mosailc

=01 | Bloomberg
— U= |

VIR TUAL EVENT

COMNMABULTANTE TO FINAMCIAL AERVICES

Threads Considered Harmful

'0""llnct' .

py
p

((

Lucian Radu Teodo

S

,"""' _I./(,,) fﬂ.\‘

; .
E e B
......

<-
-

;;;;;;

. >
: .. L - -, N - » » n s 5
. - L - - of .
o s SN . d - o : :
Y . 0" PisE -) s AN
: N A . . . -
> " - N N p ’ Vet t .

...
.....

r S

¥t % v
T
Xl :

.,_'\';\\,:s'~’)) ‘d‘-} 9‘ AP
: ' ﬁ.' "‘ AN aN
e P RO Pofe \3\‘\’5

’

)7
/

J
J
g ’
e o fowl /
s /vl 2SI/ N

[4
[4
\)
3\
‘ /
\\ ”
/
\‘ /
\
\
L
- '
— ‘ 2 ~ ?T“u_“f‘?z‘:ﬁ:\i‘
=~ i\ e
- \ FEIN
\ b/
1 - | e S,
) ' g s s » . -
. R " 4 f
\ /
\ ’
\ !
\ J
g
‘ {
\\ \
]
I\
L~
/ \
AR
) .
{
'
L
e
’
'/ y

:
1
)
)

)

-

@LucT3o0

Edgar Dijkstra: Go To Statement Considered Harmful

Go To Statement Considered Harmful

Key Words Phesars: g0 10 statement, jump instruction
beaseh inatree Lion, conditional claase alternat Lo pepet
itve clause, program atellgin Program sequencog

CR Categores 53,50

oeron
For & number of yoars | have been familiar with the obeervation
that the quality of programmens » & deeressing funetion of the
dezpity of go te satements in the prograss they pn Moew
pooeatly | Sscovered why the we of the g» to statement has such
Sacstrous efocts, and | became coavinced 1hat the po te Mate
puld b abolabed from all “higher level™ prog m.ng
s (Lo everything ew perhape, plaia 1
ol tiene | O ot st h Lo e h
covery; | mow submit my consideration ¢ pabd
s very recest dacussons 8 which the subject turned wp, | have
oot wrped Lo G0
N_Y Sest remark & that, althes £h the programmer’s activity
od whea be has conatruet A forreet program. the prucess
taking place under controd of his program s the true sibject
matter of his st | i thes process that has to sccomplish
the desared of o thas process that i its dynamic bebavier
hee Lo satiafy the desired sperifications. Yet, cace the program has
been made, the “malking™ of the corrmponding provess s dele
pted 1o the machine
My secosd remark s that our s ectual powers are rather
pared to master static relations and wef powers to visualize
processes evaving i Lime are relatively poorly developed. For
that reasca we should do (a8 wise programasers aware of our
our wimest to shorten the concepiual Tap between
program 2 the dymamec process, to make the eoe
respoadence betwves the program (spread out in text space
the process (spread out in time) as trivial 38 possible
Let s now consider bow we can chamcterize the progress of &
process. (You may thisk about this ques IN 3 Yery coacrete
BARRer: suppose that & process, considerwd a3 3 time swccession
Pped alter as ardetrary action, what dats do we
der that we can redo the process uatidl the very
the program text is & pure concatenation of, sa
Atements (for the purpose of this discussion reganded
ts of magle actions) it is sufSelent to point in the
Program text o a4 po Detweed (WO succsasive ation deserip-
Soas. (In the absence of go to statements | can permit myself the
sctie ambipuity in the last three words of the previous sen-
Wace: f we parse them as “successive (sction descriptions)” we
Bean sucressive in text space e pare a8
h’?‘ﬂ.-.m e A suttesmTe Ia Lime
Pnter 10 & switable place in the text & “textual index
When we include conditional classen (if B then A), alternative
tauses (if B then Al else A2), choice clauses a8 introduced by
| CA R Hoare (enseli] of(A41, A in ¢ conditional experes
Sons w introdeced by J. MeCarthy (1 - E1, B2 - B2,
Ba < En), the fact remains that the progresa of the process re
e textual index
res we moast sdmit
sl index i 00 loager suficient. I the cane that
teal index points to the interior of & procedure be b

Volume 11 / Number 3 / March, 198

Edgar Dijkstra Go To Statement Conscderad Harmful

dynamie progress s only characterized when we also give to which
eall of the procedure we refer. With the inclusion of procedures
we can charetenize the progress of the process via a sequence of

taal indiees, the length of this seque being equal to the
dysamie depth of procedure calling

Lt us now consider repetition clauses (like, while B repent A
or vepeat A until). Logieally speaking, sueh clauses are now
superfiuous, because wo can express repetition with the ald of
revars procedures. For reasons of reallam I don't wish to ex
thide them: on the one hand, repetition clauses can be Imple
mented quate comfortably with present day fnite equipment; on
the other hand, the reasoning pattern known as “iaduction”
makes s well equipped 1o retain our (ntellectual grasp on the
processes genarated by repetition clavses. With the inehusion of
the repetition clavses textual ladites are no loager sutficient o
deseribe the dymamee progress of the process. With each entry into
s repelition clacae, Bowever, we can sasociate & so-called “'dy.
samie index.” inexombly counting the ordisal number of the
corrmponding currentl fepetition Aa fepetition ciaiaes (Jus
procedure calls) may be applied sestedly, we find that now the
progress of the process can always be uniguely characrerized by a
mived) sequence of textual and/or dyaamiec 1ad

The main point @ that the values of these indices are outside
programmer’s control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether
e wiales or ¢ They provide independent coordinates in which
1o describe the progress of the process.

Why do we meed such independent coordinates? The reason
@~and ths sems 0 be inherent to sequential processes—that
we ¢an interpret the value of a variable oaly with respect to the
progress of the process. If we wiah to count the pumber, n say, of
people in an y empty rooms, we can achieve this by increas-
ng = by one whenever we see someone entering the room. In the

ven moment that we have observed someone eatering the
t bat Bave sot yet performed the scbessquest increase of =,
its value equals the aumber of people in the room miaus one!

The unbridled wse of the go to statement has an immediate
cosseguence that it becomen termibly hard to Sad » meaniagful set
of coord ich to describe the process progress. Usually
people take into sex t as well the values of some well chosen
but this s out of the question because it is relative w0
the progress that the meaning of these values is to be understood!
With the go to statement one can, of course, still describe the
peogress unsquely by s counter counting the sumber of actions

noe program s ¢ (viz. » kind of normalized clock)

ty is that sauch a coordinate, although unique, s utterly

unhelpful. In suech a enordinate system it becomes an extremely

complicated affas define all those points of progress where,
say, » equals the namber of persoas in the room minus one!

The oo to Matemant as i stands s just too primilive; it & o

Varmaboes

mech an invitation to make a mess of one's program. One can
regard and appreciate the clauses ¢ sdared as beldling ite use. |
do mot elaim that the clauses mentioned are exha sstive in the sense
that they will satialy all needs, but whatever clauses are suggested
eg wtion elauses) they sbho satialy the requirement that a
programmer independeat coordinate system can be maintained to
dencribe the process in & helpful and managrable way

It & hard 1o end this with & fair scknowledgment. Am [o

Communications of the A 147

GO To Statement
onsidered Harmful

Dijkstra, 1968

My second remark is that our
intellectual powers are geared to
master static relations and that

processes evolving in time are
relatively poorly developed

@LucT3o0

our powers to visualize

Edgar Dijkstra

Edgar Dijkstra: Go To Statement Considered Harmful

Go To Statement Considered Harmful

Key Words and Phrsass: g0 0 statesment, jump instrection
brasch inatrae on conditional claase alternative clawse pepet
iuve clawse, program atellgbulity, program sequencing

CR Catagores 2. 03 40

eron
For a number of yoars | have been familiar with the obeervation

that 1he quality of programmers » & deereasing funetion of the

desty of go te satements in the programs they produce. More
sooeatly | ducovered why the e of the g to a'atement haa such

Saastrous efeocts, and | bevame coavineed 1hat the o te Mate

et ahould b abolobed from all “hgher level™ programming

aaguages (Lo everything ewept, perhape, plain machine eode

At that tieme | & sot sttach oo maeh importance 1o this &

covery . | mow submit my consdenations for publication beesine

i very reces! dacuseons i whech the subjeet turned up, | have

el wrged Lo 90
My St remark @ that, althosgh the programmer’s activity

CORM MG A forreet program, 1he prucess

inder conird of his program & the true subject

matter of his sctivity, for it & the process that bas 1o secomplish
the desared effect ; it & thas process that in its dynamie bebavier

S ysataly the dosared spevw Raat 5. Yot ooce the program has

been made, the “malking™ of the corrmponding provess 8 Jdele

My secosd remark s that our intellectusl powers are rather
goared Lo master statie relations and that our powers o visualize
processes eveiving In Lt are relatively poorly developed. For
- " , : , o
Smitations) our wimest to sherten the conceptual Tap between
the static program and the Jdymamic process, to make the eoe
responcence betwven the program (spread out in text space) and
the process (spread out in time) as trivial 2a preszble

Let us now coasder bow we can charcterize the progress of &
Process. (You may thiak about this question in & very concrete
BARRST: suppose 1hat & process, conmdered a3 3 time sUcCeSOn
of sctions, is stopped after as arbitrary sction, what dats do we
Mave 10 Sx in order that we can redo the process uatd the very
ame pownt?) If the program text is & pure concatenation of say
g ment statements (for the purpose of thas discassion regasded
8 the cescriptions of magle actions) it is sufeient to posat in the
PROgram text 10 A poiat Detween two successive action Gesemp-
Soas. (In the absence of go to statements | can permit myself the
Riactie ambeguity in the last three words of the previous sen-
Hace: we parse them as “sueccessive (sction descriptions)” we
Bean succesmave 10 text space f we Paser a8 saccessive action
Sescriptions™ we meas suteessive in time) Let s eall el a
Pnter 10 & swtable place in the text & “textual index

When we include conditional classen (if B then A). alternative
tanses (if B then Al else A2), choice clauses 3 introduced by
C AR Hoare (ensefi] of (A1, A2, in)), or conditional expres
ot & mtrodeced by J. MeCarthy (Bl - B B2 < 2
B < Bun), the fact remaine that the progress of the process e
Bains characterued by a single textual index

As soon a8 we ineclade 18 onr language procedures we mast admi
et o slagle textual index s 5o | rager sucient. [n the cane that
S tentunl index points 1o the interior of & procedure body the

Volume 11 / Nusber 3 / March, 198

Edgar Dijkstra Go To Statemen Conscherad Harmlul

dynamie progress is only charscterized when we also give to whieh
eall of the procedure we refer. With the inclusion of procedures
we can charsctense the progress of the process via a sequence of
tentanl inbens, the length of ths sequence being squal o the
dysamse depth of procedure calling

Lot us now consider repetition clauses (like, while B repeat A
ue "”.‘ A until) l.n‘! rally ';‘o'uh:"‘. .q.'\ \'l.um A Daw
superfiuous, because wo tan express repetition with the ald of
recamsive procedures. For reasons of realiam | don't wish to ex
thide them: on the one band, repetition clauses ean be Imple
mented quate comfortably with present day Snite SquIpmeat ; on
the other hand, the rasoning pattern known as “induction”
makes s well equipped 10 retain our intellectiaal grasp on the
processes genarated by repetition clavses. With the inehusion of
(e repetition clavses textual ladites are no loager sulficient o
deseribe the dymamee progress of the process. With each entry into
s repetition clavae, however, we can sasociate & so-oalled “dy.
samie index.”" inexombly counting the ordisal number of the
Corrmponding currenl repetition Aa fepetition ciauses (JuM »
procedure calls) may be applied sestedly, we find that now the
progress of the process can always be uniguely charmererized by a
mived) sequence of textual and/or dyaamic 1adices

The main point @ that the values of these indices are outside
programmer’s control; they are generated (either by the write-up
o Ris program or Dy the dynamic evolution of the process) whether
be wabes or not. They provide independent cvordinates in which
19 desenbe the progress of the process.

Why do we meed such independent coordinates? The reason
@~and (As wema 0 be inherent to sequential processes—that
we can interpret the value of a vanable oaly with respect to the
progress of the process. If we wiah to count the pumber, n say, of
people in an imtially empty rooms, we can achieve tha by increas-
ng = by one whenever we see someone entering the room. In the
in between moment that we have observed someone eatering the
rooms Dut Bave sot yet performed the subsequest increase of =,
its value eqquals the aumber of people in the room miaus one!

The unbridled wse of the go to statement has an immediate
cossegaence Lhat it Decomnen termibly hard o Bad 3 meaniagful set
of coordinates in which to deseribe the process progress. Usually,
people take into sccount as well the values of some well chosen
varables, but this s out of the question because it is relative w0
the progress that the meaning of these values is to be understood!
With the go teo statement cne can, of course, still describe the
progress unsquely by & counter counting the sumber of actions
performed since program start (viz. » kind of sormalized clock)
The dificuity is that such a coordinate, although unique, s utterly
mbelpful. In sueh a enordinate aystem it becomes an extremely
complicated alfair o define all those points of progress where,
say. » equals the namber of persoas in the room minas one !

The go to satemant as 6 stands s just 100 primilive; it s o
mach an invitation to make a mess of one's program. One can
regard and appreciate the clauses cosmedered as betdling its use. |
do mot elam that the clauses mentioned are exha ative in the sense
that they will satialy all needs, but whatever clausen are suggested
e g abortion clauses) they should satialy the requirement that »
programmer independeat coordinate system can be maintained to
dencribe the process in a helpful and managrable way

It @ hard 0 end this with & fair scknowledgment. Am [o

Communications of the ACM 47

For that reason we should do (as wise
programmers aware of our
limitations) our utmost to shorten the
conceptual gap between the static
program and the dynamic process, to
make the correspondence between
the program (spread out in text
space) and the process (spread out
in time) as trivial as possible

Edgar Dijkstra

@LucT3o0

Edgar Dijkstra: Go To Statement Considered Harmful

Go To Statement Considered Harmful

Key Words and Phrsass: g0 0 statesment, jump instrection
brasch inatrae on conditional claase alternative clawse pepet
iuve clawse, program atellgbulity, program sequencing

CR Catagores 2. 03 40

eron
For s number of yoars | have been familiar with the obeervation

that 1he quality of programmers » & deereasing funetion of the

desty of go te satements in the programs they produce. More
peoeatly | dscovered why the we of the go 1o statement has such

Saastrous efeocts, and | bevame coavineed 1hat the o te Mate

et ahould b abolobed from all “hgher level™ programming

aaguages (Lo everything ewept, perhape, plain machine eode

At that tieme | & sot sttach oo maeh importance 1o this &

covery . | mow submit my consdenations for publication beesine

i very reces! dacumeons 6 which the subjeet turned up. | have

deen urged Lo do o
My St remark @ that, althosgh the programmer’s activity

ds when bt has conptructed & correet program. the prcena

u.:‘ place under mird of hs program = the true sibject

matter of his sctivity, for it & the process that bas 1o secomplish

the desared effect ; it & thas process that in its dynamie bebavier

S ysataly the dosared spevw Raat 5. Yot ooce the program has

been made, the “malking™ of the corrmponding provess 8 Jdele

ated 10 the machaine
My secosd remark s that our intellectusl powers are rather

mared 1o mnaster s1ar Lhe 4 thas v

processes eveiving In Lt are relatively poorly developed. For

that reascn we should do (a8 wise programesers aware of our

Smitations) our wimest to sherten the conceptual Tap between

the static program and the Jdymamic process, to make the eoe

responcence betwven the program (spread out in text space) and
the process (spread out in time) as trivial 2a preszble

AR TRAMWIenGe progress of a

You may thiak about this question in & very concrete

BARRST: suppose t1hat & process, consdersd a3 3 time sUcceSOn

of sctions, is stopped after as arbitrary sction, what dats do we

Mave 10 Sx in order that we can redo the process uatd the very

ame pownt?) If the program text is & pure concatenation of say

g ment statements (for the purpose of thas discassion regasded

8 the Gescriptions of magle actions) it is sufelent to point in the

Program text 1o A point between two succsssive action deserip-

Soas. (In the absence of go to statements | can permit myself the

Riactie ambeguity in the last three words of the previous sen-

Hace: we parse them as “sueccessive (sction descriptions)” we

Bean succesmave 10 text space f we Paser a8 saccessive action

Sescriptions™ we meas suteessive in time) Let s eall el a

Pnter 10 & swtable place in the text & “textual index
When we include conditional classes (if B then A), alternative

tanses (if B then Al else A2), choice clauses 3 introduced by

C AR Hoare (ensefi] of (A1, A2, in)), or conditional expres

ot & mtrodeced by J. MeCarthy (Bl - B B2 < 2

B < En), the fact remains that the progress of the process re

Bains characterued by a single textual index
As soon a8 we ineclade 18 onr language procedures we mast admi

et o slagle textual index s 5o | ragrer sucient. [n the cane that

S tentunl index points 1o the interior of & procedure body the

Volume 11 / Nusber 3 / March, 198

Edgar Dijkstra Go To Statemen Conscherad Harmlul

dynamie progress is only charscterized when we also give to whieh
eall of the procedure we refer. With the inclusion of procedures
we can charsctense the progress of the process via a sequence of
tentanl inbens, the length of ths sequence being squal o the
dysamse depth of procedure calling

Lot us now consider repetition clauses (like, while B repeat A
ue "”.‘ A until) l.n‘! rally ';‘o'uh:"‘. .q.'\ \'l.um A Daw
superfiuous, because wo tan express repetition with the ald of
recamsive procedures. For reasons of realiam | don't wish to ex
thide them: on the one band, repetition clauses ean be Imple
mented quate comfortably with present day Snite SquIpmeat ; on
the other hand, the rasoning pattern known as “induction”
makes s well equipped 10 retain our intellectiaal grasp on the
processes genarated by repetition clavses. With the inehusion of
(e repetition clavses textual ladites are no loager sulficient o
deseribe the dymamee progress of the process. With each entry into
s repetition clavae, however, we can sasociate & so-oalled “dy.
samie index.”" inexombly counting the ordisal number of the
Corrmponding currenl repetition Aa fepetition ciauses (JuM »
procedure calls) may be applied sestedly, we find that now the
progress of the process can always be uniguely charmererized by a
mived) sequence of textual and/or dyaamic 1adices

The main point @ that the values of these indices are outside
programmer’s control; they are generated (either by the write-up
o Ris program or Dy the dynamic evolution of the process) whether
be wabes or not. They provide independent cvordinates in which
19 desenbe the progress of the process.

Why do we meed such independent coordinates? The reason
@~and (As wema 0 be inherent to sequential processes—that
we can interpret the value of a vanable oaly with respect to the
progress of the process. If we wiah to count the pumber, n say, of
people in an imtially empty rooms, we can achieve tha by increas-
ng = by one whenever we see someone entering the room. In the
in between moment that we have observed someone eatering the
rooms Dut Bave sot yet performed the subsequest increase of =,
its value eqquals the aumber of people in the room miaus one!

The unbridled wse of the go to statement has an immediate
cossegaence Lhat it Decomnen termibly hard o Bad 3 meaniagful set
of coordinates in which to deseribe the process progress. Usually,
people take into sccount as well the values of some well chosen
varables, but this s out of the question because it is relative w0
the progress that the meaning of these values is to be understood!
With the go teo statement cne can, of course, still describe the
progress unsquely by & counter counting the sumber of actions
performed since program start (viz. » kind of sormalized clock)
The dificuity is that such a coordinate, although unique, s utterly
mbelpful. In sueh a enordinate aystem it becomes an extremely
complicated alfair o define all those points of progress where,
say. » equals the namber of persoas in the room minas one !

The go to satemant as 6 stands s just 100 primilive; it s o
mach an invitation to make a mess of one's program. One can
regard and appreciate the clauses cosmedered as betdling its use. |
do mot elam that the clauses mentioned are exha ative in the sense
that they will satialy all needs, but whatever clausen are suggested
e g abortion clauses) they should satialy the requirement that »
programmer independeat coordinate system can be maintained to
dencribe the process in a helpful and managrable way

It @ hard 0 end this with & fair scknowledgment. Am [o

Communications of the ACM 47

BOhm-—Jacopini theorem

all programs can be represented with
sequence, selection and repetition

@LucT3o0

1966

flow diagrams

Flow Diagrams, Turing Machines
And Languages With On]y Two

Formation Rules

Corrano Boum axp GIUuseprPE JACOPINI
International Computation Centre and Istituto Nazionale
per le Applicazioni del Calecolo, Roma, Ilaly

In the first part of the poper, flow diagrams are introduced
to represent infer al. mappings of a set into itself. Although
not every diagram is decomposable into a finite number of
given base diagrams, this becomes tive at a semantical level
due to a svitable extension of the given set and of the basic
mappings defined in it. Two normalization methods of flow
diagrams are given, The first has three base diagrams; the
second, only two,

In the second part of the paper, the second method is ap-
plied to the theory of Turing machines. With every Turing
maching provided with ¢ two-way half-tape, there is associ-
ated a similar machine, doing essentially the same job, but
working on o tape obtained from the first one by interspersing
alternate blank squares. The new machine belongs to the
family, elsewhere introduced, generated by composition and
iteration from the two machines A\ and E. That family is o
proper subfamily of the whole family of Turing machines.

1. Introduction and Summary

The set of block or flow diagrams is a two-dimensional
programming language, which was used at the beginning
of automatic computing and which now still enjoys a
certain favor. As far as is known, a systematic theory of
this language does not exist. Al the most, there are some
papers by Peter [1], Gorn [2], Hermes [3], Ciampa (4],
Riguet [5], Tanov [6], Asser (7], where flow diagrams are
introduced with different purposes and defined in connec-
tion with the deseriptions of algorithms or programs.

This paper was presented as an invited talk at the 1964 Inter-
national Collogquium on Algebraic Linguisties and Automats
Theory, Jerusalem, lsrael. Preparation of the manuscript was
supported by National Science Foundation Grant GI>-2880.

This work was ecarried out at the Istituto Nazionale per le
Applicazioni del Caleolo (INAC) in collaboration with the In-
ternational Computation Centre (ICC), under the Ttalian Con-
siglio Nazionale delle Ricerche (CNR) Research Group No. 22
for 1963-64.

366 Communications of the ACM

In this paper, flow diagrams are introduced by the
ostensive method; this is done to aveid definitions which
certainly would not be of much use. In the first part
(written by G. Jacopini), methods of normalization of
diagrams are studied, which allow them to be decomposed
into base diagrams of three types (first result) or of two
types (second result). In the second part of the paper (by
C. Béhm), some results of a previous paper are reported
[8] and the results of the first part of this paper are then
used to prove that every Turing machine is reducible into,
or in a determined sense is equivalent to, a program
written in a language which admits as formation rules
only composition and iteration.

2. Normalization of Flow Diagrams

It is a well-known fact that a flow daigram is suitable
for representing programs, computers, Turing machines,
ete. Diagrams are usually composed of boxes mutually
connected by oriented lines, The boxes are of functional
type (see I'igure 1) when they represent elementary opera-
tions to be carried out on an unspecified object z of a
sel, X, the former of which may be imagined concretely
as the set of the digits contained in the memory of a
computer, the tape configuration of a Turing machine,
ete. There are other boxes of predicative type (see I'igure
2) which do not operate on an object but decide on the
next operation to be carried out, according to whether or
not a certain property of z € X occurs, Examples of
diagrams are: Z(a, 8, ¥ a, b, ¢) [Iigure 3] and
Qla, B, v, 0, € a, b, ¢, d, e) |see Figure 4|. It is easy to see
a difference between them. Inside the diagram Z, some
parts which may be considered as a diagram can be iso-
lated in such a way that if Il(a, b), Q(a, a), Ala, a, b)
denote, respectively, the diagrams of Figures 5-7, it is
natural to write

(a, B, v, a, b, ¢) = Qa, A(B, Uy, a), II(b, ¢))).

Nothing of this kind can be done for what concerns G ;
the same happens for the entire infinite class of similar
diagrams

"
whose formation rule can be easily imagined.

Let us say that while £ is decomposable according to
subdiagrams 11, € and A, the diagrams of the type €, are

not decomposable, I'rom the last consideration, which
should be obvious to anyone who tries to isolate with a

Yolume 9 / Number 5 / May, 1966

structured programming

W g g

2019

The Forgotten Art of
Structured Programming

Kevlin Henney

this talk

threads are like gotos
reasoning with threads is hard
finding a general alternative to threads

@LucT3o0

Agendo

The Problem with Coordinationw/o An Example

Threads Synchronization
| |

A Generadl Composabillity & Concurrency
Solution Decomposability Patterns

I @LucT3o0

threads

raw threads + syncrhonization (locks)

@LucT3o0

problems with threads

performance
understandability

thread safety

composability

@LucT3o0

you are likely to get it wrong!

performance
understandability

thread safety

composability

cost of locking

LLLLLL

synchronization

pottlenecks

@LucT3o0

I've often joked that
instead of picking up Djikstra's
cute acronym
we should have called the basic
synchronization object
"the bottleneck’

David Butenhof

I @LucT3o0

@LucT3o0

GAMES BROWSE THESAURUS WORD OF THE DAY WORDS AT PLAY

\%©eskinl) SINCE 1828 bottleneck
Webster

Dictionary Thesaurus

bottleneck noun

Definition of bott/leneck (Entry 2 of 3)

1 a :anarrowroute

: a point of traffic congestion

: someone or something that retards or halts free movement and
progress

b :IMPASSE

c :adramaticreduction in the size of a population (as of a species) that
results in a decrease in genetic variation

: a style of guitar playing in which glissando effects are produced by sliding
an object (such as a knife blade or the neck of a bottle) along the strings

— called also bottleneck guitar

@LucT3o0

locks do not scale

chain of locks
prolonged pauses

LLLLLL

adding d lot of threads

@@@@@@@

multiple threads on the same core

2 X1 second
| core

2 threads, |1 core

2 threads, |1 core

good ?

alternative

example |

@LucT3o0

Happy
families

are
oll
alike;
every
unhappy
family
IS
unhappy
N
its
own
waly.

he
vigorously
embraced
the
pillow
on
the
other
side
and
buried
his
face
IN

@LucT30 it

@LucT3o0

Happy
families

are
oll
alike;
every
unhappy
family
IS
unhappy
N
its
own
waly.

he
vigorously
embraced
the
pillow
on
the
other
side
and
buried
his
face
IN
It

ready?

@LucT3o0

Happy
families

are
oll
alike;
every
unhappy
family
IS
unhappy
N
its
own
waly.

he
vigorously
embraced
the
pillow
on
the
other
side
and
buried
his
face
IN
It

results

iIndividual texts ~3+3 S
Interleaved texts ~10s

@LucT3o0

example

task =1 step
seridl execution of steps = walking
concurrent execution = walking with tied legs

@LucT3o0

threads = # cores

~ for CPU intensive tasks ~

LLLLLL

composability

one cannot simply compose two programs

deadlocks, livelocks
performance problems

@LucT3o0

essential in sw. eng.

LLLLLL

threads & locks

low level primitives
like

LLLLLL

concurrency vs parallelism

goal: design for expressing the concurrency

a single-threaded application

a single-threaded application

a single-threaded application

a single-threaded application

task

using Task = std::function< void() =;

I @LucT3o0

std::vector<Task> tasks;

int rl, r2, r3;

tasks.emplace back([&]() { r f1(); }
tasks.emplace back([&]() { r f2(r1), }
tasks.emplace back([&]() { r f3(r2); }
tasks.emplace back([&]() { f4(r3) }

(autot t: tasks)

t();

I @LucT3o0

a multi-threaded application

tasks

\fHaline Nor mulize

5743 (—~ Enwcﬁn?

¢lonh ! |

(

iIndependent units of work

general algorithm

a task is when it can safely be executed
... after predecessors/constraints are done

after a task is done it checks if there are successors to enqueue

@LucT3o0

two key moments

- before the task is started (caller)
- after a task is finished (callee)

@LucT3o0

overload |
theoretical results

helgcusinginmuanisiran
rarallzlising cods Oir) (et i
regizr, We gitplors now o gt ine

ﬂ m:;a:'[gut of raulttnreaded cods,

o .1 _ > dll concurrent algorithms
?HJJJ-,E:.-UI'UJ-HEL;IJJ e ¥V N W’ A W
S laasl ‘- safety ensured
ci[d o] gl A s [E S Ll g 1of] 'l -
>
WOWST TheGloballockdownoflocks need for locks
WHERS W ITET IS VELE] SLALERVI cle) (rlexe misizie] nrilishe o o o o
,.rlnl : g Iri ;sig?auler;;ﬂ;o;a, _.J:*Tr:iilr;]; 'E;j::;urrr;;r f;ir],fmii > h I g h eff I C I e n Cy fOr g reedy O Ig O r I t h m

paeEi 02 (nriplermgriizelssiialy e Siiciarily Wit SEses,

LOMmMeniomyj

Mantras are useful — b
omitting vital informati .

4 > high speedups

C++20: nsl I .almm JJ.JJJJ:J

An introduction to CFH20NIounlE ' -
using a simple math library By '

high performance

overhead of tasks management can be small
tasks are independent by design

@LucT3o0

high performance

overhead of tasks management can be small
tasks are independent by design

Sl() — 991 K —

@LucT3o0

without Synchronization

1. mutexes

two threads with a mutex

XK H. O

a possible solution

a possible solution (2)

A .
V’Av

NV N

a better notation

a task with restrictions

cannot run in paraliel
with a task colored like the restriction

dynamic representation

example

concore::sertalizer my_ser;
backup_engine my_backup_engine;

void trigger_backup(app_data data) {
my_ser.execute([=1]{ my_backup_engine.save(data); });
}

I @LucT3o0

max 1 task
at a time

queue

I @LucT3o0

Implementation details

keep a queue of tasks to be enqueued
keep track if we are executing a task
when finishing executing a task, enqueue the next task

@LucT3o0

dynamic representation

task executors

global_executor — a task is executed as soon as a worker is free
task_serializer — execute at most one task at a given time

@LucT3o0

read-write mutexes

LLLLLL

read-write mutex

same notation

problem representation

example

concore::rw_sertalizer my_ser;
backup_engine my_backup_engine; // global resource

void get_latest backup_info(std::function<void (backup_info)> f) {
my_ser.reader().execute([7] {
// query backup data
auto data std::move(my_backup_engine.get_info());
// call the callback
f(std::move(data));

one W task at a time

. E multiple R tasks

R queue W queue

I @LucT3o0

task executors

global_executor — a task is executed as soon as a worker is free
task_serializer — execute at most one task at a given time
rw_task_serializer — restrictions between R and W tasks

@LucT3o0

3. semaphores

semaphore, count 2

Improving notation

problem representation

example

concore::n_serializer my_ser{10};
concore::concurrent_queue<backup_engine> my_backup_engines; // 10

void trigger_backup(app_data data) {
my_ser.execute([=14

// acquire a free backup engine
backup_engine engine;
bool res = my_backup_engines.try pop(engine);
assert(res);
// do the backup
engine.save(data); // assume no exceptions
// release the backup engine to the system
my_backup_engines.push(std: :move(engine));

max N tasks
at a time

queue

I @LucT3o0

task executors

global_executor — a task is executed as soon as a worker is free
task_serializer — execute at most one task at a given time
rw_task_serializer — restrictions between R and W tasks
n_task_serializer — execute at most N tasks at a given time

@LucT3o0

results so far

LLLLLL

systematic way

raising the abstraction level

NO LOCKS

we have a systematic way of avoiding locks
no blocking needed

@LucT3o0

mMaximizing throughput

make sure you have enough tasks in the system

just to be

Locks Serializers

can block threads do not block
reduce throughput throughput is ok if enough tasks

@LucT3o0

and Decomposability

task systems are composable

iInner constraints are kept
mMay require some extra constraints

no different than regular software

@LucT3o0

decomposing tasks

e.g., decomposing serializer tasks

serialize all “user account” actions
some tasks can be decomposed

@LucT3o0

user account serializer

user account serializer

user account serializer

user account serializer

user account serializer

task continuations

task continuations

new task

using Task = std::patilr
std::function< void() =, // work
std::function< void() // continuation

I @LucT3o0

serializer

serializer

- -
-\
ﬁ-—l

-

serializer

- -
:
|
"
'l
—
/ \
o

-

| eurse . exchange continuations

I
|

serializer

- -
:
|
"
'l
—
/ \
o

-

| eurse . exchange continuations

I
|

serializer

I' ¥
Y4
Y4
4
Y4
Y4
Y4

4

Y4
Y4
Y4
Y4
Y 4
-

-

| eurse . exchange continuations

serializer

Il_ AR

ﬂ-il
-

| v 2. call new logic

serializer

»l».l».

_—
A———

-

| v 3. remove old logic

serializer

»l».l».

_—
A———

-

| v 3. remove old logic

serializer

I@ LLLLLL done

serializer

I@ LLLLLL done

void profile_activity(ProfileActivityResPtr res) {
// 1. exchange continuations
auto cont concore: :exchange_cur_conttitnuation();

// 2. call new logic (spawn tasks)
concore: :task lastTask{[res]{ aggregate_results(res); }, 1}, cont};
concore::finish_task ft(std::move(lastTask), 3);
auto event doneTask.event();
concore: :spawn([event, res] {
guery_access(res);
event.notify_done();

});

concore: :spawn([event, res] {
query_transactions(res);
event.notify_done();

1)

coﬁcore::spawn([event, res] {
query_tickets(res);
event.notify_done();

});
+

my_serializer.execute([r] { profile_activity(r); });

I @LucT3o0

ey
-

p—
i hiniii—
_—

1 u :
L e e

L g *““'&:“
i L S e 5 00
i

h264dec

video decompression software
part of StarBench parallel benchmark suite

@LucT3o0

basic flow

decode slice
parse frame macro blocks

decode slice output frame
1alife]e)Y,

I e LucTao line decoding

concurrency constraints

> stages need to processed in order for a frame
> parsing needs to be in order
> decode macro-blocks needs to be in order
> d line depends on the previous line
> frame output needs to be in order

@LucT3o0

Starbench pthreads solution

iINncluded in the benchmark

LLLLLL

threads

1 parser thread
N threads for entropy /| macro-blocks
1 reorder thread (1)
1 output thread

@LucT3o0

I @LucT3o0

323
324
325
326
327
328
329

iInter-frame dependency

busy wait for the previous macro-block

(1=0; i< mb_width; i1++){
(frames || 1ine>0){
(rle->mb_cnt >= rle->prev_line->mb_cnt -1);
}
h264_decode_mb_internal(d, d->mrs, s, &m[i]);
rle->mb_cnt++;

I @LucT3o0

80.000

60.000

40.000

20.000

0.000

@® Serial execution ® pthreads ® |deal
.
4 5 6 9 10 11 12 13 14 15 16

@LucT3o0

concore solution

O O GitHub - lucteo/concore: Core X -+

C & github.com w & » O

README.md

concore

Core abstractions for dealing with concurrency in C++

coiecor [cocs S

About

concore is a C++ library that aims to raise the abstraction level when designing concurrent
programs. It allows the user to build complex concurrent programs without the need of
manually controlling threads and without the need of (blocking) synchronization primitives.
Instead, it allows the user to "describe" the existing concurrency, pushing the planning and
execution at the library level.

We strongly believe that the user should focus on describing the concurrency, not fighting
synchronization problems.

The library also aims at building highly efficient applications, by trying to maximize the
throughput.

general approach

pipeline for general flow
tasks for macro-block lines

@LucT3o0

pipeline

i e e
entropy ! ! ! !
macro-block H11

= = = —

concore::task_group group

pipeline

concore::task group::create();

concore: :pipeline<DecFrame> process{h->threads, group};

auto 1n order concore::

stage _ordering::in_order;

auto conc concore::stage ordering::concurrent;

process.add _stage(in_orde
[&process] (DecFrame
process.add_stage(conc,
process.add_stage(in_orde
process.add_stage(in_orde

// Push the first frame t
process.push(DecFrame{0,

r,

frm) {1 stage_parse(frm, process);
stage_decode_slice_entropy);

r, &stage_decode_slice_mb);

r, &stage_gen_output);

hrough the pipeline
ctx});

// Wailt until we process all the pipeltine

concore: :wait(group);

I @LucT3o0

mMacro-block dependencies
EEEEEEEEEE

processing macro-blocks

struct process matrix {
cell fun t = std::function<void(int x, int y)>;

voild start(int w, tnt h, cell fun t cf, concore::task

width = w;

height = h;

cell_fun ct;

done_task = std::move(donet);

ref_counts.resize(h *» w);
(int y=0; y<h; y++) A
(int x=0; x<w; X)
ref _counts[y*w + x].store(x==0 y==0)

}

// Start with the first cell
concore: :spawn(create_cell_task(0, 0));

}

I @LucT3o0

donet) {

I @LucT3o0

processing macro-blocks

concore: :task create_cell _task(int x, int y) {
auto f = [this, x, y] { cell_fun(x, y); };
auto cont [this, x, y] (std::exception ptr) {

(y < height - 1 X > 0) // Spawn bottom task
unblock_cell(x 1, vy + 1);
(X < width - 1) // Spawn right task

unblock_cell(x + 1, y, false);
(y hetght-1 X width-1) // Finish?
concore: :spawn(std: :move(done_task), false);

}s

concore: :task{f, {}, cont};

}
void unblock cell(int x, int y, bool wake workers = true) {
int 1dx =y * wiudth + Xx;
(ref_counts[idx] 1)
concore::spawn(create_cell_task(x, y), wake_workers);

decomyposition

decomyposition

NN — .-

=

decomposition

P

// This will be broken into multiple tasks. Exchange continuattion.
auto cont concore: :exchange_cur_conttitnuation();

auto grp = concore::task group::current_task_group(); P
concore::task end_task{[] 1}, grp, std::move(cont)};

void stage_decode_slice_mb(DecFrame& frm) {

auto chunk fun [&Ffrm] (int x, int y) {
decode_slice_mb_chunk(frm.global_ctx, *frm.frame_data, x, y);
s

tnt width h->mb_wtidth/mb_1line_chunk_size;
fd.mb_processing.start(width, h->mb_height, chunk_fun, std::move(end_task));

I @LucT3o0

I @LucT3o0

80.000

60.000

40.000

20.000

0.000

® Serial execution ® pthreads ® concore ® |deal
.
AN — Q_\
4 5 6 7 8 9 10 11 12 13 14 15 16

more performance

not a lot of (naive) concurrency
small tasks @ more overhead

@LucT3o0

imited concurrency (1)

\

-

imited concurrency (2)

lines of code

800

600

1010,

- -
0

I @LucT30 serial concore pthreads

results

easy to write
high-level concurrency abstractions
efficient

https://github.com/lucteo/h264dec-concore

@LucT3o0

1. create concurrent work

void start() {
tnitComponents();
concore::spawn([]J{ loadAssets(); });
concore::spawn([]J{ initilizeComputationEngine (); });

I @LucT3o0

2. delayed continuation

void handleResponse(HttpResponseData respData, HandlerType handler) {
// the work for this task: process the response
HttpResponse resp = respData.toResponse();
// create a continuation to handle the response
concore: :task cont{[resp = std::move(resp), handler] A{
handler(resp);
3%

concore: :spawn(std: :move(cont));

}
void httpAsyncCall(const char* url, HandlerType handler) {

// does HTTP logic, and eventually async calls handleRespnse()
}

void useHttpCode() {
// the work to be executed as a continuattion
HandlerType handler = [](HttpResponse resp) {
printResponse(resp);
}.

/} call the Http code asynchronously, passing the continuation work
httpAsyncCall("www.google.com", handler);
// whenever the response comes back, the above handler 1s called

I @LucT3o0

3. Joln

concore: :finish_task doneTask([]{
ListenForRequests();
}, 2); // waits on 2 tasks

// Spawn 2 tasks

auto event doneTask.event();

concore: :spawn([event] {
loadAssets();
event.notify_done();

});

concore: :spawn([event] {
tnitilizeComputationEngine();
event.notify_done();

})s
// When they complete, the done task is triggered

I @LucT3o0

4. fork-join

same thread

template |
void conc_apply(int start, int end, int granularity, F f) {

(end start granularity)
(tnt 1 = start; 1 < end; 1++)
f(1);
{

tnt mud = start (end start) 2;
auto grp = concore::task group::create();
concore::spawn([=] {1 conc_apply(start, mid, granularity, f); }, grp);

concore::spawn([=] { conc_apply(mid, end, granularity, f); }, grp);
concore::wailt(grp);

I @LucT3o0

9. task graphs

I @LucT3o0

std:

:shared_ptr<RequestData

// create the tasks

concore.

Xelg

concore:.

Xelg

concore.

Xelg

concore.

Xl

concore.

Xl

concore.

Xelg

concore.

Xelg

concore:.

Xelg

concore.

Xelg

ailr
ailr
ailr
alr

alr

ed task
ed_task
ed task
ed task
ed task

alned task

alr
aln

air

ed task
ed task
ed task

ti1{[data]
t2{[data]
t3{[data]
t4{[data]
t5{[data]
t6{[data]
t7{[data]
t8{[data]
t9{[data]

data

I S S St S S S S g S,

CreateRequestDatal();

ReadRequest(data); }};
Parse(data); }};
Authenticate(data); }};

StoreBeginAction(data); }};
AllocResources(data); }};
ComputeResult(data); }};
StoreEndAction(data); }};
UpdateStats(data); }};

SendResponse(data); }};

// set up dependencies

concore.

concore.

concore.

concore:.

concore.

// start

concore.

:add_dependencies(tl, {t2, t3});
:add_dependencies(t2, {t4, t5});
:add_dependency(t4, t7);
:add_dependencies({t3, t5}, t6);
:add_dependencies(t6, {t7, t8, t9});

the graph
:spawn(tl);

6. serializers

/. concurrent for

std::vector<int> i1ds = getAssetlds();
int n tds.size();
std::vector<Asset> assets(n);

concore::conc_for(0, n, [&](int 1) { assets[i] prepareAsset(ids[i]); });

I @LucT3o0

template< class ExecutionPolicy, class ForwardIt, class UnaryFunction?2
void for_each(ExecutionPolticy policy, ForwardIt first, ForwardIt last,
UnaryFunction2 f);

I @LucT3o0

3. concurrent reduce

oM.

——
-

std::vector<Resource> res getResources();

auto oper [&](int prevMem, Resourceé& res) -> int {
prevMem getMemoryConsumpttion(res);

};

auto reduce [](int lhs, int rhs) -> int { Lhs rhs; };

int totalMem concore::conc_reduce(res.begin(), res.end(), 0, oper, reduce);

I @LucT3o0

template<class ExecutionPolticy,
class ForwardIt, class T, class BinaryOp, class UnaryOp
T transform_reduce(ExecutionPolicy&d: policy,
ForwardIt first, ForwardIt Llast,
T tnit, BinaryOp binary_op, UnaryOp unary_op);

I @LucT3o0

9. concurrent scan

404444@%

QOQOQGQG

std::vector<FeatureVector> in = getInputDatal();
std::vector<FeatureVector> out(in.size());

auto op []J(FeatureVector lhs, FeatureVector rhs) -> FeatureVector {
combineFeatures(lhs, rhs);
s

concore::conc_scan(in.begun(), tn.end(), out.begin(), FeatureVector(), op);

I @LucT3o0

template< class ExecutionPolicy, class ForwardItl, class ForwardIt2,
class BinaryOperation, class T
ForwardIt2 inclusive_scan(ExecutionPolicy policy,
ForwardItl first, ForwardItl last,
ForwardIt2 d _first,
BinaryOperation binary_op, T init);

I @LucT3o0

high-level concurrency abstractions

Nno Mmore low-level primitives

LLLLLL

My second remark is that our
intellectual powers are geared to
master static relations and that

processes evolving in time are
relatively poorly developed

@LucT3o0

our powers to visualize

Edgar Dijkstra

Edgar Dijkstra: Go To Statement Considered Harmful

Go To Statement Considered Harmful

Key Words and Phrsass: g0 0 statesment, jump instrection
brasch inatrae on conditional claase alternative clawse pepet
iuve clawse, program atellgbulity, program sequencing

CR Catagores 2. 03 40

eron
For a number of yoars | have been familiar with the obeervation

that 1he quality of programmers » & deereasing funetion of the

desty of go te satements in the programs they produce. More
sooeatly | ducovered why the e of the g to a'atement haa such

Saastrous efeocts, and | bevame coavineed 1hat the o te Mate

et ahould b abolobed from all “hgher level™ programming

aaguages (Lo everything ewept, perhape, plain machine eode

At that tieme | & sot sttach oo maeh importance 1o this &

covery . | mow submit my consdenations for publication beesine

i very reces! dacuseons i whech the subjeet turned up, | have

el wrged Lo 90
My St remark @ that, althosgh the programmer’s activity

CORM MG A forreet program, 1he prucess

inder conird of his program & the true subject

matter of his sctivity, for it & the process that bas 1o secomplish
the desared effect ; it & thas process that in its dynamie bebavier

S ysataly the dosared spevw Raat 5. Yot ooce the program has

been made, the “malking™ of the corrmponding provess 8 Jdele

My secosd remark s that our intellectusl powers are rather
goared Lo master statie relations and that our powers o visualize
processes eveiving In Lt are relatively poorly developed. For
- " , : , o
Smitations) our wimest to sherten the conceptual Tap between
the static program and the Jdymamic process, to make the eoe
responcence betwven the program (spread out in text space) and
the process (spread out in time) as trivial 2a preszble

Let us now coasder bow we can charcterize the progress of &
Process. (You may thiak about this question in & very concrete
BARRST: suppose 1hat & process, conmdered a3 3 time sUcCeSOn
of sctions, is stopped after as arbitrary sction, what dats do we
Mave 10 Sx in order that we can redo the process uatd the very
ame pownt?) If the program text is & pure concatenation of say
g ment statements (for the purpose of thas discassion regasded
8 the cescriptions of magle actions) it is sufeient to posat in the
PROgram text 10 A poiat Detween two successive action Gesemp-
Soas. (In the absence of go to statements | can permit myself the
Riactie ambeguity in the last three words of the previous sen-
Hace: we parse them as “sueccessive (sction descriptions)” we
Bean succesmave 10 text space f we Paser a8 saccessive action
Sescriptions™ we meas suteessive in time) Let s eall el a
Pnter 10 & swtable place in the text & “textual index

When we include conditional classen (if B then A). alternative
tanses (if B then Al else A2), choice clauses 3 introduced by
C AR Hoare (ensefi] of (A1, A2, in)), or conditional expres
ot & mtrodeced by J. MeCarthy (Bl - B B2 < 2
B < Bun), the fact remaine that the progress of the process e
Bains characterued by a single textual index

As soon a8 we ineclade 18 onr language procedures we mast admi
et o slagle textual index s 5o | rager sucient. [n the cane that
S tentunl index points 1o the interior of & procedure body the

Volume 11 / Nusber 3 / March, 198

Edgar Dijkstra Go To Statemen Conscherad Harmlul

dynamie progress is only charscterized when we also give to whieh
eall of the procedure we refer. With the inclusion of procedures
we can charsctense the progress of the process via a sequence of
tentanl inbens, the length of ths sequence being squal o the
dysamse depth of procedure calling

Lot us now consider repetition clauses (like, while B repeat A
ue "”.‘ A until) l.n‘! rally ';‘o'uh:"‘. .q.'\ \'l.um A Daw
superfiuous, because wo tan express repetition with the ald of
recamsive procedures. For reasons of realiam | don't wish to ex
thide them: on the one band, repetition clauses ean be Imple
mented quate comfortably with present day Snite SquIpmeat ; on
the other hand, the rasoning pattern known as “induction”
makes s well equipped 10 retain our intellectiaal grasp on the
processes genarated by repetition clavses. With the inehusion of
(e repetition clavses textual ladites are no loager sulficient o
deseribe the dymamee progress of the process. With each entry into
s repetition clavae, however, we can sasociate & so-oalled “dy.
samie index.”" inexombly counting the ordisal number of the
Corrmponding currenl repetition Aa fepetition ciauses (JuM »
procedure calls) may be applied sestedly, we find that now the
progress of the process can always be uniguely charmererized by a
mived) sequence of textual and/or dyaamic 1adices

The main point @ that the values of these indices are outside
programmer’s control; they are generated (either by the write-up
o Ris program or Dy the dynamic evolution of the process) whether
be wabes or not. They provide independent cvordinates in which
19 desenbe the progress of the process.

Why do we meed such independent coordinates? The reason
@~and (As wema 0 be inherent to sequential processes—that
we can interpret the value of a vanable oaly with respect to the
progress of the process. If we wiah to count the pumber, n say, of
people in an imtially empty rooms, we can achieve tha by increas-
ng = by one whenever we see someone entering the room. In the
in between moment that we have observed someone eatering the
rooms Dut Bave sot yet performed the subsequest increase of =,
its value eqquals the aumber of people in the room miaus one!

The unbridled wse of the go to statement has an immediate
cossegaence Lhat it Decomnen termibly hard o Bad 3 meaniagful set
of coordinates in which to deseribe the process progress. Usually,
people take into sccount as well the values of some well chosen
varables, but this s out of the question because it is relative w0
the progress that the meaning of these values is to be understood!
With the go teo statement cne can, of course, still describe the
progress unsquely by & counter counting the sumber of actions
performed since program start (viz. » kind of sormalized clock)
The dificuity is that such a coordinate, although unique, s utterly
mbelpful. In sueh a enordinate aystem it becomes an extremely
complicated alfair o define all those points of progress where,
say. » equals the namber of persoas in the room minas one !

The go to satemant as 6 stands s just 100 primilive; it s o
mach an invitation to make a mess of one's program. One can
regard and appreciate the clauses cosmedered as betdling its use. |
do mot elam that the clauses mentioned are exha ative in the sense
that they will satialy all needs, but whatever clausen are suggested
e g abortion clauses) they should satialy the requirement that »
programmer independeat coordinate system can be maintained to
dencribe the process in a helpful and managrable way

It @ hard 0 end this with & fair scknowledgment. Am [o

Communications of the ACM 47

For that reason we should do (as wise
programmers aware of our limitations) OuUr
utmost to shorten the conceptual gap
between the static program and the
dynamic process, to make the
correspondence between the program

and the process (
) as trivial as possible

Edgar Dijkstra
paraphrased)

Go To Statement Considered Harmful

Key Words and Plrsass: g0 0 statement, jump instrection
brasch inatrae on conditional claase alternative clawse pepet
iuve clawse, program atellgbulity, program sequencing

CR Categorves 2.8 80

o
For s number of yoars | have been familiar with the obeervation

that 1he quality of programmers » & deereasing funetion of the

drzmty J'o e Malements 0 e prograss they produce Maoge
sooeatly | dcovered why the e of e g to siatement haa such

Saostrous ofocts, and | bevame coavinced that the po te Mate

et abould b abolnbhed from all “higher evel™ programmeng

aaguages (Lo everything ewept, perhape, plain machine eode

At that tieme | & sot sttach oo maeh importance 1o this &

covery. | mow submit my consideratons for pablication beesine

B very recest! dacumeons 8 whieh the subjeet turned i I have

deen urged Lo do o
My St remark @ that, althosgh the programmer’s activity

ds when bt has conptructed & correet program. the prcens

taking place under contred of his program & the true subject
matter of his sctivity, for it & the process that bas to secomplish
the desred effect - it » 1has process that ia its dynamie bebavier

e Lo sataly the desired sperifications. Yet, cace the program has

been made, the “maling™ of the corrmpondiag provess is dele

ted 1o the machine
My secosd remark s that our intellectusl powers are rather

o Ca i RASIAT st1ar, g o 1hat o .

processes eviving in Lime e relatively poorly developed. For

that reascn we should do (as wise programesers aware of our

Emitations) our wimest to sherten the conceptiual gap between

the static program and the Jdymamic process, to make the eoe

rspoacence betwven the program (spread out in text space) and
the process (spread out in time) a5 trivial 38 possible

CADR CHRAN LI ;m:(?'sa - A

You may thiak about this question in & very concrete

BARRST: suppose 1hat 4 process, consdered a8 3 time sUCOCSSOn

of sctions, is stopped after as arbitrary sction, what dats do we

have 1o £x in order that we can redo the process uatil the very
ame pownt?) If the program text is & pure concatenation of say
gt ment statements (for the purpose of this discussion regarded

8 the Gescriptions of magle actions) it is sufelent to point in the

Program text 1o A point between two succsssive action deserip

Soas. (In the absence of go to statements | can permit myself the

Riactic ambeguily in the last three words of the previows sen-

Ware: f we parse them as “seccessive (sction descriptions)™ we

BeAs sucressive in text space; If we passe a8 “(successive action

Sescriptions™ we mean sutoessive in time) Lot us eall sueh a

Pnter 10 & smtable place in the text & “textual index
When we include conditional classen (if B then A). alternative

tanses (if B then Al else A2), choice clauses 3 introduced by

| CA R Hoare (enselil of (41, A2 in)), or conditional expres

Sons & introdeced by J. MeCarthy (Bl - B B2 - 2,
B <o Bun), the fact remaine that the progress of the process re

| Bains characterued by a single textual index

As soon a8 we inelode 18 onr language procedures we moast sadmit

(?) Edgar Dijkstra: Th readS Considered Harmful

dynamie progress s only charseterized when we also give to which
eall of the procedure we refer. With the inclusion of procedures
we can charsctense the progress of the process via a sequence of
tentanl inbens, the length of ths sequence being squal o the
dysamse depth of procedure calling

Lot us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logieally speaking, sueh clauses are now
superfiuous, because wo tan express repetition with the ald of
reciamsive prosedures. For reasons of realiam | don't wiah 1o ex
thide them: on the one band, repetition clauses ean be Imple
mented quite comfortably with present day Anite aquipment ; on
the other hand, the rasoning pattern known as “induction”
makes W well squipped o et our intellectiaal grasp on the
processes genarated by repetition clavses. With the inehusion of
(e repetition clavses textual ladites are no loager sulficient o
deseribe the dymamee progress of the process. With each entry into
s repetition clasae, however. we can sasociate & so-oalled “dy.
samie index.” inexombly counting the ordisal number of the
corrmponding current repetition. As repetition clauses (just as
procedure calls) may be applied sestedly, we find that now the
progress of the process can always be uniguely charmeterized by a
mived) sequence of textual and/or dynamie 1adices

The main point @ that the values of these indices are outside
programmer’s control; they are generated (either by the write-up
of his program or by the dynamic evolution of the process) whether
be wabes or not. They provide independent cvordinates in which
19 desenbe the progress of the process.

Why do we meed such independent coordinates? The mason
@~and (As wema 0 be inherent to sequential processes—that
we can interpret the value of a vanable oaly with respect to the
progress of the process. If we wiah to count the number, n say, of
people in an imtially empty room, we can achieve thay by increas-
ng = by one whenever we see someone entering the room. In the
in between moment that we have observed someone eatering the
oo Dut Bave sot yet pecformed the subsequest increase of =,
its value equals the aumber of people in the room miaus one!

The unbridled wse of the go to statement has an immediate
cossequence Lhat it Decomen termibly hard to Bad 3 meaniagful set
of coordinates in which to deseribe the process progress. Usually,
people take into sccount as well the values of some well chosen
varables, Dut this s out of the question becauses it is relative w0
the progress that the meaning of these values is to be understood!
With the go to statement one can, of course, still describe the
progress unsquely by & counter counting the sumber of actions
performed since program start (viz. » kind of normalized clock)
The dificuity is that such a coordinate, although unique, s utterly
mbelpful. In seeh a enordinate aystem it becomes an extremely
complicated alfair o define all those points of progress where,
say, » equals the namber of persoas in the room minas one!

The go to satemant as it stands s just 100 primilive; it s o
mach an invitation to make a mess of one's program. One can
regard and appreciate the clauses cosmedered as betdling its use. |
do 2ot elam that the clauses mentioned are exha ative in the snse
that they will satialy all needs, but whatever claumses are suggested
e g abortion clauses) they should satialy the requirement that a
programmer independeat coordinate system can be maintained to

| Wt & slagle textual index s 5o loager sucient. 1o the cane that dencribe the process in & helpful and managrable way
S tentunl index points 1o the interior of & procedure body the It @ hard 0 end this with & fair scknowiedgment. Am [o

Volume 11 / Nussber 3 Mareh, 12 Communications of the ACM 47

@LucT3o0

Edgar Dijkstra Go To Statemen Conscherad Harmlul

Threads Considered Harmful

.. but we have an alternative

LLLLLL

.. a global methoa

@LucT3o0

P
7/
O
O
O
C
O
i

W

T

threading primitives

pushed down to the framework
level

@LucT3o0

systematic way

raising the abstraction level
composable/decomposable

@LucT3o0

NO excuse for
raw threads and locks

@LucT3o0

http://nolocks.org

@@@@@@@

