It Depends...



novice



advanced beginner



competent



proficient



expert



expert

proficient
competent
advanced beginner
novice



expert intuitive
proficient

competent

advanced beginner

novice analytical



expert holistic
proficient

competent

advanced beginner

novice decomposed



expert situational
proficient

competent

advanced beginner

novice non-situational



expert  context-sensitive
proficient

competent

advanced beginner

novice context-free



expert “it depends...”
proficient

competent

advanced beginner

novice “always/never...”



shuhari



shu-ha-ri



Bl it



Imitate



B

INnNnovate



ik

invent



What do I think?
This code sucks.

Teedy Deigh

The Way of the Consultant



What do I think?

Well... it’s not all bad! Nothing that some
aggressive, merciless and inconsiderate
refactoring couldn’t solve.

Teedy Deigh
The Way of the Consultant



What do I think?

Although there are aspects of the system’s design that are
sound, the solution as a whole may be better aligned with the
needs of the business by leveraging the synergies of
complementary solution paths. The resulting amelioration of
quality will be further enhanced by the displacement of
vestigial solution components extant from the status quo.

Teedy Deigh
The Way of the Consultant



What do I think?
[t depends.

Teedy Deigh
the Consultant












Don't
Repeat
Yourself



mEMNEE
@Al
wBaQl

CL VR B

EdERDEG
PEELEE
GE®™®
DeagTm s
GeaaMie .
CEaEDEs
e O

Edited by Kevlin Henney

Collective Wisdom
from the Experts

1§

O’REILLY*




Beware the Share

Udi Dahan



As | worked through my first feature, | took
extra care to put in place everything | had
learned — commenting, logging, pulling out
shared code into libraries where possible,
the works.

The code review that | had felt so ready for
came as a rude awakening — reuse was
frowned upon!

Udi Dahan



How could this be? Throughout college,
reuse was held up as the epitome of quality
software engineering.

All the articles | had read, the textbooks, the
seasoned software professionals who taught
me — was it all wronge

Udi Dahan



It turns out that | was missing something
critical.

Udi Dahan



Context.

Udi Dahan



The fact that two wildly different parts of the
system performed some logic in the same
way meant less than | thought.

Up unftil | had pulled out those libraries of
shared code, these parts were not
dependent on each other. Each could
evolve independently.

Udi Dahan



directives



principles



patterns



-
Y

£ ! h WILEY SERIES IN
SOFTWARE DESIGN PATTERNS SOFTWARE DESIGN PATTERNS

PATTERN-ORIENTED PATTERN-ORIENTED
SOFTWARE SOFTWARE
ARCHITECTURE ARCHITECTURE

A Pattern Language for On Patterns and Pattern Languages

Distributed Computing

[ Volume § |

Frank Buschmann

Frank Buschmann

Kevlin Henney

Kevlin Henney

Douglas C. Schmidt Douglas C. Schmidt



The
Timeless Way of

Building




context



contlicting
forces



problem



configuration



solution



consequences



patterns



design



code



There’s no such thing
as bad weather, only
unsuitable clothing.



multex



bottleneck



scoped lock



Lz ed
hroniz
C
S Y1



Stringbuffer



String



00t )8.1148.30441)2




There’s no such thing as
thread-unsafe code, only
unsuitable threading.



Stringbuffer



Stringbuilderx



static



.

includes
the ©
Rationale

The

andard

Incorporating Technical
Corrigendum No.1




using the equivalent of the following algorithm.

char *asctime(const struct tm *timeptr)

{

static const char wday name[7] [3] = {
nSun", "Mon", npuel, nwed", "Thu", "Fri", "Sat"

};

static const char mon name[12] [3] = {
n Jan n 7 IlFeb " ; llMarll 7 "Apr" # "Mayll ¥ llJun“ .
llJulII’ “Aug“, llsepll' “Oct“, “NOV", nDecu

};

static char result[26];

.38 %.38%3d %.2d:%.2d:%.2d %d\n",
ame [timeptr->tm wdayl,
mon na.me[t:.meptr >tm mon],

timeptr->tm mday, timeptr->tm hour,
timeptr->tm min, timeptr->tm sec,

190( imeptr->tm year) ;
retur
}

Returns

The asctime function returns a pointer to the string
7.23.3.2 The ctime function

o~

(3]

(O8]

o

7.23.3.3 The gm
Synopsis

#includ:
structs

Description

The gmtime fun
down time, expres

Returns

The gmtime fun
specified time car

7.23.3.4 The 1«
Synopsis

#incluc
struct

Description

The localtim
broken-down tim

Returns

The localtim

AL = e e g JEEER



Zetrs



char * gets(char * s);



puts
gets



void example(void)

{
char s[32];
puts("What is your full name?");
gets(s);



void example(void)

{
char s[32];
puts("What is your full name?");
gets(s);



S-Programs
P-Programs
E-Programs

Meir M Lehman

“Programs, Life Cycles, and Laws of Software Evolution”



Programs whose
S - Pro g ra m S function is formally
defined by and

derivable from a
specification.

Meir M Lehman

“Programs, Life Cycles, and Laws of Software Evolution”



By Jon Bentley

programming
pearls

WRITING CORRECT PROGRAMS

In the late 1960s people were talking about the promise of
programs that verify the correctness of other programs. Unfor-
tunately, it is now the middle of the 1980s, and, with precious
few exceptions, there is still little more than talk about auto-
mated verification systems. Despite unrealized expectations,
however, the research on program verification has given us
something far more valuable than a black box that gobbles
programs and flashes “good” or “bad”—we now have a funda-
mental understanding of computer programming,

The purpose of this column is to show how that fundamen-
tal understanding can help programmers write correct pro-
grams. But before we get to the subject itself, we must keep it
in perspective. Coding skill is just one small part of writing
correct programs. The majority of the task is the subject of the
three previous columns: problem definition, algorithm design,
and data structure selection. If you perform those tasks well,
then writing correct code is usually easy.

The Challenge of Binary Search

I've given this problem as an in-class assignment in courses
at Bell Labs and IBM. The professional programmers had one
hour (sometimes more) to convert the above description into a
program in the language of their choice; a high-level pseudo-
code was fine. At the end of the specified time, almost all the
programmers reported that they had correct code for the task.
We would then take 30 minutes to examine their code,
which the programmers did with test cases. In many different
classes and with over a hundred programmers, the results
varied little: 90 percent of the programmers found bugs in
their code (and I wasn’t always convinced of the correctness
of the code in which no bugs were found).

I found this amazing: only about 10 percent of professional
programmers were able to get this small program right. But
they aren’t the only ones to find this task difficult. In the
history in Section 6.2.1 of his Sorting and Searching, Knuth
points out that while the first binary search was published in
1946, the first published binary search without bugs did not
appear until 1962.



public static int binarySearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;

while (low <= high) {

}

return -(low + 1);

int mid = (low + high) / 2;
int midvVal = a[mid];

if (midVal < key)
low = mid + 1
else if (midVal > key)
high = mid - 1;
else
return mid; // key found

// key not found.

ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html



public static int binarySearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;

while (low <= high) {
int midvVal = a[mid];

if (midVal < key)
low = mid + 1
else if (midvVal > key)
high = mid - 1;
else
return mid; // key found

}
return -(low + 1); // key not found.

ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html



public static int binarySearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;

while (low <= high) {
int mid = low + ((high - low) / 2);

}

return -(low + 1);

int midvVal = a[mid];

if (midval < key)
low = mid + 1
else if (midvVal > key)
high = mid - 1;
else
return mid; // key found

// key not found.

ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html



public static int binarySearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;

while (low <= high) {

}

return -(low + 1);

int mid = (low + high) >>> 1;
int midvVal = a[mid];

if (midVal < key)
low = mid + 1
else if (midvVal > key)
high = mid - 1;
else
return mid; // key found

// key not found.

ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html



Probably taster, and
arguably as clear









Probably faster but may
be obscure to most Java
developers (including me)

Alberto Savoia



More Programmih- 3

Confessions of a Coder

Jon Bentley :




If the programmer can simulate
a construct faster than the
compiler can implement the
construct itself, then the compiler
writer has blown it badly.

Guy L Steele, Jr



Simple Testing Can Prevent
Most Critical Failures

An Analysis of Production Failures in
Distributed Data-Intensive Systems

Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues,
Xu Zhao,Yongle Zhang, Pranay U Jain & Michael Stumm

usenix.org/system/files/conference/osdil4/osdil 4-paper-yuan.pdf



A majority of the production
failures (77%) can be
reproduced by a unit test.

usenix.org/system/files/conference/osdil4/osdil 4-paper-yuan.pdf



The general lesson that I take away
from this bug is humility: It is hard
to write even the smallest piece of
code correctly, and our whole world
runs on big, complex pieces of code.

Joshua Bloch

ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly .html



The acceptability of a

solution is determined
by the environment in
which it is embedded.

P-Programs

Meir M Lehman

“Programs, Life Cycles, and Laws of Software Evolution”



THIS 1S YOUR MACHINE LEPRNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LIRONG? )

JUST STIR THE PILE UNTIL
THEY START (DOKING RIGHT.




Al is characterized by output that isn’t strictly
dependent on the input or on the algorithm:
the output of an Al system depends critically
on a training process, in which the program
learns how to perform its task. Training
differentiates Al from traditional software
applications and data analysis.

Mike Loukides

oreilly.com/radar/planning-for-ail



Explanations must be wrong. They cannot
have perfect fidelity with respect to the original
model. If the explanation was completely
faithful to what the original model computes,
the explanation would equal the original
model, and one would not need the original
model in the first place, only the explanation.

Cynthia Rudin

“Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead”



“Machine learning” is a fancy way of saying
“finding patterns in data”.

Laurie Penny

theguardian.com/commentisfree/20 | 7/apr/20/robots-racist-sexist-people-machines-ai-language



Of course, as Lydia Nicholas [...] explains, all
this data “has to have been collected in the
past, and since society changes, you can end
up with patterns that reflect the past. If those
patterns are used to make decisions that affect
people’s lives you end up with unacceptable
discrimination.”

Laurie Penny

theguardian.com/commentisfree/20 | 7/apr/20/robots-racist-sexist-people-machines-ai-language



Programs that
mechanize a human
or societal activity.
The program has
become a part of the
world it models, it is
embedded in it.

E-Programs

Meir M Lehman

“Programs, Life Cycles, and Laws of Software Evolution”



The Making of a Fly: The Genetics of Animal Design (Paperback)
by Peter A, Lawrence

< Baturn te product infermatien

Always pay T.HI'EIUQ]"I AMAZON.COM'S Ehﬂﬂlﬂlﬁﬂ Cart or 1=-Click.
Learn more about Safe Onling Shopping and owr gafe buying guarantee.

[ AN | Mew 2iomsmomssy | Used (i5fem gissey |
Show (D New () Prime oifers only (0}

Price at a Glance
List §70.00
Price: )
Used: from $35.54
New: from
%1,730,045.91

Have g 1 5607 | Sell yours here |

Sorted by | Price + shipping |

Mew 1-2 of 2 offers
Price + Shipping Condition Seller Information

Buying Options
$1,730,040.91  mew seer: profnath o Assman
* 5199 shipping Seller Rating: Prirfinl’ 3% positive cver the past 12 mentha, or

(8,193 total ratings)

Im Stock. Ships from B, Undted States.
Dt ghipping rates and reburs solicy.
Brand new, Perfect condition, Satisfaction Guaranteed.

$2,198,177.95  New Sever: bordeebook

* 5399 shipping
{125,801 totnl ratings)

Im Stock, Ships from Unibed States.
i and

Mew ibem n excellent condition, Not used. May be a publisher
owerstock or have slight shelf wear. Satsfaction guaranteed!

Seler Rating: WErfrin” 93% positive cver the past 12 months.

Sign in to tum on 1-Click
andering

-

ar
Sign im i e on D-Click
oIEerng.




$1,730,045.91



$2,198,177.95



$35.54



8-Apr
S-Apr
10-Apr
11-Apr
12-Apr
13-Apr

profnath
51,730,045.91
52,194,443.04
52,783,493.00
53,530,663.65
54,478,395.76
55,680,526.66

bordeebook
52,198,177.95
52,788,233.00
53,536,675.57
54,486,021.69
55,600,199.43
57,217,612 38

profnath
over
previous
bordeebook

0.99830
0.59830
0.99830
0.59830
0.99830

bordeebook
over
profnath
1.270549
1.27059
1.270549
1.27059
1.27058
1.27059



0.99830



1.27509



The Making of a Fly: The Genetics of Animal Design {Paperback) Prica st s Glanca

by Peter A Lawrenee Ligk
Prica;
“ Bgturn bo product infermation Wpad: from S42.56
" Mesrl from
Alwiyl pay Bhreugh Amaran.coen's Shopping Cart & 1:Click.
Lessm more about Safe Onling Shopping snd our gafe buying QUSrsses, R, ..o L

i e () baw $1BES1 T 1EEE) Uit 13 dam $43 58] -

Blutw & Newi O i oifars onity (0] Sorted by (P + s 1)
Mew 5-2 of 2 oMers
|Price = Shigging Condition Seller Lnfarmation Buyirg Dptions
$18,651,718.08 New fater: profnath i
= B i -r
L] Sarller BpEreg B3 BOpR v cwer Bha el 12 mantba (B 27H Lobel rebingn] s o B
T B g Fam A, Uil Goates ardering.
Do shgora rfc e o
Bl o, T DR i, BT i o ]
$23,608,655.93 New tote . BoTdusbook L sMmEn |
= ELE L inininirit
ERrg Sellor st S0 P v oo £ha pant 12 montta (127,302 iotsl ratinga) b“m-l-'r"m .
wrdasing.

17 Bach. B s LAla B
Domevic shicore rfiey and o

Hibw B i sl ) i, Wl i, Fliry Dok & Sl im0 00k ' Pl WRIV1 0l il
Satndact ion guirirbiond!

michaeleisen.org/blog/?p=358



$23,698,655.93






Always design a thing by
considering it in its nexi
larger context.

Eliel Saarinen



R \"\\1\ ‘\}\ \NERY
\ R N Q\\\\\\\\\\

Based on the famous Radioseries




There 1s a theory which states that if
ever anyone discovers exactly what
the Universe is for and why it is
here, it will instantly disappear and
be replaced by something even more
bizarre and inexplicable.

There is another theory which states
that this has already happened.



Sterling flash crash
£/$, 6-7 October

—
1.27
1.26
1.24
1.22

1.2

1.18
1.17

v N &

Source: Bloomberg EE

The pound has dived on Asian markets with automated trading being blamed
for the volatility.



Digital devices tune
out small errors while
creating opportunities
for large errors.

Earl Wiener



S-Programs
P-Programs
E-Programs

Meir M Lehman

“Programs, Life Cycles, and Laws of Software Evolution”



Closed
Closed

Open




Defined
Undefined
Undefined



Definable
Definable
Undefinable




To me programming is more than
an important practical art. It is
also a gigantic undertaking in the
foundations of knowledge.

Grace Hopper



= QO N = O

. lack of ignorance

. lack of knowledge
. lack of awareness
. lack of process

. Imeta-1gnorance



known knowns

known unknowns
unknown unknowns
unknowable unknowns



known knowns

known unknowns
unknown unknowns
unknowable unknowns



known knowns

known unknowns
unknown unknowns
unknowable unknowns



known knowns

known unknowns
unknown unknowns
unknowable unknowns



unknowable unknowns



[ know that I
know nothing.

Socrates *

* Possibly



ULSS



Ultra-Large-Scale Systems



Unknowable
Decentralised
Evolving
Heterogeneous
Failing



A distributed system is one in
which the failure of a computer
you didn’t even know existed
can render your own computer
unusable.

Leslie Lamport



Charlie Morris
@cdmo

Fire in California, can't read your ebook in Pennsylvania

9:097 W LTE@ )
& www.oreilly.com/index.html E]
O'REILLY" =

Well, this is

awkward...

Due to the fires and power
outages in California,
oreilly.com is unavailable.



[t 1s a feature of a distributed
system that it may not be in a
consistent state, but it is a bug
for a client to contradict itself.

twitter.com/KevlinHenney/status/1351956942877552646



Brewer’'s theorem



CAP theorem



o >0



Consistency
Availability
Partition tolerance



Consistency
Availability



Consistency

Partition tolerance



Availability
Partition tolerance






R \"\\1\ ‘\}\ \NERY
\ R N Q\\\\\\\\\\

Based on the famous Radioseries




We demand rigidly
defined areas of doubt
and uncertainty!






On Formally Undecidable
Propositions
Of Principia Mathematica
And Related Systems

KURT GODEL

Translated by
B. MELTZER

Introduction by
R B. BRAITHWAITE



In 1911 Russell & Whitehead published Principia
Mathematica, with the goal of providing a solid
foundation for all of mathematics.

In 1931 Godel’s Incompleteness Theorem
shattered the dream, showing that for any
consistent axiomatic system there will always be
theorems that cannot be proven within the system.

Adrian Colyer

blog.acolyer.org/2020/02/03/measure-mismeasure-fairness/



DOUGLAS R.HOFSTADTER

GODEL,ESCHER,BACH:

AN ETERNALGOLDEN BRAID

AMETAPHORICAL FUGUE ON MINDS AND MACHINES

INTHE SPIRITOF LEWIS CARROLL




All consistent axiomatic
formulations of number
theory include
undecidable propositions.



undecidable propositions



How long is a
piece of string?



size t strlen(const char

{
size t n = 0;
while (s[n] !'= '"\0'")
++n;
return n;



size t strlen(const char

{

assert(s != NULL);

size t n = 0;

while (s[n] !'= '"\0'")
++n;

return n;



size t strlen(const char * s)

{
assert(s != NULL);

assert(dn (s[n] == '"\0"'"));
assert(Vi€o0..n (s+1 is a valid pointer));

size t n = 0;

while (s[n] !'= '"\0'")
++n;

return n;



void well defined(void)

{

char s[] = "Be excellent to each other";
printf("\"%s\" -> %zu\n", s, strlen(s));



volid insufficient space(void)
{
char s[5] = "Bogus";
printf("\"%s\" -> %zu\n", s, strlen(s));



volid undefined pointer value(void)

{

char * s;
printf("\"%s\" -> %zu\n", s, strlen(s));



One premise of many models of fairness in
machine learning is that you can measure (‘prove’)
fairness of a machine learning model from within
the system - i.e. from properties of the model itself
and perhaps the data it is trained on.

To show that a machine learning model is fair, you
need information from outside of the system.

Adrian Colyer

blog.acolyer.org/2020/02/03/measure-mismeasure-fairness/



AN UNSOLVABLE PROBLEM OF ELEMENTARY NUMBER
THEORY .!

By Aroxzo CHURCH.

1. Introduction. There is a class of problems of elementary number
theory which can be stated in the form that it is required to find an effectively

calculable function f of n positive integers, such that f(zy, @s, - - -, z,) =2 2
1s a necessary and sufficient condition for the truth of a certain proposition of
elementary number theory involving z;, s, * -, 2, as free variables.

An example of such a problem is the problem to find a means of de-
termining of any given positive integer n whether or not there exist positive
integers z, y, #, such that » | y» = 2. For this may be interpreted, required
to find an effectively calculable function f, such that f(n) is equal to 2 if and
only if there exist positive integers z. 4. z. such that 2" 4+ y*» = 2z7. (Clearly






push := make(chan string)
pop := make(chan string)

go Stack(push, pop)

push<- "ACCU"
push<- "2021"
Println(<-pop)
Println(<-pop)

2021
ACCU



push := make(chan string)
pop := make(chan string)

go Stack(push, pop)
Println(<-pop)



.—{ Empty }( ik { Non-Empty ]

POP [#push = #pop] [

push
pOp [#push > #pop]




Programming
Techniques

S. L. Graham, R. L. Rivest
Editors

Communicating
Sequential Processes
C.A.R. Hoare

The Queen’s University
Belfast, Northern Ireland

This paper suggests that input and output are basic
primitives of programming and that parallel
composition of communicating sequential processes is a
fundamental program structuring method. When
combined with a development of Dijkstra’s guarded
command, these concepts are surprisingly versatile.
Their use is illustrated by sample solutions of a variety
of familiar programming exercises.

Key Words and Phrases: programming,
programming languages, programming primitives,
program structures, parallel programming, concurrency,
input, output, guarded commands, nondeterminacy,
coroutines, procedures, multiple entries, multiple exits,
classes, data representations, recursion, conditional
critical regions, monitors, iterative arrays

CR Categories: 4.20, 4.22, 4.32

grams, three basic constructs have received widespread
recognition and use: A repetitive construct (e.g. the while
loop), an alternative construct (e.g. the conditional
if..then..else), and normal sequential program composi-
tion (often denoted by a semicolon). Less agreement has
been reached about the design of other important pro-
gram structures, and many suggestions have been made:
Subroutines (Fortran), procedures (Algol 60 [15]), entries
(PL/I), coroutines (UnIx [17]), classes (siMuLA 67 [5]),
processes and monitors (Concurrent Pascal [2]), clusters
(CLU [13]), forms (ALPHARD [19]), actors (Hewitt [1]).

The traditional stored program digital computer has
been designed primarily for deterministic execution of a
single sequential program. Where the desire for greater
speed has led to the introduction of parallelism, every
attempt has been made to disguise this fact from the
programmer, either by hardware itself (as in the multiple
function units of the CDC 6600) or by the software (as
in an I/O control package, or a multiprogrammed op-
erating system). However, developments of processor
technology suggest that a multiprocessor machine, con-
structed from a number of similar self-contained proc-
essors (each with its own store), may become more
powerful, capacious, reliable, and economical than a
machine which is disguised as a monoprocessor.

In order to use such a machine effectively on a single
task, the component processors must be able to com-
municate and to synchronize with each other. Many
methods of achieving this have been proposed. A widely
adopted method of communication is by inspection and
updating of a common store (as in Algol 68 [18], PL/I,
and many machine codes). However, this can create
severe problems in the construction of correct programs
and it mav lead to expense (e ¢ crossbar switches) and



This form of failure i1s
known as a deadlock.



func Stack(push <-chan string, pop chan<- string) {
var items [] string
for {
if depth := len(items); depth == 0 {
items = append(items, <-push)
} else {
select {
case newlop := <-push:
items = append(items, newTop)
case pop<- items[depth - 1]:
items = items[:depth - 1]
3



To iterate is human,
to recurse divine.

L Peter Deutsch



func Stack(push <-chan string, pop chan<- string) {
for {
nonEmptyStack (push, pop, <-push)
}
}
func nonEmptyStack(push <-chan string, pop chan<- string, top string)

{
for {

select {
case newlop := <-push:
nonEmptyStack(push, pop, newTop)
case pop<- top:
return

}



Program testing can be used to
show the presence of bugs, but
never to show their absence!

Edsger W Dijkstra

Notes on Structured Programming



push, pop := make(chan int), make(chan int)
go Stack(push, pop)

select {
case _ = <-pop:

test.Errorf("empty stack can never be popped”)
case <-time.After(???):

}



push, pop := make(chan int), make(chan int)
go Stack(push, pop)

select {
case _ = <-pop:

test.Errorf("empty stack can never be popped”)
case <-time.After(time.Eternity):

}



push, pop := make(chan int), make(chan int)
go Stack(push, pop)

select {
case _ = <-pop:

test.Errorf("empty stack can never be popped”)
case <-time.After(time.Second):

}



Halting
Problem



Halting
Froolem



Prediction is very
difficult, especially
about the future.

Niels Bohr!?



prioritise by
business value






prioritise by
estimated
business value



Humans are allergic to change.
They love to say, “We’'ve always
done it this way.” I try to fight that.
That’s why I have a clock on my
wall that runs counter-clockwise.

Grace Hopper









Kevlin Henney
@KevlinHenney

Epistemologically speaking, assumptions are the barefoot-
trodden Lego bricks in the dark of knowledge. You don't know
they're there until you know that they're there. And even if you
know there are some there, you don't know exactly where and
you'll still end up stepping on some.

O 26 2:29 PM - Apr 22, 2020



The connections between
modules are the assumptions
which the modules make
about each other.

David Parnas



(\3\\\\\\\\\\\\\\&\\&\\\\\\x\mmu\mﬁ”f“’ S
Al P




[t's often not the direct dependencies of
your project that bite you, but the
dependencies of your dependencies, all
the way on down to transitive closure.

Adrian Colyer
blog.acolyer.org/ 2020/ 09/ 21/ watchman/



How one developer just broke Node, Babel and
thousands of projects in 11 lines of JavaScript

Code pulled from NPM — which everyone was using

Careful, careful ... Don't fumble this like the JS world (Credit: Claus Rebler)

23 Mar 2016 at 01:24, Chris Williams <5 O 0 @ 1322

Updated Programmers were left staring at broken builds and failed installations on Tuesday after
someone toppled the Jenga tower of JavaScript.

A couple of hours ago, Azer Kogulu unpublished more than 250 of his modules from NPM, which is a
popular package manager used by JavaScript projects to install dependencies.



When we try to pick out
anything by itself, we find it
hitched to everything else in
the universe.

John Muir



It Depends...



