura

Principal Engineer

Address Sanitizer on Windows

https://twitter.com/ciura_victor

