

Agenda

1. THE STATE OF API SECURITY
2. INTRODUCING SOFTWARE SECURITY AND OWASP
3. THE TOP 10 API SECURITY RISKS
4. IMPROVING SOFTWARE SECURITY
5. SUMMARY

Dr Eoin Woods – “Owen”

CTO at Endava since 2015

• 1990 – 2003: Product companies in UK & US

• 2003 – 2014: Capital Markets companies

Been trying to bridge ”security” and “development”
for a long time

Author, speaker, community guy

www.eoinwoods.info / @eoinwoodz

CLOSE TO CLIENT

Denmark
Germany
Netherlands
United Kingdom
United States

NEARSHORE DELIVERY

European Union:
Romania and Bulgaria

Central European:
North Macedonia,
Moldova, and Serbia

Latin America:
Argentina, Colombia,
Uruguay, and Venezuela

7,464
AS OF DEC 31, 2020

GLOBAL EMPLOYEES

AS OF MAR 31, 2020

42 OFFICES / / 39 CITIES / / 19 COUNTRIES

Banking & Financial Services
Payments
Insurance
Investment Management

Telco & Media
Mobility
Healthtech
Retail & CPG

FOCUSED INDUSTRY EXPERTISE

THE STATE OF API SECURITY

1

© 2021 EOIN WOODS // 20210101.1

Why Security Threats Matter

• We need dependable systems even if things go wrong
• Malice, Mistakes, Mischance

• People are sometimes bad, careless or just unlucky

• System security aims to mitigate these situations

TODAY’S THREAT LANDSCAPE

• Internal applications exposed on the Internet
• Introspection of APIs

• Attacks being ”weaponized”

1010

© 2021 EOIN WOODS // 20210310.1

DATA BREACHES 2005 - 2010

https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks

1111

© 2021 EOIN WOODS // 20210310.1

DATA BREACHES 2011 - 2015

1212

© 2021 EOIN WOODS // 20210310.1

DATA BREACHES 2016-2020

© 2021 EOIN WOODS // 20210101.1

Applications
23%

Crimeware
6%

Cyber-Espionage
3%

Denial of Service
62%

Other
3%

Payment Cards
2%

Stolen Assets
1%

The Importance of Application Security

Verizon 2019 Data Breach
Investigation report found
applications were the root cause of
about 25% of breaches
Microfocus analysis of Fortify on
Demand data found 93% of
applications had a security bug
Forrester 2019 survey suggests that
35% of security incidents had a
webapp as a root cause

https://enterprise.verizon.com/resources/reports/dbir
https://www.microfocus.com/en-us/assets/security/application-security-risk-report

https://www.forrester.com/report/The+State+Of+Application+Security+2019

© 2021 EOIN WOODS // 20210101.1

What do we mean by APIs?

• We know APIs are as old as software
• any interface to allow the invocation of one

piece of software from another

For this talk we’ll focus on network APIs
• Any network accessible way of executing

an operation on another piece of software
• RPCs, RMIs, REST, GraphQL, …

• In most cases we’re assuming a
“REST style” API – e.g. JSON over HTTP

INTRODUCING SOFTWARE SECURITY & OWASP

2

1717

© 2021 EOIN WOODS // 20210310.1

ASPECTS OF SECURITY PRACTICE

SECURE SYSTEM OPERATION

SECURE APPLICATION
IMPLEMENTATION

SECURE APPLICATION
DESIGN

SECURE INFRASTRUCTURE
DESIGN

SECURE INFRASTRUCTURE
DEPLOYMENT

© 2021 EOIN WOODS // 20210101.1

Who are OWASP?

The Open Web Application Security Project
§ Largely volunteer organisation, largely online

Exists to improve the state of software security
§ Research, tools, guidance, standards
§ Runs local chapters for face-to-face meetings

“OWASP Top 10” projects list top application security risks
§ OWASP Top 10 Webapp Security Risks
§ OWASP Top 10 Mobile Risks
§ OWASP Top 10 API Risks

© 2021 EOIN WOODS // 20210101.1

Other Key Security Organisations

MITRE Corporation
§ Common Vulnerabilities and Exposures (CVE)
§ Common Weaknesses Enumeration (CWE)

SAFECode
§ Fundamental Practices for

Secure Software Development
§ Training

There are a lot of others too (CPNI, CERT, CIS, ISSA, ISC2, …)

THE API TOP 10 SECURITY RISKS

3

© 2021 EOIN WOODS // 20210101.1

How was the 2019 API List Produced?

Volunteer project of the OWASP organisation
§ 3 authors, ~35 contributors
§ https://www.owasp.org/index.php/OWASP_API_Security_Project

First version in 2019 so less mature than the WebApp Top 10
§ Initial analysis of public data sets (e.g. vulnerabilities & bug bounty data)
§ Penetration testing practitioners surveyed for their own ”top 10s”
§ Top 10 resulted from a consensus between data and surveys
§ Expert review provided refinement
§ Some work to do to achieve full conceptual consistency and coherence

Future plan to extend a public call for data (like the WebApp set)

© 2021 EOIN WOODS // 20210101.1

OWASP API Top 10 - 2019

#1 Broken Object Authorization
#2 Broken User Authentication
#3 Excessive Data Exposure
#4 Resources & Rate Limiting
#5 Broken Function Authorization

#6 Mass Assignment
#7 Security Misconfiguration
#8 Injection
#9 Improper Asset Management
#10 Insufficient Logging and

Monitoring

SOME MAY LOOK “OBVIOUS” BUT APPEAR ON THE LIST YEAR AFTER
YEAR, BASED ON REAL VULNERABILITY DATA!

© 2021 EOIN WOODS // 20210101.1

OWASP API Top 10 - 2019

#1 Broken Object Authorization
#2 Broken User Authentication
#3 Excessive Data Exposure
#4 Resources & Rate Limiting
#5 Broken Function Authorization

#6 Mass Assignment
#7 Security Misconfiguration
#8 Injection
#9 Improper Asset Management
#10 Insufficient Logging and

Monitoring

SOME MAY LOOK “OBVIOUS” BUT APPEAR ON THE LIST YEAR AFTER
YEAR, BASED ON REAL VULNERABILITY DATA!

Some are closely related to the Webapp Top 10
A few surprising omissions (e.g. vulnerable components)

© 2021 EOIN WOODS // 20210101.1

#1 Broken Object-Level Authorisation

• After authentication many APIs don’t fully authorise access to resources
• To make matters worse object ”keys” are often predictable or accessible

$> wget https://aprovider.com/era/reports/1224459/monthly-latest
• What would happen if you tried 1224470?
• Hopefully the API would recognise that you weren’t authorised to view it
• It turns out that many don’t!

• Mitigations: enforce object authorisation for every request, well structured
API design making need for authorisation clearer, long random object
keys, testing

Exploitability 3
Prevalence 3
Detectability 2
Technical 3

2626

© 2021 EOIN WOODS // 20210310.1

#1 Broken Object-Level Authorisation

Example: Parler

Par le r .com
servers

Par le r App

https://medium.com/swlh/exposing-the-riot-parler-api-mistakes-9a4db4e905d5
https://github.com/d0nk/parler-tricks

https://github.com/daniel-centore/ParlerScraper

author isa t ion
po in t

a t tacker (@donk_enby)
no author isa t ion needed

authent ica t ion po in t
api.parler.com/v2/login/new

Exploitability 3
Prevalence 3
Detectability 2
Technical 3

2727

© 2021 EOIN WOODS // 20210310.1

#2 Broken User Authentication
Exploitability 3
Prevalence 2
Detectability 2
Technical 2

• A range of possible problems rather than a single weakness
• Allowing “credential stuffing”
• Accepting weak passwords => brute-force credential attacks
• Revealing authentication information in the API structure (e.g. URL)
• Missing or incorrect validation of authentication tokens (e.g. JWT)
• Mistakes in protocol implementation (very easy to do !)

• Example: see example #10

2828

© 2021 EOIN WOODS // 20210310.1

#2 Broken User Authentication
Exploitability 3
Prevalence 2
Detectability 2
Technical 2

• Mitigations:
• Multi-factor authentication for humans
• Controls around login & credential recovery (e.g. password rules,

lockout periods after failures, captchas, rate limiting)
• Use proven, tested authentication mechanisms
• Take time to understand any sophisticated security technologies
• Careful implementation with expert design and code review
• Functional and penetration testing

2929

© 2021 EOIN WOODS // 20210310.1

#3 Excessive Data Exposure
Exploitability 3
Prevalence 2
Detectability 2
Technical 2

• APIs often return more data that is required by the client
• client-side filtering hides this from the user but not from software

• API developers don’t always know what the client needs
• or are trying to provide a more general solution to avoid rework

• Sometimes an assumption that the client is ”trusted”
• analogous problem to browser-side security in webapps

• Problem often not obvious unless you know the data
• automated tools aren’t going to spot this

3030

© 2021 EOIN WOODS // 20210310.1

#3 Excessive Data Exposure
Exploitability 3
Prevalence 2
Detectability 2
Technical 2

Example: Facebook Marketplace (2019)

https://www.7elements.co.uk/resources/blog/facebooks-burglary-shopping-list/

" l oca t i on " : {
" l a t i t ude" : 54 .9942235 ,
" l ong i tude" : -1 .6041244 ,
" reve rse_geocode" : {

" c i t y " : ”Newcas t le upon Tyne" ,
" s ta te " : ”Eng land" ,
"pos ta l_code" : " "

} ,
" reve rse_geocode_de ta i l ed" : {

" c i t y " : ”Newcas t le upon Tyne" ,
" s ta te " : ”Eng land" ,
"pos ta l_code" : ”NE2 2DS"

}
}

3131

© 2021 EOIN WOODS // 20210310.1

#3 Excessive Data Exposure
Exploitability 3
Prevalence 2
Detectability 2
Technical 2

• Mitigations
• Assume the client is untrusted when developing an API
• Always use the ”need to know” principle when designing data types

• needs understanding of the context of the API request
§ Don’t return serialised forms of internal types

• can leak information over time
• use specifically designed return types with the right data items

§ Identify sensitive information classes (e.g. PII, card data, …) and
have a specific review of any API call that accesses this information

3232

© 2021 EOIN WOODS // 20210310.1

#4 Resources and Rate Limiting
Exploitability 2
Prevalence 3
Detectability 3
Technical 2

• Classical DoS attacks use network protocols (e.g. SYN flood)
• APIs are also vulnerable to overload attacks

• can be exacerbated by the right (excessive) parameter values
• e.g. parallel upload of multi-GB binary files

• Two dimensions
• Number of parallel requests allowed
• Quantity of resources each request can be allocated

• Mitigations:
• Rate limiting at API level (spike limit, limit in time interval)
• Rate limiting at session or user level (ditto)
• Hard limits on parameter values and sizes
• Runtime limits on memory, CPU, file descriptors, …

3333

© 2021 EOIN WOODS // 20210310.1

#4 Resources and Rate Limiting
Exploitability 2
Prevalence 3
Detectability 3
Technical 2

$> wget https://svc.com/inv/item?name=%22%2a%22&maxsize=9999999

• Hopefully this gets stopped immediately by a validation check
• Or overridden within the API by an internal maximum
• Unfortunately, quite a few APIs don’t always do this

• Result is likely to be a large database result set and a huge
amount of memory used => a runtime failure

3434

© 2021 EOIN WOODS // 20210310.1

#5 Broken Function-Level Authorisation
Exploitability 3
Prevalence 2
Detectability 1
Technical 2

• Incomplete or incorrect authorisation checks when API called
• like #1 (object-level authorisation) a range of possible problems
• Rarely totally missing, usually “holes” in the implementation

• Frequently a result of a complex security model or API design
• “correct” is complex, given interaction of authentication, roles,

sensitivity levels, …
• Can be due to complexity of application or 3rd party component

• e.g. declarative security rules can often contain subtle problems
• e.g. “falling through” logic which ends up providing access by mistake

3535

© 2021 EOIN WOODS // 20210310.1

#5 Broken Function-Level Authorisation
Exploitability 3
Prevalence 2
Detectability 1
Technical 2

Example: NewRelic “delete filterset” vulnerability

To create a NR “filter set” you call
POST https://infrastructure.newrelic.com/accounts/12345/settings/filterSets

… passing a parameter block defining the new filter set.

It turns out that calling …
DELETE https://infrastructure.newrelic.com/accounts/12345/settings/filterSets

… could delete the filter set without checking the user is authorised to do so

https://www.cloudvector.com/owasp-api-security-top-10-
broken-function-level-authorization/

3636

© 2021 EOIN WOODS // 20210310.1

#5 Broken Function-Level Authorisation
Exploitability 3
Prevalence 2
Detectability 1
Technical 2

• Mitigations
• Simple as possible in design and implementation
• Highlight sensitive operations for specific review
• Thorough automated functional testing of authorisation
• Take time to understand sophisticated security technology
• Don’t invent your own security technology (again)
• Always default to “no access”

3838

© 2021 EOIN WOODS // 20210310.1

#6 Mass Assignment
Exploitability 2
Prevalence 2
Detectability 2
Technical 2

• Different fields in a data entity often have different sensitivities

• We often use libraries to “bind” data elements to and from API
parameter sets

• var item = JSON.parse(json_str); // JavaScript
• // Java with Jackson
Trade t = mapr.readObject(jsonStr, Trade.class);

• Client could add “rogue” fields to overwrite sensitive state

3939

© 2021 EOIN WOODS // 20210310.1

#6 Mass Assignment

Example: the Harbor privilege escalation vulnerability
Harbor: ”Our mission is to be the trusted cloud native repository for Kubernetes”
Unfortunately, their product contained a privilege escalation vulnerability:

POST /ap i /users HTTP/1 .1
{

“username”: ” tes t ” ,
”emai l ” : ” tes t123@gmai l .com”,
” rea lname” : ”no name” ,
”password” : ”password1\u0021″ ,
”comment” :nu l l ,
“has_admin_role”:”true”

}

… due to a JSON mass assignment operation in JavaScript!
https://unit42.paloaltonetworks.com/critical-vulnerability-in-harbor-

enables-privilege-escalation-from-zero-to-admin-cve-2019-16097/

Exploitability 2
Prevalence 2
Detectability 2
Technical 2

4040

© 2021 EOIN WOODS // 20210310.1

#6 Mass Assignment - Example

Simple filtering example:

function filterProperties(propList, obj) {
for (var p in obj) {

if (!obj.hasOwnProperty(p)) continue ;
if (propList.indexOf(p) === -1) {
delete obj[p];

}
}

}
var fieldList = [‘name’, ‘cpid’, ‘price’, // …];
filterProperties(fieldList, accountItem)

{
name: ‘My Customer',
cpid: '1234234',
price: 12.54,
agentNotes:

'ZnVuY3Rpb24gZmlsdGVyUHJvcGVy
dGllcyhwcm9wTGlzdCwgb2JqKSB7C
iAgZm9yICh2YXIgcCBpbiBvYmopIH
sKICAgIGlmICghb2JqLmhhc093blB
yb3BlcnR5KHApKSBjb250aW51ZTsK
ICAgIGlmIChwcm9wTGlzdC5pbmRle
E9mKHApID09PSAtMSkgewogICAgIC
BkZWxldGUgb2JqW3BdOwogICAgfQo
gIH0KfQ=='
}

{
name: ‘My Customer',
cpid: '1234234',
price: 12.54,

}

4141

© 2021 EOIN WOODS // 20210310.1

#6 Mass Assignment
Exploitability 2
Prevalence 2
Detectability 2
Technical 2

• Mitigation:
• Be careful when using automatic data binding libraries
• Use specific types for API definition and explicit code to extract

values and apply them to system state
• Have ”whitelists” for fields that can be updated by a client

4242

© 2021 EOIN WOODS // 20210310.1

#7 Security Misconfiguration
Exploitability 3
Prevalence 3
Detectability 3
Technical 2

• Again a class of problem rather than a single cause
• Missing security patches
• Incorrect authorisation configuration
• Unnecessary features enabled
• Security enforcement (e.g. requiring TLS) incorrect or missing
• Exposing sensitive information (e.g. 500 error stack traces!)

• Mitigation
• Testing (automated security tests, manual penetration testing)
• Automated configuration and deployment for consistency
• Expert review and code scanning throughout projects
• Careful error handling

4343

© 2021 EOIN WOODS // 20210310.1

#7 Security Misconfiguration
Exploitability 3
Prevalence 3
Detectability 3
Technical 2

Example: Algolia Search
$> curl https://myappid-dsn.algolia.net/1/keys/APIKEY?x-algolia-
application-id=myappid&x-algolia-api-key=a7hw7gsh273hrk382

{

”value”: ‘.....’,
“createdAt”: 15173453234,
“acl” : [“search”, “addObject”, … ”editSettings”,

“listIndexes”, …]

}

It turns out that many people accidentally use their admin API key for client API calls
because of the way that Algolia’s documentation is written.

https://www.secjuice.com/api-misconfiguration-data-breach

4444

© 2021 EOIN WOODS // 20210310.1

#7 Security Misconfiguration
Exploitability 3
Prevalence 3
Detectability 3
Technical 2

Example: Capital One

https://krebsonsecurity.com/tag/capital-one-breach

Capi ta l One VPC

M
od

S
ec

ur
it

y

AWS S3
Bucket

AWS EC2 VM

$> aws iam list-roles
$> …

P E % { R E Q B O D Y _ P R O C E S S O R _ E R R O R } , \
B Q % { M U L T I P A R T _ B O U N D A R Y _ Q U O T E D } , \
B W % { M U L T I P A R T _ B O U N D A R Y _ W H I T E S P A C E } ,
\
D B % { M U L T I P A R T _ D A T A _ B E F O R E } , \
D A % { M U L T I P A R T _ D A T A _ A F T E R } , \
H F % { M U L T I P A R T _ H E A D E R _ F O L D I N G } , \
L F % { M U L T I P A R T _ L F _ L I N E } , \

M o d S e c u r i t y C o n f i g u r a t i o n

• M i s t a k e i n M o d S e c u r i t y a l l o w e d a t t a c k e r i n t o V M
• I A M m i s c o n f i g u r a t i o n a l l o w e d a c c e s s t o S 3

ModSecurity (default) configuration
SecRuleEngine DetectionOnly
SecRequestBodyAccess On
SecRule REQUEST_HEADERS:Content-Type "(?:application(?:/soap\+|/)|text/)xml" \

"id:'200000',phase:1,t:none,t:lowercase,pass,nolog,ctl:requestBodyProcessor=XML"
SecRule REQUEST_HEADERS:Content-Type "application/json" \

"id:'200001',phase:1,t:none,t:lowercase,pass,nolog,ctl:requestBodyProcessor=JSON"
SecRequestBodyLimit 13107200
SecRequestBodyNoFilesLimit 131072
SecRequestBodyLimitAction Reject
SecRule REQBODY_ERROR "!@eq 0" \
"id:'200002', phase:2,t:none,log,deny,status:400,msg:'Failed to parse request body.’,

logdata:'%{reqbody_error_msg}',severity:2"
SecRule MULTIPART_STRICT_ERROR "!@eq 0" \
"id:'200003',phase:2,t:none,log,deny,status:400, \
msg:'Multipart request body failed strict validation: \
PE %{REQBODY_PROCESSOR_ERROR}, \
BQ %{MULTIPART_BOUNDARY_QUOTED}, \
BW %{MULTIPART_BOUNDARY_WHITESPACE}, \
DB %{MULTIPART_DATA_BEFORE}, \
DA %{MULTIPART_DATA_AFTER}, \
HF %{MULTIPART_HEADER_FOLDING}, \
LF %{MULTIPART_LF_LINE}, \
SM %{MULTIPART_MISSING_SEMICOLON}, \
IQ %{MULTIPART_INVALID_QUOTING}, \
IP %{MULTIPART_INVALID_PART}, \
IH %{MULTIPART_INVALID_HEADER_FOLDING}, \
FL %{MULTIPART_FILE_LIMIT_EXCEEDED}'"
SecRule MULTIPART_UNMATCHED_BOUNDARY "@eq 1" \

"id:'200004',phase:2,t:none,log,deny,msg:'Multipart parser detected a possible unmatched boundary.'"
SecPcreMatchLimit 1000
SecPcreMatchLimitRecursion 1000
SecRule TX:/^MSC_/ "!@streq 0" \

"id:'200005',phase:2,t:none,deny,msg:'ModSecurity internal error flagged: %{MATCHED_VAR_NAME}'"

4545

© 2021 EOIN WOODS // 20210310.1

#8 Injection
Exploitability 3
Prevalence 2
Detectability 3
Technical 3

• Our old friend from the Webapp Top 10!
• Dangerous in APIs as well as in webapps
• Anything interpreted can be injected:

• Database query parameters
• Command line arguments
• Configuration items that are parsed and processed

4646

© 2021 EOIN WOODS // 20210310.1

#8 Injection
Exploitability 3
Prevalence 2
Detectability 3
Technical 3

Example: check parameters and avoid direct SQL

String tradeId = req.path().param(“tradeid”);
ESAPI.validator().getValidInput(“tradeId”, tradeId,

“HTTPParameterValue”, 12, false, true);

String query =
“select id, ccy, value, … from trade where id=?” ;

PreparedStatement ps = conn.prepareStatement(query);
ps.setString(1, tradeId);
ResultSet results = ps.executeQuery() ;

4747

© 2021 EOIN WOODS // 20210310.1

#8 Injection
Exploitability 3
Prevalence 2
Detectability 3
Technical 3

• Mitigation:
• Validate and sanitise all data entering the system
• Use a single, well-tested, validation library to make validation reliable

and straightforward (“easy thing” == “what is actually done”)
• Where possible use APIs rather than interpreters (e.g. bind

parameters for “prepared” database queries not query strings)
• Sanity check result payloads (e.g. maximum size checks)
• Strongly type API interfaces and enforce types strictly

4848

© 2021 EOIN WOODS // 20210310.1

#9 Improper Asset Management
Exploitability 3
Prevalence 3
Detectability 2
Technical 2

• Many application estates today are not well understood
• Old applications can run for years with little attention

• Will contain vulnerabilities in old software components
• Often skipped during software security remediation work
• Can have deliberate or accidental vulnerabilities themselves
• Compromises may not be noticed

• Sometimes important applications have old neglected features
• Old data interfaces left in place for backwards compatibility
• Unsupported opensource components to avoid regression testing
• Insecure mechanisms (e.g. FTP file transfer) to avoid touching other

old applications

4949

© 2021 EOIN WOODS // 20210310.1

#9 Improper Asset Management
Exploitability 3
Prevalence 3
Detectability 2
Technical 2

• New applications can also introduce problems if not understood
• Microservices introduce many moving parts with network interfaces
• Cloud allows application teams to deploy new applications and

infrastructure quickly and independently … and perhaps insecurely
• Rate of change in modern application estates can make keeping

track of the estate difficult if not automated … tomorrow’s legacy

5050

© 2021 EOIN WOODS // 20210310.1

#9 Improper Asset Management
Exploitability 3
Prevalence 3
Detectability 2
Technical 2

Example: application evolution

Monol i th ic Core

«REST»

Microserv ice 1

«REST»

Microserv ice 2

«REST»«JSON/JMS»

«XML/MQ»

«SOAP/HTTP»

Today ’s main in te r faces

Yesterday ’s legacy

© 2021 EOIN WOODS // 20210101.1

#9 Improper Asset Management

Example: the scale problem

Large organisations have
thousands of applications,
servers, services, message
queues, databases, …

… all constantly changing

Exploitability 3
Prevalence 3
Detectability 2
Technical 2

5252

© 2021 EOIN WOODS // 20210310.1

#9 Improper Asset Management
Exploitability 3
Prevalence 3
Detectability 2
Technical 2

• Mitigation:
• There are no easy mitigations once in this situation!
• Easy to say, but avoidance is the most effective mitigation
• Finding these applications and features is often the most difficult part
• Network scanning can be useful to find unexpected end points
• Once found, investing in modernisation, improving security or

retirement are all options
• Automate maintenance of application and infrastructure inventories

wherever possible

5353

© 2021 EOIN WOODS // 20210310.1

#10 Insufficient Logging & Monitoring
Exploitability 2
Prevalence 3
Detectability 1
Technical 2

• Another familiar “friend” from the Webapp Top 10
• Logging and monitoring rarely comes ”for free” with APIs

• therefore it often gets forgotten or deprioritised
• Poor logging and monitoring technology, implementation or

practices means it is difficult to detect and respond to
suspicious activity

• e.g. you find that an API credential has been compromised for
several days … do you know what that credential has been used for
while compromised?

5454

© 2021 EOIN WOODS // 20210310.1

#10 Insufficient Logging & Monitoring
Exploitability 2
Prevalence 3
Detectability 1
Technical 2

• Example: the need for monitoring

Webapp

automated credent ia l
s tu f f ing a t tack

database access th rough
in jec t ion a t tack

exf i l t ra t ion o f bu lk da ta
Moni to r ing cou ld a le r t to a l l th ree
aspects o f the a t tack:
• log in fa i lu re mon i to r ing
• excess ive database resu l t se t
• unusua l la rge outbound t ransfer

5555

© 2021 EOIN WOODS // 20210310.1

#10 Insufficient Logging & Monitoring
Exploitability 2
Prevalence 3
Detectability 1
Technical 2

• Mitigation … all well known solutions
• Log all security sensitive events (authentication activity, access

failures, validation failures, …)
• Keep logs accessible but secure
• Use SEIM systems to aggregate the logs from different sources
• Build awareness of ”normal” and create dashboards for security

related metrics to allow ”abnormal” to be spotted

© 2021 EOIN WOODS // 20210101.1

Summary of Vulnerability Types

• Injection
• SQL, configuration, operating system command, …

• Inadequate validation
• Of authentication to confirm identity of caller
• Of authorisation to access resources
• Accepting unexpected inputs (e.g. unnecessary fields,

excessive parameter lengths)

• Implementation mistakes
• Returning too much data
• Incomplete or faulty authorisation checks
• Blindly binding data structures to inputs

• Environment problems
• Need for rate limiting
• Monitoring and logging
• Careful configuration of the entire stack

IMPROVING SOFTWARE SECURITY

4

5959

© 2021 EOIN WOODS // 20210310.1

Security
Awareness

Security
Design

Secure
Implementation

Security
Testing

Some Key Aspects of Software Security for Teams

Ent i re team

Secur i ty requ i rements
Threat mode l l ing
Secur i ty des ign

Secure des ign
Secure imp lementa t ion

Funct iona l secur i ty tes ts
Code rev iews

SCA
Stat ic ana lys is

Dynamic tes t ing (DAST)
Penetra t ion tes t ing

6060

© 2021 EOIN WOODS // 20210310.1

Securing an API

API
FUNCTIONS

A
U

T
H

O
R

IS
A

T
IO

N
(A

C
C

E
S

S
 C

O
N

T
R

O
L

)

A
U

D
IT

IN
G

A
U

T
H

E
N

T
IC

A
T

IO
N

R
A

T
E

 L
IM

IT
IN

G

Volume Ident i ty Records Access

6161

© 2021 EOIN WOODS // 20210310.1

auth code
Over TLS

A
W

S
 A

P
I

G
at

ew
ay

ra te
l im i t ing

A
P

I
F

u
n

ct
io

n

Securing an API - Example
AWS Java + Spr ing process

A
u

d
it

 L
o

g
g

in
g

F

il
te

r
AWS Cloud

Watch

centra l ised
logg ing

A
u

th
o

ri
sa

ti
o

n

P
ro

xy

app l ica t ion
author isa t ion

check

API
Cl ient

Okta OAuth2 Serv ice
(Authent icat ion &

Authorizat ion Serv ice)log in fo r
auth code

A
u

th
en

ti
ca

ti
o

n

F
il

te
r

authent ica te w /auth code to
ge t access token

A
u

th
o

ri
sa

ti
o

n

F
il

te
r

API access check
v ia token

6262

© 2021 EOIN WOODS // 20210310.1

Lots of Choice When Securing an API
A

ut
he

nt
ic

at
io

n
&

A

ut
ho

ri
sa

ti
on

Local implementat ion (users,
passwords, groups, ACLs)

Cloud services
(AWS Cogni to, Azure AD, …)

3 rd party services
(Auth0, Okta, …)

Enterpr ise products
(IAM vendors)

Open source
(Keycloak, Gluu, …)

A
ud

it
in

g

Plain f i les

OS logging

Database records

Cloud services
(CloudWatch, Azure Moni tor)

SIEM (Splunk, Rapid 7, …)

R
at

e
Li

m
it

in
g

Cloud API gateways

Enterpr ise API gateways

Reverse proxies

Open source middleware

© 2021 EOIN WOODS // 20210101.1

Key Tactics

• Don’t trust clients
• authentication, authorisation, validation

• Identify “interpreters” and sanitise inputs, use bind variables, …
• command lines, database queries, configuration data, …

• Protect valuable information at rest and in transit
• encryption

• Simplicity
• Avoid the special cases, make sure the system is understood

• Standardise and Automate
• consistency, correctness, avoid configuration errors

© 2021 EOIN WOODS // 20210101.1

Tactic: Don’t Trust Clients

• Be wary of everything sent by
a client

• Assume possible tampering
• TLS connections
• short lived sessions
• reauthenticate humans,

recheck tokens before
sensitive operations

• use opaque tokens for IDs
• validate everything

© 2021 EOIN WOODS // 20210101.1

Tactic: Watch Out for Injection

• Many things are interpreters
• Operating system shells
• Database query languages
• Configuration files
• Parsers

• Assume someone will notice!
• Avoid using direct string manipulation

• libraries and bind variables
• Sanitise strings passed to interpreters

• 3rd party library (e.g. OWASP)
• Reject very long strings

© 2021 EOIN WOODS // 20210101.1

Tactic: Protect Information

• Assume perimeter breach
• defence in depth
• encrypt everything possible

• But there are tradeoffs
• slows everything down
• querying is difficult
• Message routing on sensitive fields
• Manage and rotate keys
• Complexity added to restore

© 2021 EOIN WOODS // 20210101.1

Tactic: Simplify and Standardise

• Complexity is the enemy of security
• “you can’t secure what you don’t understand”
• special cases often forgotten

• Simplify, standardise, automate
• Simple things easier to check & secure
• Standardisation removes a lot of special

cases
• Automation removes human inconsistencies

avoiding one area of risk

© 2021 EOIN WOODS // 20210101.1

A Few Words on Tools

• Security tools are obviously useful

• Many types exist from simple to very complex

• Need make sure people don’t view tools as an alternative to thinking!

• Main groups
• Specialist security scanning tools
• Interactive tools for penetration and exploratory testing
• Software composition analysis (open source scanning)

© 2021 EOIN WOODS // 20210101.1

Automated Security Testing

• Automated tools are useful for
some types of security problem

• SAST – static scanning
• DAST – simulated attacks
• IAST – agent-based monitoring
• RASP – runtime security monitoring

• Challenges are false positives and
effort to mitigate if used late

• Danger of over-reliance

© 2021 EOIN WOODS // 20210101.1

Postman

• API development & testing suite
• Popular for functional and security

API testing
• Desktop tool with link to cloud

service (with a web UI)
• Interactive or command line (via

”Newman” runner extension)

https://www.postman.com/

© 2021 EOIN WOODS // 20210101.1

BurpSuite

• Proxy, scanning, pentest tool
• Very capable free version
• Fuller commercial version

available
• Inspect traffic, manipulate

headers and content, replay,
spider, …

• Made in Knutsford!

http://portswigger.net/burp

© 2021 EOIN WOODS // 20210101.1

Metasploit

• The pentester’s ”standard” tool
• Very wide range of capabilities
• Commercial version available

https://www.metasploit.com

HTTPS://WWW.METASPLOIT.COM

© 2021 EOIN WOODS // 20210101.1

Open Source Scanning

• Example commercial tools for OSS
security, audit & compliance:

• BlackDuck
• Whitesource
• Sonatype LCM
• Snyk

• Scan builds identifying open source
• Checks for known vulnerabilities
• Alerts and dashboards for monitoring
www.blackduck.com
www.whitesourcesoftware.com
www.sonatype.com/nexus-lifecycle
www.snyk.io

SUMMARY

5

© 2021 EOIN WOODS // 20210101.1

OWASP API Top 10 - 2019

#1 Broken Object Authorization
#2 Broken User Authentication
#3 Excessive Data Exposure
#4 Resources & Rate Limiting
#5 Broken Function Authorization

#6 Mass Assignment
#7 Security Misconfiguration
#8 Injection
#9 Improper Asset Management
#10 Insufficient Logging and

Monitoring

SOME MAY LOOK “OBVIOUS” BUT APPEAR ON THE LIST YEAR AFTER
YEAR, BASED ON REAL VULNERABILITY DATA!

7777

© 2021 EOIN WOODS // 20210310.1

Key Aspects of API Security

Preventing Injection
• SQL, configuration, commands, ...

Validation
• inputs, outputs, authentication, authorisation

Implementation
• automatic binding, too much data, faulty checking

Environment
• rate limiting, monitoring, logging, configuration

7878

© 2021 EOIN WOODS // 20210310.1

Elements of Securing an API

API Funct ion

Author isa t ion

Authent ica t ion

Rate L im i t ing

Aud i t ing

7979

© 2021 EOIN WOODS // 20210310.1

Useful Tactics for API Security
Don’t trust clients

Watch out for injection

Protect information

Simplify and standardise

8080

© 2021 EOIN WOODS // 20210310.1

Books

