Bloomberg mosaic

Engineering

VIR TUAL EVENT

APl Vulnerabilties and What to
Do About Them

Eoin Woods

Agenda

THE STATE OF API SECURITY

INTRODUCING SOFTWARE SECURITY AND OWASP
THE TOP 10 APl SECURITY RISKS

IMPROVING SOFTWARE SECURITY

SUMMARY

Dr Eoin Woods — “Owen”

CTO at Endava since 2015

* 1990 — 2003: Product companies in UK & US
« 2003 — 2014: Capital Markets companies

7

Been trying to bridge "security” and “development
for a long time

Author, speaker, community guy

m “‘““lm‘lmu : ,
www.eoinwoods.info / @eoinwoodz

GLOBAL EMPLOYEES

AS OF DEC 31, 2020

o NEARSHORE DELIVERY o CLOSE TO CLIENT

European Union: Denmark
Romania and Bulgaria Germany
Netherlands
Central European: United Kingdom
North Macedonia, United States

Moldova, and Serbia

Latin America:
Argentina, Colombia,
Uruguay, and Venezuela

42 OFFICES // 39 CITIES // 19 COUNTRIES

Telco & Media Banking & Financial Services
Mobility Payments
Healthtech Insurance

Retail & CPG Investment Management

THE STATE OF APl SECURITY

Why Security Threats Matter

* We need dependable systems even if things go wrong
- Malice, Mistakes, Mischance

* People are sometimes bad, careless or just unlucky

« System security aims to mitigate these situations

CYBERTHREAT REAL-TIME MAP Z% En

STATISTICS DATA SOURCES BUZZ WIDGET

TODAY’S THREAT LANDSCAPE

>+ Internal applications exposed on_‘tQ Internet -

- Introspection of APls

+ Attacks being "weaponized”

DATA BREACHES 2005 - 2010

2010 e . . ® i » * e
)’ "l
2009 = Heartland = SRS
130,000,000 e = Military
Gs T-Mobile.
2008 A 4B B cdn_:n's = = el h,g,z
» UK
2007 = @ == - - @\ TI%O/X.I)-;’
94,000,000
us
2006 AOL :'s . @ Riirs
2005 ™ cgﬁgr’ Y

https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks

DATA BREACHES 2011 - 2015

“Zhitpines urdsh
iend Finder LinkedIn .,,‘; — oiabose, Yahoo
Nefwork 117,000,000 4-‘ 500,000,000
412,000,000 MySpace
164,000,000

Tumblr ‘

o)

100,000,000

2011 4

Aqe
W

© 2021 EOIN WOODS // 20210310.1

<3

DATA BREACHES 2016-2020

3 E{:..[.ﬁusy)el
db8151dd
Capital
8fit One
100,000,000

. Canva o
>

Facebook
420,000,000

Amor 139,000,000

A

200,000,000

4 Chinese YFirebcse
e resume leak Aioo'ooo.ooo

* 202,000,000

X

Dixcns
e

Facebool Google+

Aadhaar o

1,100,000,000

Cathay
. Pacific
= - Airways

i

Equifax
143,000,000

Disqus
Dailymotion

e e ©

Hautelook

y

Indian

citizens
275,000,000

MyFitnessPal

Microsoft
250,000,000

MGM
Hotels,

V Pakistani
mobile

operators

115,000,000

SolarWinds

Whitepages

—

Wawa M YouNow

30,000,000

Y ShareThis

OxyData

380,000,000

Twitter
330,000,000

150,000,000

.

Marriott

International
383,000,000

Quora
100,000,000

SKY T3
*Brcsil texcs

A
Nametests ~@
120,000,000
MyHeritage

Spambot

711,000,000

River City
Media

340,000,000

© 2021 EOIN WOODS //20210310.1

<5

The Importance of Application Security

Verizon 2019 Data Breach
Investigation report found
applications were the root cause of
about 25% of breaches

Microfocus analysis of Fortify on
Demand data found 93% of
applications had a security bug

Forrester 2019 survey suggests that
35% of security incidents had a
webapp as a root cause

Payment Cards, ,Stolen Assets
2% 1%

Phishing 18% Web ppcations
an, re

Ransomware vulnerabilities are

Social engineering 6% | ©xternalattacks

© 2021 EOIN WOODS //20210101.1

<5

What do we mean by APIs?

« \We know APIls are as old as software
« any interface to allow the invocation of one
piece of software from another
For this talk we’ll focus on network APIs

« Any network accessible way of executing
an operation on another piece of software

RPCs, RMIs, REST, GraphQL, ...

* In most cases we're assuming a
“REST style” APl —e.g. JSON over HTTP

R 5 ¥
—=

A E 3

© 2021 EOIN WOODS // 20210101.1

INTRODUCING SOFTWARE SECURITY & OWASP

<3

l
|
|
|
|
|
|
|
|

\

ASPECTS OF SECURITY PRACTICE

/
SECURE APPLICATION SECURE INFRASTRUCTURE
DESIGN DESIGN

SECURE APPLICATION SECURE INFRASTRUCTURE
IMPLEMENTATION DEPLOYMENT

SECURE SYSTEM OPERATION

© 2021 EOIN WOODS //20210310.1

Who are OWASP?

The Open Web Application Security Project

= Largely volunteer organisation, largely online

Exists to improve the state of software security

= Research, tools, guidance, standards
= Runs local chapters for face-to-face meetings

“OWASP Top 10" projects list top application security risks
= OWASP Top 10 Webapp Security Risks

= OWASP Top 10 Mobile Risks

= OWASP Top 10 API Risks

Other Key Security Organisations

MITRE Corporation fao\ /j’
= Common Vulnerabilities and Exposures (CVE) ;‘,{mit,mg
= Common Weaknesses Enumeration (CWE)
SAFECode ;
| it SAFECode
= Fundamental Practices for 11
10t Drlvmg Securltg and Integrltg

Secure Software Development
= Training

There are a lot of others too (CPNI, CERT, CIS, ISSA, ISC2, ...)

THE API TOP 10 SECURITY RISKS

How was the 2019 API List Produced?

Volunteer project of the OWASP organisation

= 3 authors, ~35 contributors
= https://www.owasp.org/index.php/OWASP_API Security Project

First version in 2019 so less mature than the WebApp Top 10
= |nitial analysis of public data sets (e.g. vulnerabilities & bug bounty data)
= Penetration testing practitioners surveyed for their own "top 10s”
= Top 10 resulted from a consensus between data and surveys
= Expert review provided refinement
= Some work to do to achieve full conceptual consistency and coherence

Future plan to extend a public call for data (like the WebApp set)

OWASP API Top 10 - 2019

#1 Broken Object Authorization #6
#2 Broken User Authentication #i
#3 Excessive Data Exposure #8
#4 Resources & Rate Limiting #9

Mass Assignment

Security Misconfiguration
Injection

Improper Asset Management

#5 Broken Function Authorization #10 Insufficient Logging and

Monitoring

&

OWASP API Top 10 - 2019

#1 Broken Object Authorization #6
#2 Broken User Authentication #r
#3 Excessive Data Exposure #8
#4 Resources & Rate Limiting #9

Mass Assignment

Security Misconfiguration
Injection

Improper Asset Management

#5 Broken Function Authorization #10 Insufficient Logging and

Monitoring

Some are closely related to the Webapp Top 10
A few surprising omissions (e.g. vulnerable components)

Exploitability

#1 Broken Object-Level Authorisation |5 i

Detectability
Technical

« After authentication many APIs don’t fully authorise access to resources
- To make matters worse object "keys” are often predictable or accessible

$> wget https://aprovider.com/era/reports/1224459/monthly-latest
- What would happen if you tried 12244707

« Hopefully the APl would recognise that you weren’t authorised to view it
* |t turns out that many don’t!

« Mitigations: enforce object authorisation for every request, well structured

API design making need for authorisation clearer, long random object
keys, testing

<3

#1 Broken Object-Level Authorisation

Examp|e' Parler authentication point

api.parler.com/v2/1login/new

-
OS

2 Parler App
I l Parler.com

\ servers

authorisation
point

N

https://medium.com/swlh/exposing-the-riot-parler-api-mistakes-9a4db4e905d5
https://github.com/d@nk/parler-tricks
https://github.com/daniel-centore/ParlerScraper

Exploitability

Prevalence

Detectability

Technical

- | attacker (@donk_enby)
— no authorisation needed

© 2021 EOIN WOODS //20210310.1

#2 Broken User Authentication

Exploitability

Prevalence

Detectability

Technical

* Arange of possible problems rather than a single weakness

 Allowing “credential stuffing”

« Accepting weak passwords => brute-force credential attacks
- Revealing authentication information in the API structure (e.g. URL)
« Missing or incorrect validation of authentication tokens (e.g. JWT)

« Mistakes in protocol implementation (very easy to do !)

« Example: see example #10

#2 Broken User Authentication

+ Mitigations:

Multi-factor authentication for humans

Exploitability

Prevalence

Detectability

Technical

Controls around login & credential recovery (e.g. password rules,

lockout periods after failures, captchas, rate limiting)
Use proven, tested authentication mechanisms

Take time to understand any sophisticated security technologies
Careful implementation with expert design and code review

Functional and penetration testing

] Exploitability |G
#3 Excessive Data Exposure Prevalence

2
Detectability | 2
Technical 2

APIls often return more data that is required by the client
* client-side filtering hides this from the user but not from software

API developers don’t always know what the client needs
 or are trying to provide a more general solution to avoid rework
Sometimes an assumption that the client is "trusted”
* analogous problem to browser-side security in webapps

Problem often not obvious unless you know the data
- automated tools aren’t going to spot this

] Exploitability |G
#3 Excessive Data Exposure Prevalence

2
Detectability | 2
Technical 2

Example: Facebook Marketplace (2019) ["Tocation”
/| "latitude": 54.9942235,
"longitude": -1.6041244,

= C @ hup

o — . PEr—— - —_] "reverse_geocode": {

e ‘ D w5 5 - / "city": "Newcastle upon Tyne",
facebook s —— : 7T "state": "England",
2 Marketplace R Em - / "pOStaI_COde": nn

] gnXnDIhZmMhjs
] 6PuBacTipgaj
[[] 2TardoDgUxipng
N [] QzpLEXigvaxeng
bz

Al Marketplace

© v

Home & garden

reverse_geocode_detailed": {
"city": "Newcastle upon Tyne",
"state": "England”,
"postal _code": "NE2 2DS"

Clothing &
accessories.

O romw

Electronics

Hobbies

(@ oo

O s
More items near you

https://www.7elements.co.uk/resources/blog/facebooks-burglary-shopping-1list/

{‘& © 2021 EOIN WOODS //20210310.1

] Exploitability |G
#3 Excessive Data Exposure Prevalence | 2
Detectability | 2
Technical 2
* Mitigations

* Assume the client is untrusted when developing an API

* Always use the "need to know” principle when designing data types
« needs understanding of the context of the API request

= Don’t return serialised forms of internal types
« can leak information over time
« use specifically designed return types with the right data items

= |dentify sensitive information classes (e.g. PIl, card data, ...) and
have a specific review of any API call that accesses this information

. .y m Exploitability | 2
#4 Resources and Rate Limiting Prevalence
Detectability

Technical 2

Classical DoS attacks use network protocols (e.g. SYN flood)

APls are also vulnerable to overload attacks
* can be exacerbated by the right (excessive) parameter values
* e.g. parallel upload of multi-GB binary files

Two dimensions
* Number of parallel requests allowed
« Quantity of resources each request can be allocated
Mitigations:
- Rate limiting at API level (spike limit, limit in time interval)
« Rate limiting at session or user level (ditto)

* Hard limits on parameter values and sizes
* Runtime limits on memory, CPU, file descriptors, ...

. .y m Exploitability | 2
#4 Resources and Rate Limiting Prevalence
Detectability
Technical 2

$> wget https://svc.com/inv/item?name=%22%2a%22&maxsi1ze=9999999

* Hopefully this gets stopped immediately by a validation check
« Or overridden within the API by an internal maximum
- Unfortunately, quite a few APIs don’t always do this

* Result is likely to be a large database result set and a huge
amount of memory used => a runtime failure

. . . Exploitability -
#5 Broken Function-Level Authorisation |rrevaience

2
Detectability | 1
Technical 2

* Incomplete or incorrect authorisation checks when API called

* like #1 (object-level authorisation) a range of possible problems
« Rarely totally missing, usually “holes” in the implementation

* Frequently a result of a complex security model or APl design
« “correct” is complex, given interaction of authentication, roles,
sensitivity levels, ...
« Can be due to complexity of application or 3 party component
 e.g. declarative security rules can often contain subtle problems
« e.g. “falling through” logic which ends up providing access by mistake

. . . Exploitability -
#5 Broken Function-Level Authorisation |rrevaience

2
Detectability | 1
Technical 2

Example: NewRelic “delete filterset” vulnerability

To create a NR “filter set” you call
POST https://infrastructure.newrelic.com/accounts/12345/settings/filterSets

... passing a parameter block defining the new filter set.

It turns out that calling ...
DELETE https://infrastructure.newrelic.com/accounts/12345/settings/filterSets

... could delete the filter set without checking the user is authorised to do so

https://www.cloudvector.com/owasp-api-security-top-10-
broken-function-level-authorization/

. . . Exploitability -
#5 Broken Function-Level Authorisation |rrevaience

2
Detectability | 1
Technical 2

* Mitigations
- Simple as possible in design and implementation
+ Highlight sensitive operations for specific review
« Thorough automated functional testing of authorisation
- Take time to understand sophisticated security technology
- Don’t invent your own security technology (again)
« Always default to “no access”

Exploitability

#6 MaSS ASSignment Prevalence

Detectability

Technical

NININIDN

 Different fields in a data entity often have different sensitivities

 \We often use libraries to “bind” data elements to and from API
parameter sets

* var item = JSON.parse(json_str); // JavaScript

« // Java with Jackson
Trade t = mapr.readObject(jsonStr, Trade.class);

 Client could add “rogue” fields to overwrite sensitive state

Exploitability

#6 MaSS ASSignment Prevalence

Detectability

Technical

NININIDN

Example: the Harbor privilege escalation vulnerability

Harbor: "Our mission is to be the trusted cloud native repository for Kubernetes”
Unfortunately, their product contained a privilege escalation vulnerability:

POST /api/users HTTP/1.1

{
‘username”:”test”,
"email”:"test123@gmail.com?”,
"realname”:’no name”,
"password”:”password1\u0021",
comment’:null,

“has_admin_role”:”true”

}
... due to a JSON mass assignment operation in JavaScript!

https://unitd42.paloaltonetworks.com/critical-vulnerability-in-harbor-
enables-privilege-escalation-from-zero-to-admin-cve-2019-16097/

#6 Mass Assignment - Example

Simple filtering example: : name: My Customer
name: ‘My Customer'
: : : cpid: '1234234"
function f11?erPrqpert1es(propL e 12,54
for (var p in obj) { }

I—\sl_IIIJ.y.L\.,IILII J.s\.\..ulJIJIIJVI Ty L

if (!obj.hasCWwﬂ’roperty(psKICAgIG1mICghb2Jquhhc@93b1B
yb3B1lcnR5KHAPKSBjb250aW51ZTsK

1T (proplList.index0T(pP) F1cagrcimIchwemonTG1lzdC5pbmR1e

delete obj[p]; EOmKHAPpIDOOPSAtMSkgewogICAgIC
BkZWx1dGUgb2JgqW3BdOwogICAgfQo
} g THOKFQ==
} Y
}
var fieldList = [‘name’, ‘cpid’, ‘price’, // .. 1;

filterProperties(fieldList, accountItem)

#6 Mass Assignment

 Mitigation:

Be careful when using automatic data binding libraries

Exploitability

Prevalence

Detectability

Technical

NININIDN

Use specific types for API definition and explicit code to extract

values and apply them to system state
Have "whitelists” for fields that can be updated by a client

Exploitability

#7 Security Misconfiguration Prevalence

Detectability

Technical

2

« Again a class of problem rather than a single cause
* Missing security patches
* Incorrect authorisation configuration
« Unnecessary features enabled
* Security enforcement (e.g. requiring TLS) incorrect or missing
- Exposing sensitive information (e.g. 500 error stack traces!)
* Mitigation
- Testing (automated security tests, manual penetration testing)
« Automated configuration and deployment for consistency

- Expert review and code scanning throughout projects
 Careful error handling

Exploitability

#7 Security Misconfiguration Prevalence

Detectability

Technical

Example: Algolia Search

$> curl https://myappid-dsn.algolia.net/1/keys/APIKEY?x-algolia-
application-id=myappid&x-algolia-api-key=a7hw/gsh273hrk382

{

"value”: “..... ",
“createdAt”: 15173453234,
“acl” . [“search”, “addObject”, .. "editSettings”,

[13 ”
—

It turns out that many people accidentally use their admin API key for client API calls
because of the way that Algolia’s documentation is written.

https://www.secjuice.com/api-misconfiguration-data-breach

Exploitability

#7 Security Misconfiguration Prevalence

Detectability

Technical

ModSecurity (default) configuration

SecRuleEngine DetectionOnly

SecRequestBodyAccess On

SecRule REQUEST_HEADERS:Content-Type "(?:application(?:/soap\+|/)|text/)xml" \
"id: '200000"',phase:1,t:none,t:lowercase,pass,nolog,ctl:requestBodyProcessor=XML"

SecRule REQUEST HEADERS Content Type "application/json" \
"id:'200001',phase:1,t:none,t:lowercase,pass,nolog,ctl:requestBodyProcessor=JSON"

SecRequestBodyL1m1t 13107200

SecRequestBodyNoFilesLimit 131072

SecRequestBodyLimitAction Reject

SecRule REQBODY_ERROR "!@eq 0" \

"id:'200002', phase:2,t:none,log, deny status:400,msg: 'Failed to parse request body.’

logdata: %{reqbody error msg} severity:2"

SecRule MULTIPART_STRICT_ERROR "'@eq 0" \

"id:'200003 "', phase 2,t:none, log,deny,status:400, \

msg:'Multipart request body failed strict va11dat10n: \

PE %{REQBODY_PROCESSOR_ERROR}, \

BQ %{MULTIPART_BOUNDARY_QUOTED}, \

BW %{MULTIPART_BOUNDARY WHITESPACE}, \

DB %{MULTIPART_DATA_BEFORE}, \

DA %{MULTIPART _DATA _AFTER}, \

HF %{MULTIPART_HEADER_FOLDING}, \
LF %{MULTIPART_ LF_ LINE}, \
SM %{MULTIPART_MISSING SEMICOLON}, \
IQ %{MULTIPART_INVALID QUOTING}, \
IP %{MULTIPART_INVALID_ PART}, \
IH %{MULTIPART_INVALID HEADER_FOLDING}, \
FL %{MULTIPART_FILE LIMIT EXCEEDED}"'"
SecRule MULTIPART_UNMATCHED_ _BOUNDARY "@eq 1" \

"id: '200004"' ,phase:2,t:none,log,deny,msg: 'Multipart parser detected a possible unmatched boundary.'"
SecPcreMatchL1m1t 1000
SecPcreMatchLimitRecursion 1000
SecRule TX:/~MSC_/ ”'@streq 0" \

"id:'200005' ,phase:2,t:none,deny,msg: 'ModSecurity internal error flagged: %{MATCHED_VAR_NAME}"'"

https://krebsonsecurity.com/tag/capital-one-breach

. . Exploitability
#8 |njeCtI0n Prevalence
Detectability
Technical

* QOur old friend from the Webapp Top 10!
« Dangerous in APIs as well as in webapps

* Anything interpreted can be injected:

- Database query parameters
« Command line arguments

- Configuration items that are parsed and processed

. . Exploitability
#8 |njeCtI0n Prevalence
Detectability
Technical

Example: check parameters and avoid direct SQL

String tradeld = reqg.path().param(“tradeid”);
ESAPI.validator().getValidInput(“tradeld”, tradeld,
“HTTPParameterValue”, 12, false, true);

String query =

“select 1id, ccy, value, .. from trade where id=?" ;
PreparedStatement ps = conn.prepareStatement(query);
ps.setString(l, tradeld);
ResultSet results = ps.executeQuery() ;

. . Exploitability
#8 |njeCtI0n Prevalence
Detectability
Technical
« Mitigation:

- Validate and sanitise all data entering the system

+ Use a single, well-tested, validation library to make validation reliable
and straightforward (“easy thing” == “what is actually done”)

« Where possible use APIs rather than interpreters (e.g. bind
parameters for “prepared” database queries not query strings)

- Sanity check result payloads (e.g. maximum size checks)
- Strongly type API interfaces and enforce types strictly

Exploitability

#9 Improper Asset Management Prevalence

Detectability

Technical

« Many application estates today are not well understood

 Old applications can run for years with little attention
« Will contain vulnerabilities in old software components
« Often skipped during software security remediation work

Can have deliberate or accidental vulnerabilities themselves

« Compromises may not be noticed
« Sometimes important applications have old neglected features

Old data interfaces left in place for backwards compatibility
Unsupported opensource components to avoid regression testing

Insecure mechanisms (e.g. FTP file transfer) to avoid touching other
old applications

#9 Improper Asset Management Prevalence

Exploitability

Detectability
Technical

* New applications can also introduce problems if not understood

Microservices introduce many moving parts with network interfaces

Cloud allows application teams to deploy new applications and
infrastructure quickly and independently ... and perhaps insecurely

Rate of change in modern application estates can make keeping
track of the estate difficult if not automated ... tomorrow’s legacy

Exploitability
#9 Improper Asset Management Prevalence
Detectability
Technical

Example: application evolution

Yesterday’'s legacy

Monolithic Core

«SOAP/HTTP»

Microservice 1 Microservice 2

«JSON/JMS» «REST» «REST»

«REST»‘

Today’s main interfaces

{‘.} © 2021 EOIN WOODS //20210310.1

#9 Improper Asset Management

Example: the scale problem

J.a' ?!.il »:;3 né E{-JJH

ek ol i s el

Large organisations have
thousands of applications, =

M

e
|

servers, services, message e L

didd Wi

|
._‘Idzl
-

gueues, databases, ...

... all constantly changing S—

Ui
-

Exploitability

Prevalence

Detectability

Technical

oo
T s
o =y
L /'_.

E L] = A
' 8 T

== e

. W e —
ey
[s o
e [

' 'B - =

T

~ s

—

1

#9 Improper Asset Management

 Mitigation:
« There are no easy mitigations once in this situation!
- Easy to say, but avoidance is the most effective mitigation

« Finding these applications and features is often the most difficult part

Exploitability

Prevalence

Detectability

Technical

* Network scanning can be useful to find unexpected end points
« Once found, investing in modernisation, improving security or

retirement are all options

* Automate maintenance of application and infrastructure inventories

wherever possible

#10 Insufficient Logging & Monitoring

* Another familiar “friend” from the Webapp Top 10

Exploitability

Prevalence -

Detectability

2

1

Technical

2

* Logging and monitoring rarely comes “for free” with APlIs

 therefore it often gets forgotten or deprioritised

* Poor logging and monitoring technology, implementation or

practices means it is difficult to detect and respond to
suspicious activity

* e.g. you find that an API credential has been compromised for
several days ... do you know what that credential has been used for

while compromised?

<3

Exploitability

#10 Insufficient Logging & Monitoring |prevatence ﬁ

Detectability
Technical

« Example: the need for monitoring

automated credential database access through
stuffing attack injection attack

eCommerce
DB

| | Monitoring could alert to all three
exfiltration of bulk data aspects of the attack:

* login failure monitoring

« excessive database result set

« unusual large outbound transfer

© 2021 EOIN WOODS //20210310.1

#10 Insufficient Logging & Monitoring

« Mitigation ... all well known solutions
Log all security sensitive events (authentication activity, access

failures, validation failures, ...)
Keep logs accessible but secure

Exploitability

Prevalence -

Detectability

2

1

Technical

2

Use SEIM systems to aggregate the logs from different sources
Build awareness of "normal” and create dashboards for security

related metrics to allow "abnormal” to be spotted

&

Summary of Vulnerability Types

Injection
« SQL, configuration, operating system command, ...

Inadequate validation
« Of authentication to confirm identity of caller
« Of authorisation to access resources

* Accepting unexpected inputs (e.g. unnecessary fields,
excessive parameter lengths)

Implementation mistakes
* Returning too much data
* Incomplete or faulty authorisation checks
« Blindly binding data structures to inputs

Environment problems
* Need for rate limiting
* Monitoring and logging
« Careful configuration of the entire stack

1:n<hmw)i
i (V(ort;r‘ni —1',Ld', i < b.length; i {
for (var * =

VGY‘ dn: ’

© 2021 EOIN WOODS // 20210101.1

IMPROVING SOFTWARE SECURITY

Some Key Aspects of Software Security for Teams

Dynamic testing (DAST) Entire team
Penetration testing /

Security

Testing

Security
Awareness

Secure
Implementation

Security
Design

Secure design
Secure implementation
Functional security tests/
Code reviews
SCA
Static analysis

{“} © 2021 EOIN WOODS //20210310.1

Security requirements
Threat modelling
Security design

<3

Securing an API

RATE LIMITING

<
2
-
<
o
-
<
L
L
-
)
<

Volume Identity

AUDITING

Records

AUTHORISATION
(ACCESS CONTROL)

Access

API
FUNCTIONS

© 2021 EOIN WOODS //20210310.1

Securing an API - Example

ms

auth code
Over TLS

API
Client

AWS API
Gate way

rate
wting

ﬂuthe

//’

nticate w/auth code to
get access token

Audit Logging
Filter

Authorisation

Filter

Java + Spring proces‘N

Authorisation
Proxy

APl Function

rsmd Authentication

v

AWS Cloud
Watch

/

o>

4 Okta OAuth2 Service
(Authentication &

Authorization Service)

logging

centralised

APl access check
via token

application
authorisation
check

© 2021 EOIN WOODS //20210310.1

Lots of Choice When Securing an API

Local implementation (users, Plain files

passwords, groups, ACLSs)

Cloud services _
(AWS Cognito, Azure AD, ...) OS logging

3rd party services
(AuthO, Okta, ...)
(

Database records

Auditing

Enterprise products Cloud services
IAM vendors (CloudWatch, Azure Monitor)

Open source .
(Keycloak, Gluu, ...) SIEM (Splunk, Rapid 7, ...)

Cloud API gateways

(%]

c
S o
==
S
==
c O
[l
f:
5 <C
<

Enterprise API gateways

Reverse proxies

Rate Limiting

@ Open source middleware

© 2021 EOIN WOODS //20210310.1

Key Tactics

Don’t trust clients
« authentication, authorisation, validation

« command lines, database queries, configuration data, ...

Protect valuable information at rest and in transit
* encryption

Simplicity
« Avoid the special cases, make sure the system is understood

Standardise and Automate
« consistency, correctness, avoid configuration errors

|dentify “interpreters” and sanitise inputs, use bind variables, ...

Tactic: Don’t Trust Clients

 Be wary of everythin n
e wary or e el'yt g se tby ——— PSE

[]
a CI I el It Burp Intruder Repeater Window Help
WWIW Scanner I Intruder I Repeater I Sequencer I Decoder I Comparer I Extender I Options | Alerts]

J Site mapI Scope

]]
o AS S l | | I I e p OS S I b I e ta I I l p e rI I I g ‘ Filter: Hiding not found items; hiding CSS, image and general binary content; hiding 4xx responses; hiding empty folders @

¥ http://0b7bd624bab7. mdseclabs.net Host Method | URL | Params | Sta... 4| Length | MIME type | Title
m™
" P‘/ http://0b7bd624bab7... GET /addressbook/32/ L 200 2765 HTML Contacts
 TLS connections o e o fen, @ % e o
> [admin [http://0b7bd624bab7. mdseclab ddressbook 32/De ™ 200 4914 HTML Contacts
> & app Add to scope ‘addressbook/32/De ™ 200 2835 HTML Contacts
. [:j 2::“(Spider this branch ddressbook/32/De O 200 2765 HTML Contacts
 short lived sessions :
» | cclookup
~ Passively scan this branch
» | employeeg
. » [error Engagement tools > <
* reauthenticate humans o
) » [filestore Expand branch
» | search Expand requested items
recheck tokens before
» [shop Copy URLSs in this branch -]
- . r:‘ updates Copy links in this branch indows NT €.1; WOWE4; rv:16.0) Gecko/20100101
sensitive operations A i .
on/xhtml+xml, application/xml; q=0.9,*/*;q=0.8
Site map help .5
CCEpT=ENCUNINgT gzIp; a=tla

Proxy-Connection: keep-alive

® u Se O paq u e to ke n S for I DS Referer: http://Ob7bdé24bab7.mdseclabs.net/labs/ lab.ashx?lab=7
- validate everything e E

Tactic: Watch Out for Injection

« Many things are interpreters

Operating system shells
Database query languages
Configuration files

Parsers

Assume someone will notice!
+ Avoid using direct string manipulation

 libraries and bind variables
Sanitise strings passed to interpreters

« 3" party library (e.g. OWASP)
Reject very long strings

- ® 192.168.26.234 v ol 2y
IR Backwack Unux [fOffensive Security KRExploit-DB Wy Aircrack-ng i SomaFm

The IP Address of The Server You Want To Ping Is
192.168.26.234 ; cat /etc/passwd

&

Tactic: Protect Information

« Assume perimeter breach
- defence in depth

encrypt everything possible

 But there are tradeoffs

slows everything down

querying is difficult

Message routing on sensitive fields
Manage and rotate keys
Complexity added to restore

© 2021 EOIN WOODS // 20210101.1

Tactic: Simplify and Standardise

« Complexity is the enemy of security

« “you can’t secure what you don’t understand”
 special cases often forgotten

« Simplify, standardise, automate
« Simple things easier to check & secure

- Standardisation removes a lot of special
cases

Automation removes human inconsistencies
avoiding one area of risk

A Few Words on Tools

Security tools are obviously useful

Many types exist from simple to very complex

Need make sure people don’t view tools as an alternative to thinking!

Main groups
* Specialist security scanning tools

* Interactive tools for penetration and exploratory testing
« Software composition analysis (open source scanning)

&

Automated Security Testing

FORTIFY
Automated tools are useful for |
some types of security problem
« SAST - static scanning RA PIDD

DAST — simulated attacks
JNTRAST

IAST — agent-based monitoring &

RASP — runtime security monitoring cheenn YS\/[][]I:'S\/S®
Challenges are false positives and
VERACODE g

effort to mitigate if used late

Danger of over-reliance
CHECKMARX

~S3 Wit

© 2021 EOIN WOODS // 20210101.1

Postman

« API development & testing suite

» Popular for functional and security e
API testing T T

« Desktop tool with link to cloud
service (with a web Ul)

 Interactive or command line (via
"Newman” runner extension)

e m 3

6]

https://www.postman.com/

Cookies

BurpSuite

* Proxy, scanning, pentest tool
« Very capable free version

 Fuller commercial version
available

« Inspect traffic, manipulate
headers and content, replay,
spider, ...

« Made in Knutsford!

Burp Intruder Repeater Window Help

Burp Suite Free Edition v1.6.01

Target | Proxy. | spser | scanmer | intruder | Repeater | Sequencer | Decoder | Comparer | Extender | Options | Averts |

[imercept | HTTR Mistony. | Websockets history | Options |

lv-m Hiding €SS, image and general binary content

| Host Method | URL Params |Edited | Status | Length | MIMEtype | Extensica | Title Comment

1 htp//192.16856.101:9000 GET / [g 200 45101 WML a
4 hitp//192.168.56.101:9000 GET /jvascript/ddsmoothmenu/ddsm 0 Q 200 8911 seript Js

5 hetp//192.168.56.101:90: GET {Jvascript/ bookmark-sie s (8] a 200 1336 seript s

6 hetp //192.168.56.101:90 CET /Javascript/ddsmoothmenu /jquery. (2] 2] 200 57528 script I’

3 hatp //192.168.56.101:90 GET (rvascript/jQuery/jquery s) g 200 268015 script Js

11 hap//192.16856.101:9000 GET Javascript/jQuery/colorbox/jquer. 5] g 200 10118 seript is

12 hap//192.16856.101:9000 GET [ivascript/jQuery/jquery balloon js 5] g 200 11611 script Js

34 hatp//192.16856.101:9000 GET /index.php?pagesbrowser-mfophe @ g 200 81279 HTML php

37 hup//192.16556.101:9000 GET findex.php?page=browser-mfophp (& a 200 81279 HTML phe

40 hup//192.168.56.101:90 GET /ivascript/ bookmark-sae js 5 Qg 304 156 seript Is

a1 hup GET /reascript/ddsmoothmenu/ddsm 8] Qg 304 155 seript Js

2 hap GET /jvascript/ddsmoothmenu/jquery. 8] Qg 304 155 seript is

44 hup GET [ivascript/jQuery/jquery balloon js) Qg 304 155 seript Js 1
P hetn 1102 168 S€ 1018000 CET s crine 210 . na e

- v 4 T

| [Request | Response |

Raw | Params | Headers | Hex |

GET /index.p

Referer:

192.168.56.101:90

nl
tosh;

sdc

+xnl , appl
Intel Ma

h

http://portswigger.net/burp

© 2021 EOIN WOODS //20210101.1

<5

Metasploit

* The pentester’s "standard” tool
« Very wide range of capabilities

Commercial version available

https://Www.

@metasploit

@metasploit’

community

& Overview Ty ysi ‘ B i e ¢k C 1l #* Web Apps % Modules

Tags 1 Reports [£=] Tasks

Home Test Hosts

@ scan £ Import (<) Nexpose © Modules 24 Bruteforce () Exploit

& Hosts ||] Notes || @ Services ||) Vulnerabilities Z Captured Evidence

show [20] ¥ entries

IP Address Name Version Purpose Services Vul Not:
11.19.80 device
vmware-bavm
10.1.95.113 vmware-bavm 2.6.12-9-686 #1 Mon device 1 1
Oct 10 13:25:32 BST
2005 686
10.1.95.253 M Konica Printer print 1

Showing 1 to 3 of 3 entries

metasploit.com

© New Host

Updated v Status

<!**RAPID7

© 2021 EOIN WOODS //20210101.1

Open Source Scanning

« Example commercial tools for OSS
security, audit & compliance:

« BlackDuck
« Whitesource S
¢ Sonatype LCM — c‘mgi_:auckage.jsonE enor Vi rview History
* Snyk .
+ Scan builds identifying open source | - . = W
ccccccccccc @
« Checks for known vulnerabilities I
i Alerts and daSh boards for monitoring R Search issue Choose how to fix these vulnerabilities and open a pull request.
www.blackduck.com -
WWW.whitesourcesoftware.com |a . o
WWW.sonatype.com/nexus-lifecycle 2| @ prowyperoliuden
WWW.snyk.io © | e oo

SUMMARY

OWASP API Top 10 - 2019

#1 Broken Object Authorization #6
#2 Broken User Authentication #i
#3 Excessive Data Exposure #8
#4 Resources & Rate Limiting #9

Mass Assignment

Security Misconfiguration
Injection

Improper Asset Management

#5 Broken Function Authorization #10 Insufficient Logging and

Monitoring

<3

Key Aspects of APl Security

Preventing Injection

» SQL, configuration, commands, ...

Validation

* inputs, outputs, authentication, authorisation

Implementation

 automatic binding, too much data, faulty checking

Environment

* rate limiting, monitoring, logging, configuration

© 2021 EOIN WOODS //20210310.1

<3

Elements of Securing an API

Rate Limiting

Authentication

Auditing

Authorisation

APl Function

© 2021 EOIN WOODS //20210310.1

<3

Useful Tactics for APl Security

Don’t trust clients ’

Watch out for injection

Protect information ‘

\

\

\

Simplify and standardise

: E-,’ ‘. 3 r 'r 3RD EDITION

»

"5 SECURITY
ENGINEERING

e
AGUIDETO

. - BUILDING DEPENDABLE
DISTRIBUTED SYSTEMS

- Ce0 8
ROSS ANDERSON
WILEY

OREILLY"

Agile

Application
Security

Laura Bell, Michael Brunton-Spall,
Rich Smith & Jim Bird

<5

Software Systems
Architecture

it

CONTINUOUS

ARCHITECTURE

threat
cocie

OREILLY"

Threat Modeling

A Practical Guide for Development Teams

Izar Tarandach &
Matthew J. Coles
Foreword by Reeny Sondhi

Secure Coding
in C and C++

SECOND ED

Robert C. Seacord

Foreword by Richard D. Pethia
KT Dirvcter

Tue CERT
ORACLE SECURE
CODING STANDARD
FOR JAVA

OREILLY"

Container
Security

Fundamental Technology Concepts that
Protect Containerized Applications

Liz Rice

© 2021 EOIN WOODS //20210310.1

@'endava

