NBULYANYS YO FINANCIAL SERVICES

Z((1 Bloomberg j—

VIR TUAL EVENT

C++ Concepts vs Rust Traits vs Haskell
Typeclasses vs Swift Protocols

o2

Conor Hoekstra

of

,,,,,,

e 7P

| ‘~\\:) » l " \\\\,“\'\‘ \ y : Y i . A o > = Y- $ ‘ £
NNy A~ 3L I
.’. f‘ - ; . < \
Ty »

/

-

v

’ .

’,

€

Concepts vs Typeclasses vs Traits vs Protocols

Conor Hoekstra

‘ code_report .
<ANVIDIA. [rarins #include

Concepts vs Typeclasses vs Traits vs Protocols vs Type Constraints

Conor Hoekstra

‘ code_report ‘

<ANVIDIA. [Rapios #include

#include

https://github.com/codereport/Talks

#include

https://github.com/codereport/Talks

Algorithms + @2 nVI D I A®

Data
Structures =

Programs RAP ' DS

C

> Youlube

<ANVIDIA. [Rapips nclud

Algorithms +

ﬂﬂﬂﬂﬂﬂﬂﬂ | RAPIDS

Algorithms +

Data <ANVIDIA.
Structures =
Programs RAP)IDS

> Youlube

<ANVIDIA. [Rapips nclud

Algorithms + @ nVI D I A@,

Data
Structures =

Programs RAP' DS

‘ % ode_ report e

> YouTube IS .

<ANVIDIA. [rRapios #include

Algorithms + @2 nVI D I A®

Data
Structures =

Programs RAP ' DS

C

> Youlube

<ANVIDIA. [Rapips nclud

Algorithms + @2 nVI D I A®

Data
Structures =

Programs RAP' DS

o
1]
T

> Youlube

<ANVIDIA. Rapios nclud

Algorithms + @2 nVI D I A®

Data
Structures =

Programs RAP ' DS

C

> Youlube

<ANVIDIA. [Rapips nclud

http://rapids.ai

https:/ /www.youtube.com/codereport

https://www.adspthepodcast.com

https://www.meetup.com/Programming-lT.anguages-Toronto-Meetup/

Algorithms +
Data
Structures =
Programs

> YouTube

<ANVIDIA. [rapios #include

http://rapids.ai/
https://www.youtube.com/codereport
https://www.adspthepodcast.com/
https://www.meetup.com/Programming-Languages-Toronto-Meetup/

This is a language talk.

This is

a language

Conor Hoekstra
@code_report

1. First language: TI-BASIC
2. Had difficulties: Make
3. Most used: C++

4. Totally hate: | @ all PLs
5. Most loved: Haskell

6. For beginners: Python

@TI_BASIC #cplusplus #python #Haskell

£ Christopher Di Bella @cjdb _ns - Oct 4, 2019

1. First language: GML

2. Had difficulties: C#

3. Most used: C++

4. Totally hate: CMake

5. Most loved: C++

6. For beginners: Unsure twitter.com/bstamour1/stat...

8:12 PM - Oct 4, 2019 from Sunnyvale, CA - Twitter for Android

talk.

This is a language talk.

Meeting C++ 2019

Secret Lightning Talks

@ Conor Hoekstra
(port

1. First language: TI-BASIC
2. Had difficulties: Make
3. Most used: C++

4. Totally hate: | @ all PLs
5. Most loved: Haskell

6. For beginners: Python

@TI_BASIC #cplusplus #python #Haskell

©) Christopher Di Bella @cjdb_ns - Oct 4, 2019

1. First language: GML

2. Had difficulties: C#

3. Most used: C++

4. Totally hate: CMake

5. Most loved: C++

6. For beginners: Unsure twitter.com/bstamour1/stat...

8:12 PM - Oct 4, 2019 from Sunnyvale, CA - Twitter for Android

@ Conor Hoekstra

1. First language: TI-BASIC
2. Had difficulties: Make
3. Most used: C++

4. Totally hate: | @ all PLs
5. Most loved: Haskell

6. For beginners: Python

@TI| BASIC #cplusplus #python #Haskell
I

v

Conor Hoekstra

Consistently
Inconsistent

This is

Conor Hoekstra
@co report

1. First language: TI-BASIC
2. Had difficulties: Make
3. Most used: C++

4. Totally hate: | @ all PLs
5. Most loved: Haskell

6. For beginners: Python

@TI_BASIC #cplusplus #python #Haskell

©) Christopher Di Bella @cjdb_ns - Oct 4, 2019

1. First language: GML

2. Had difficulties: C#

3. Most used: C++

4. Totally hate: CMake

5. Most loved: C++

6. For beginners: Unsure twitter.com/bstamour1/stat...

8:12 PM - Oct 4, 2019 from Sunnyvale, CA - Twitter for Android

Conor Hoekstr3

Consistentl
Inconsisten

a language talk.

Conor Hoekstra
@code_report

Highlight of @PLDI 2020 definitely has to be the AMA
with Guy Steele who at one point said "I love ALL
programming languages.” | also @ heart all PLs:
twitter.com/code_report/st... #pldi
#programminglanguages

“I love ALL programming languages.”

Guy Steele
PLDI 2020, AMA

PLDI

20-"30

Conor Hoekstra
@code_report

1. First language: TI-BASIC
2. Had difficulties: Make
3. Most used: C++

4. Totally hate: | @ all PLs
5. Most loved: Haskell

6. For beginners: Python

@TI_BASIC #cplusplus #python #Haskell

©) Christopher Di Bella @cjdb_ns - Oct 4, 2019

1. First language: GML

2. Had difficulties: C#

3. Most used: C++

4. Totally hate: CMake

5. Most loved: C++

6. For beginners: Unsure twitter.com/bstamour1/stat...

8:12 PM - Oct 4, 2019 from Sunnyvale, CA - Twitter for Android

Conor Hoekstr3

Consistentl
Inconsisten

Conor Hoekstra
@code_report

Highlight of @PLDI 2020 definitely has to be the AMA
with Guy Steele who at one point said "I love ALL
programming languages.” | also @ heart all PLs:
twitter.com/code_report/st... #pldi
#programminglanguages

“I love ALL programming languages.”

Guy Steele
PLDI 2020, AMA

PLDI

20-'20

This is a comparison talk.
This is part | of 2.

Conor Hoekstra 000
@code_report Conor Hoekstra
@’ COd e_repo rt

1. First language: TI-BASIC

2. Had difficulties: Make

3. Most used: C++ Highlight of @PLDI 2020 definitely has to be the AMA
4. Totally hate: | @ all PLs . . C oy w

5. Most loved: Haskell with Guy Steele who at one point said "I love ALL

6. For beginners: Python programming languages.” | also @ heart all PLs:
@TI_BASIC #cplusplus #python #Haskell twitter.com/code_re port/st... #p|d|
() Christopher Di Bella @cjdb_ns - Oct 4, 2019 #program Iﬂinglar}g Uages

1. First language: GML

2. Had difficulties: C#

3. Most used: C++

4. Totally hate: CMake

5. Most loved: C++

6. For beginners: Unsure twitter.com/bstamour1/stat...

8:12 M- Oct 4, 2019 from Sunnyale, CA - Tuitter for Ancroid “Tlove ALL programming languages_”

Guy Steele
Conor Hoekstr3 PLDI 2020, AMA

Consistentl
Inconsisten

PLDI

20-'20

Agenda

1. Introduction @

2. Generics / Parametric Polymorphism
3. Example #1

4. Example #2

9. Final Thoughts

1

Code You Can Believe In

Intr O du Ction ; Real World

2018-09:

e X Courses v Programs & Degrees v Schools & Partners

Introduction to Functional Programming

The aim of this course is to teach the foundations of functional
programming and how to apply them in the real world.

2
TUDelft

Archived: Future Dates To Be Announced

| would like to receive email from DelftX and
Learn for free about other offerings related to Introduction
Functional Programming.

Bryan O'Sullivan,

O’RE”_LY Jobhn Goerzen & Don Stewart

Introduction

2018-09: [aslzell

2019-12-08: Protocol Oriented Programming in Swift

SN |

Developer Tools

Protocol-Oriented
Programming in Swift

Session 408

Dave Abrahams Professor of Blowing-Your-Mind

q

Supports value types
Supports static type relation

Non-monollthlc
roactive modeling
o |nstance data on models

(nitlalization burdens on models

Supports ré
Doesn't IMpPos

Doesn't Impose
Makes clear what to implement

-

Introduction

2018-09: [aslzell

2019-12-08: Protocol Oriented Programming in Swift
2020-01-09: Magic Read Along

» N H

wm Hardy Jones & Brian Lonsdorf
. @st58 & @drboolean

“I watched a video today on Swift ... about
protocol oriented programming ... and they
basically just introduced typeclasses and they

were like “We invented this, it’'s amazing’”

wmm Hardy Jones & Brian Lonsdorf
- . @st58 & @drboolean

How to make ad-hoc polymorphism less ad hoc

Philip Wadler and Stephen Blott
University of Glasgow™

October 1988

Abstract

This paper presents fype classes, a new approach
to ad-hoc polymorphism. Type classes permit over-
loading of arithmetic operators such as multiplica-
tion, and generalise the “eqtype variables” of Stan-
dard ML. Type classes extend the Hindley/Milner
polymorphic type system, and provide a new ap-
proach to issues that arise in object-oriented pro-
gramming, bounded type quantification, and ab-
stract data types. This paper provides an informal
introduction to type classes, and defines them for-
mally by means of type inference rules.

1 Introduction

Strachey chose the adjectives ad-hoc and parametric
to distinguish two varieties of polymorphism [Str67].

Ad-hoc polymorphism occurs when a function is
defined over several different types, acting in a dif-
ferent way for each type. A typical example is
overloaded multiplication: the same symbol may be
used to denote multiplication of integers (as in 3%3)

1 11 * 1°* 1 * Cad 'a | " 1 ra

integers and a list of floating point numbers.

One widely accepted approach to parametric
polymorphism is the Hindley/Milner type system
[Hin69, Mil78, DM82|, which is used in Standard
ML [HMMS86, Mil87], Miranda![Tur85], and other
languages. On the other hand, there is no widely
accepted approach to ad-hoc polymorphism, and so
its name is doubly appropriate.

This paper presents type classes, which extend the
Hindley /Milner type system to include certain kinds
of overloading, and thus bring together the two sorts
of polymorphism that Strachey separated.

The type system presented here is a generalisa-
tion of the Hindley/Milner type system. As in that
system, type declarations can be inferred, so explicit
type declarations for functions are not required. Dur-
ing the inference process, it is possible to translate a
program using type classes to an equivalent program
that does not use overloading. The translated pro-
grams are typable in the (ungeneralised) Hindley/
Milner type system.

The body of this paper gives an informal introduc-
tion to type classes and the translation rules, while
an appendix gives formal rules for typing and trans-

Introduction

2018-09: [aslzell

2019-12-08: Protocol Oriented Programming in Swift
2020-01-09: Magic Read Along
2020-01-13: Reddit Article /

N H & Q

Influence of C++ on Swift

Austin_Aaron_Conlon

this post was submitted on 13 Jan 2020
382 points (92% upvoted)
shortlink: |https://redd.it/eol@jo

[[digression]]

What are similarities and differences between C++ and

Swift?

What are similarities and differences between C+ + and
Swift?

() David Vandevoorde, C++ committee and direction group member

-

What are similarities and differences between C+ + and
Swift?

(‘) David Vandevoorde, C++ committee and direction group member

-

rl David Vandevoorde, C++ committee and direction group member ®

¥

@

Well, there are many... but I'll keep this relatively brief.

Remember that the original designer of Swift was Chris Lattner, who started and led the
LLVM project. LLVM is written in C++ and the Clang C++ compiler is one of the primary
drivers for its continued development. So Chris was very familiar with C++ and
incorporated his experience with C++ to decide how to design Swift (including what not to
do). But that's not all. When it came time to select a lead Swift compiler engineer and a
lead Swift standard library designer, who did Apple turn to? Doug Gregor for the compiler
and Dave Abrahams for the library. Both were some of the main contributors to the C++11
standard and widely recognized as world-class C++ experts. Doug is also a co-author for
my “C++ Templates” book — | asked him to join that project because he is a friend, but
also because he was behind some of the most fundamental new template work done
during the C++11 standardization cycle (including variadic templates and the ill-fated
C++0x concepts work).

All that to say that Swift was tremendously influenced by C++. (Apple does not
acknowledge this. I've been told that it is because more senior Apple decision-makers
dislike C++ at a personal level, in part because of the bitter rivalry between C++ and
Objective-C in the 1980s.)

[[digression?]]

John Sundell
- @johnsundell

The next episode of the @swiftbysundell podcast will
be about Protocol-Oriented Programming and the Swift
Standard Library, and my special guest will be none
other than @DaveAbrahams - who gave the legendary
WWDC talk about POP back in 2015 ‘&

Swift
Sundell

Reply with your questions for us

Meet Crusty

3:12 PM - Apr 20, 2020 - Twitter Web App

41 Retweets 5 Quote Tweets 487 Likes

Conor Hoekstra
@code_report

Replying to @johnsundell @swiftbysundell and @DaveAbrahams

Q: Any response to @drboolean's point (from Episode
"Il Am Not Full of Beans! on the @MagicReadAlong
podcast) that Swift just copied #typeclasses from
#Haskell and said they invented protocols? Listen to

that podcast here: magicreadalong.com/?
offset=148122...

5

Looks like swift is rediscovering typeclasses & calling it
Protocol-Oriented Programming
developer.apple.com/videos/play/ww...

Brian Lonsdorf w
@drboolean

9:34 PM - Apr 20, 2020 - Twitter Web App

Dave Abrahams #BLM @DaveAbrahams - Apr 22

.) Replying to @code_report @johnsundell and 3 others

We never claimed to have invented protocols for Swift—after all even Swift's
predecessor Objective-C has a similar feature called “protocols.” We were
open about stealing great ideas from programming languages including
#Haskell. But Swift's protocols are not #typeclasses 1/2

O 1 2 QO 14 T

Dave Abrahams #BLM @DaveAbrahams - Apr 22

@/ They were designed to be great for generic programming, for which

associated types turn out to be important
(parasol.tamu.edu/~jarvi/papers/...). That feature isn't supported by
#typeclasses (@mixtureofmusings.com/2016/05/19/ass...). 2/2

O 2 1 QO 12 T

[[digression?®]]

- | Brian Lonsdorf
7 @drboolean

Replying to @code_report @meetingcpp and 10 others

Lol, reminder to others that | was definitely wrong there

)

t’ Brian Lonsdorf @drboolean - Apr 25, 2020
Replying to @drboolean @DaveAbrahams and 4 others

Also, happy to admit how wrong it was :) | got an initial impression from the
video a few years back and didn't see the difference until now. TIL...

1:21 PM - Dec 31, 2020 - Twitter Web App

Conor Hoekstra @code_report - Dec 31, 2020
There is a longer version of the talk that includes that in the digression

Conor Hoek
Q John Sundell @ onor Hoekstra

<
The next episode of the @swiftbysundell podcast will Q: Any response to 's point (from Episode
“I Am Not Full of Beans! on the

be about P'rotocol-Onented Programming and the Swift podcast) that Swift just copled #typ o
Standard Library, and my special guest will be none and said they invented protocols? Listen to
other than veAbrahams - who gave the legendary that podcast here

WWDC talk about POP back in 2015 &
a Brian Lonsdorf

Reply with your questlons for us Looks like swift is rediscovering typeclasses & calling it
Protocol-Oriented Programming

Dave Abrahams #BLM

Dave Abrahams #BLM @DaveAbrahams - Jan 10

Replying to @code_report @hniemeye and 6 others

Communicates language flavors really well! Biggest un-noted difference
between “constrain” vs. “consent” approaches (32:00) is in “constrain,”
generics not typechecked until instantiated => error backtraces, generic
programming HARD. Slide at 14:00 shows how C++ lost “consent.”

(W) ¥ T

Dave Abrahams #BLM @DaveAbrahams - Jan 10

2/2 That said, | think Rust traits (ca. 2012) provide all of those features
except possibly the last (composed copyable values are more
accessible/idiomatic in Swift). Traits arrived in 2012, so | was wrong to claim
“first” without at least “mainstream,” and even that's arguable.

O 1 n ¥ T

[[end of digression?®]]

[[end of digression?]]

[[end of digression]]

Influence of C++ on Swift

Austin_Aaron_Conlon

this post was submitted on 13 Jan 2020
382 points (92% upvoted)
shortlink: |https://redd.it/eol@jo

this post was submitted on 13 Jan 2020
82 points (92% upvoted)

shortlink: |https://redd.it/eo0l@jo

Influence of C++ on Swift

Austin_Aaron_Conlon

[-] MrMobster
One of the key purposes of Swift was to replace Objective-C and that’s why it has some OOP semantics and dynamism

compatible with Obj-C. But protocols are a different thing altogether. They are not classes, but sets of type constraints
which also serve as vtables for dynamic dispatch. Swift protocols and Rust traits are very similar. The only major
difference that comes to my mind right now is that Swift can have optional protocol members, I don’t think that Rust
allows that. Both Rust and Swift have extensions, associated type constraints, custom trait implementation mappings

etc.

Inﬂ u en Ce Of C + + O N SWlft this post was submitted on 13 Jan 2020
Austin_Aaron_Conlon 82 points (92% upvoted)

shortlink: |https://redd.it/eo0l10jo

[-] MrMobster

One of the key purposes of Swift was to replace Objective-C and that’s why it has some OOP semantics and dynamism
compatible with Obj-C. But protocols are a different thing altogether. They are not classes, but sets of type constraints
which also serve as vtables for dynamic dispatch. Swift protocols and Rust traits are very similar. The only major
difference that comes to my mind right now is that Swift can have optional protocol members, I don’t think that Rust
allows that. Both Rust and Swift have extensions, associated type constraints, custom trait implementation mappings

etc.

[-] MrMobster

In Obj-C (and it's spiritual ancestor Smalltalk) the notion of protocol is part of the class-based OOP system. In Swift,
this notion is generalized to all kinds of types. Combine it with type constraints and you get something quite different
from the original OOP construct, even if it looks similar on the surface. This is why I am saying that Swift protocols are
more similar to Rust traits. Personally, I prefer the Rust approach (since I think it makes more sense conceptually),
but Swift optional protocol members are nice to have as well.

And then of course we have C++ concepts, which are very interesting as well. They are somewhat like traits/protocols

but sans the vtable part and with more ways to describe constraints. I am not sure yet however whether concepts can
be considered a proper higher-order type system for C++4 or whether they are another language within the language
for checking types (just like templates are a language within a language for generating types).

Introduction

2018-09: [aslzell

2019-12-08: Protocol Oriented Programming in Swift
2020-01-09: Magic Read Along
2020-01-13: Reddit Article /

N H & Q

€ Cov2 € Cure s ot X W ATou Traits Protocols W Haske (@B stanc D Thec © Conce. | WhyConc: @ 20177 Cos o Const Conce Conce Iterat C W c.. B ryh Wrhae + 88 - O X
“ 2 C @ O & hips//ewwtypesaiptiang.org/docyhandbook/interfaces him! B 1sox e Q Search % » =
Typescrl pt Documentation Download Connect Playground Search
TypeScript 3.7 is now available. Get the latest version today!
@ This site uses cookies for analytics, personalized content and ads. By continuing to browse this site, you agree to this use. Learn more
Documentation l N te rfa ces
Tutorials v - h
Introduction
What's New v
One of TypeScript's core principles is that type checking focuses on the shape that values have. This is sometimes called
Flanchiook Z “duck typing” or “structural subtyping”. In TypeScript, interfaces fill the role of naming these types, and are a powerful way
Declaration Files v of defining contracts within your code as well as contracts with code outside of your project.

Project Configuration Our First Interface

The easiest way to see how interfaces work is to start with a simple example:

function printLabel (labeledObj: { label: string })
console.log(labeledObj.label) ;

let myObj = {size: 10, label: "Size 10 Object"};
printLabel (myObj) ;

{

The tune rheckaer crhecke the Fall t0 nrint! abael The nrintl abkael fiinction hac a cinale narameater that reatiirec that the v

|LUM DEVELOPERS' MEETING
Sl

SLAVA F ESTog
JOHN MCC/

Implementing
Swift Generics

Constrained Generics ‘

John McCall, Apple

“<~ LLVM.org

+ +

The Design of C++ Graph Libraries:
Boost Graph Library

ona of tha mast highly regarmied and axpantly designed C «+ Brary peogects in the waork? *
harb Suller and Andros Aloxandrescy, C++ Coding Siandards

" bOOS t THE BOOST MPL LIBRARY

Copyright: Copynight © Aleksey Gurtovoy and David Abrahams, 2002-2004
License: Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_8. txt or copy al hitp:/www. boost org/LICENSE _1_0.1x1)

The Boost. MPL library is a general-purpose, high-level C++ template metaprogramming framework of compile-time algorithms, sequences and metafunctions. It provides a conceptual foundation and an extensive set of
powerful and coherent lools that make doing explict metaprogramming in C++ as easy and enjoyable as possible within the current languags

Are Graphs Hard in Rust? Payas Rajan

Tralts

trait Shape {
fn area(&self) -> f32;
}

impl Shape for Square {
fn area(&self) -> 32 {

self.length * self.length
}

}

fn print_area(shape: &impl Shape) {
println!("The area is {}", shape.area());
}

Hendrik Niemeyer - ROSEN Technology and Research Center GmbH - Twitter: @hniemeye

= B .-‘_'I‘ -

A Friendly Introduction to Rust Hendrik Niemeyer

James Munns

Rust threw away a lot of things.

The Rust That Could Have Been

Marijn Haverbeke q [}

| e _ ferrous systems
RustFest Berlin - 2016 il

collection<T> =
) { length() -> int
- item(int) -> T }

is_big(c: { length() -> int
=> bool { Siale }

g(is_big(my_collection))

[[digression]]

Conor Hoekstra
@code_report

"I've been referring to it [Rust] & as a love child
between Haskell and C++."

- quote from @roeschinc on Episode 77 of @fngeekery
Another awesome episode! #Haskell #cplusplus
@rustlang

12:45 PM - Aug 26, 2019 from Sunnyvale, CA - Twitter for Android

Conor Hoekstra
@code_report

"I've been referring to it [Rust] % as a love child
between Haskell and C++."

- quote from @roeschinc on Episode 77 of @fngeekery
Another awesome episode! #Haskell #cplusplus
@rustlang

12:45 PM - Aug 26, 2019 from Sunnyvale, CA - Twitter for Android

'V

Conor Hoekstra
@code_report

"I've been referring to it [Rust] % as a love child
between Haskell and C++."

- quote from @roeschinc on Episode 77 of @fngeekery
Another awesome episode! #Haskell #cplusplus
@rustlang

12:45 PM - Aug 26, 2019 from Sunnyvale, CA - Twitter for Android

'V

[[end of digression]]

C++ Concepts

Rust Traits

Swift Protocols

Haskell Typeclasses

D Type Constraints
TypeScript Structural Interfaces
Go Interfaces

Standard ML Modules
Standard ML Signatures
Java Interfaces

C# Interfaces

C++ Concepts

Rust Traits

Swift Protocols
Haskell Typeclasses
D Type Constraints
TypeScript Structural Interfaces
Go Interfaces

Standard ML Modules
Standard ML Signatures
Java Interfaces

C# Interfaces

Agenda
®

3. Example #1
4. Example #2
9. Final Thoughts

6. Bonus Question

How to make ad-hoc polymorphism less ad hoc

Philip Wadler and Stephen Blott
University of Glasgow™

October 1988

Abstract

This paper presents type classes, a new approach
to ad-hoc polymorphism. Type classes permit over-
loading of arithmetic operators such as multiplica-
tion, and generalise the “eqtype variables” of Stan-
dard ML. Type classes extend the Hindley/Milner
polymorphic type system, and provide a new ap-
proach to issues that arise in object-oriented pro-
gramming, bounded type quantification, and ab-
stract data types. This paper provides an informal
introduction to type classes, and defines them for-
mally by means of type inference rules.

1 Introduction

Strachey chose the adjectives ad-hoec and parametric
to distinguish two varieties of polymorphism [Str67].

Ad-hoc polymorphism occurs when a function is
defined over several different types, acting in a dif-
ferent way for each type. A typical example is
overloaded multiplication: the same symbol may be
used to denote multiplication of integers (as in 3*3)
and multiplication of floating point values (as in
3.14%3.14).

Parametric polymorphism occurs when a function
is defined over a range of types, acting in the same
way for each type. A typical example is the length
function, which acts in the same way on a list of

integers and a list of floating point numbers.

One widely accepted approach to parametric
polymorphism is the Hindley/Milner type system
[Hin69, Mil78, DM82], which is used in Standard
ML [HMMS86, Mil87], Miranda'[Tur85], and other
languages. On the other hand, there is no widely
accepted approach to ad-hoc polymorphism, and so
its name 1s doubly appropriate.

This paper presents type classes, which extend the
Hindley/Milner type system to include certain kinds
of overloading, and thus bring together the two sorts
of polymorphism that Strachey separated.

The type system presented here is a generalisa-
tion of the Hindley/Milner type system. As in that
system, type declarations can be inferred, so explicit
type declarations for functions are not required. Dur-
ing the inference process, it is possible to translate a
program using type classes to an equivalent program
that does not use overloading. The translated pro-
grams are typable in the (ungeneralised) Hindley/
Milner type system.

The body of this paper gives an informal introduc-
tion to type classes and the translation rules, while
an appendix gives formal rules for typing and trans-
lation, in the form of inference rules (as in [DM8&2]).
The translation rules provide a semantics for type
classes. They also provide one possible implementa-
tion technique: if desired, the new system could be
added to an existing language with Hindley/Milner
tvpes simplv bv writing a pre-processor.

ISRV BFLIEINLILY N B TR I.J‘:I" PE LlﬂuDDCDj cvaid®d WA Rt vdltdad ANl

mally by means of type inference rules.

1 Introduction

Strachey chose the adjectives ad-hoc and parametric
to distinguish two varieties of polymorphism [Str67].

Ad-hoc polymorphism occurs when a function 1s
defined over several different types, acting in a dif-
ferent way for each type. A tyvpical example 1s
overloaded multiplication: the same symbol may be
used to denote multiplication of integers (as in 3%3)
and multiplication of floating point values (as in
3.14%3.14).

Parametric polymorphism occurs when a function
18 defined over a range of types, acting in the same

O polymao:
The tyy
tion of the
system, ty
tvpe decla
ing the inf
program u
that does
grams are
Milner tyr
The bod
tion to tyj
an append
lation, 1n f
'The trans
classes. T

,,A_E};_mel_ .ﬁ__“uw o fv-;-hw-r-"%-" T that aoes
-hoc polymorphism occurs when a function 1s grams are

defined over several different types, acting in a dif- Milner tyy
ferent way for each type. A typical example 1s The b;d
overloaded multiplication: the same symbol may be

ation. _ _ tion to tyj
used to denote multiplication of integers (as in 3%3) an append
and multiplication of floating point values (as in lation. in |
3.14%3.14). The tjransi

Parametric polymorphism occurs when a function classes. T
1s defined over a range of types, acting in the same tion techn

way for each type. A typical example 1s the length added to :

function, which acts 1n the same way on a list of types sim

vs Parametric Polymorphism

Function Name Types Behavior

Different

Different Different

GO

func main() A
var a, b int = 1, 2
var ¢ = math.Min(a, b)
fmt.Println(a + b)

The Forgotten Art of Structured Programming - Kevlin Henney

Rtk

function IslLeapYear(Year: Integer): Boolean;

begin
if Year mod 400 = @ then
IslLeapYear := True
else if Year mod 100 = @ then
IslLeapYear := False
else if Year mod 4 = @ then
IslLeapYear := True
else
IsLeapYear := False
end;

[0

cpponsea.uk @cpponsea

GO

func main() A
var a, b int = 1, 2
var ¢ = math.Min(a, b)
fmt.Println(a + b)

GO

// FAIL: cannot use a (type 1int) as type
// floaté64 in argument to math.Min

func main() {
var a, b int =1, 2
var ¢ = math.Min(a, b)
fmt.Println(a + b)

Would you be interested in helping us get polymorphism
right (and/or figuring out what “right” means) for some
future version of Go? — Rob Pike

_Tw Documents Packages The Project Help Blog Play Search Q

The Go Blog

Next article

A Proposal for Adding Generics to Go

Command PATH security in

-y = e Go
12 January 2021
Previous article

Generics proposal

Go on ARM and Beyond
We've filed a Go language change proposal to add support for type parameters for types

and functions, permitting a form of generic programming. Links

Why generics? golang.org

Install Go

Generics can give us powerful building blocks that let us share code and build programs A Tour of Go
more easily. Generic programming means writing functions and data structures where Go Documentation
some types are left to be specified later. For example, you can write a function that Go Mailing List
operates on a slice of some arbitrary data type, where the actual data type is only Go on Twitter
specified when the function is called. Or, you can define a data structure that stores values
of any type, where the actual type to be stored is specified when you create an instance of Blog index

the data structure.

Since Go was first released in 2009, support for generics has been one of the most
commonly requested language features. You can read more about why generics are useful in an earlier blog
post.

Lightweight Parametric Polymorphism for
Oberon

Paul Roe and Clemens Szyperski

Queensland University of Technology, Brisbane QLD 4001, Australia

Abstract. Strongly typed polymorphism is necessary for expressing safe
reusable code. T'wo orthogonal forms of polymorphism exist: inclusion
and parametric, the Oberon language only supports the former. We de-
scribe a simple extension to Oberon to support parametric polymor-
phism. The extension is in keeping with the Oberon language: it is simple
and has an explicit cost. In the paper we motivate the need for paramet-
ric polymorphism and describe an implementation in terms of translating
extended Oberon to standard Oberon.

1 Introduction

A key goal of Software Engineering 1s to support the production and use of
reusable code. Reusable code, by definition, is “generic” 1.e. applicable in a num-
ber of different contexts. To guarantee that code 1s reused correctly strong typing
1s desirable. Genericity in code can best be expressed by polymorphic types. Two
different forms of polymorphism have been identified: inclusion and parametric
[2]. In theory inclusion and parametric polymorphism are orthogonal concepts
and neither can be used to satisfactorily replace the other.

3 Parametric Polymorphism for Oberon

We introduce parametric polymorphism via our previous example. A type may be
parametrised on types in much the same way as a procedure may be parametrised

on values.

3 Parametric Polymorphism for Oberon

We introduce parametric polymorphism via our previous example. A type may be
parametrised on types in much the same way as a procedure may be parametrised

on values.

are to Types as
are to Values

Agenda
®

4. Example #2
9. Final Thoughts

Example #1 c

Adding Two Integers

auto add(int a, int b) -> int {
return a + b;

}

auto add(int a, int b) -> int { return a + b; }

int add(int a, int b) { return a + b; }

fn add(a: 132, b: i32) -> i32 { a + b }

func add(_ a: Int, b: Int) -> Int { a + b }

add :: Int -> Int -> Int
add a b=a+b

@R o

auto add(int a, int b) -> int { return a + b; }
int add(int a, int b) { return a + b; }

fn add(a: 132, b: i32) -> i32 { a + b }

func add(_ a: Int, b: Int) -> Int { a + b }

add :: Int -> Int -> Int
add a b=a+b

Q auto add(int a, int b) -> int { return a + b; }
@ int add(int a, int b) { return a + b; }
8 f add(a: i32, b: i32) > i32 {a+b}
:Sl func add(_ a: Int, b: Int) -> Int { a + b }

add :: Int -> Int -> Int
add a b =a+b

1]

Keyword Before
Function

Trailing Return
Type

Integer Return Necessary

Q auto add(int a, int b) -> int { return a + b; }
@ int add(int a, int b) { return a + b; }
8 f add(a: i32, b: i32) > i32 {a+b}
:Sl func add(_ a: Int, b: Int) -> Int { a + b }

add :: Int -> Int -> Int
add a b =a+b

1]

Keyword Before
Function

Trailing Return
Type

Integer Return Necessary

Q auto add(int a, int b) -> int { return a + b; }
@ int add(int a, int b) { return a + b; }
8 f add(a: i32, b: i32) > i32 {a+b}
:Sl func add(_ a: Int, b: Int) -> Int { a + b }

add :: Int -> Int -> Int
add a b =a+b

1]

Keyword Before
Function

Trailing Return

Integer Type

Return Necessary

int (int32_t)

int
i32

Int

Int

Q auto add(int a, int b) -> int { return a + b; }
@ int add(int a, int b) { return a + b; }
8 f add(a: i32, b: i32) > i32 {a+b}
:Sl func add(_ a: Int, b: Int) -> Int { a + b }

add :: Int -> Int -> Int
add a b =a+b

1]

Keyword Before
Function

Trailing Return

Integer Type

Return Necessary

int (int32_t)

int
i32

Int

Int

Q auto add(int a, int b) -> int { return a + b; }
@ int add(int a, int b) { return a + b; }
8 f add(a: i32, b: i32) > i32 {a+b}
:Sl func add(_ a: Int, b: Int) -> Int { a + b }

add :: Int -> Int -> Int
add a b =a+b

1]

Keyword Before
Function

Trailing Return

Integer Type

Return Necessary

int (int32_t)

int
i32

Int

Int

[[digression]]

Groovy

Elixir

Crystal

Python
Ruby
Scala
Fortran
JavaScript
Julia
Lua

Go

def
def
def
def
def
def
function
function
function
function
func
func
func
fn
fn

E W Ve o

Groovy
Elixir
Crystal
Python
Ruby
Scala

Fortran

def
def
def
def
def
def

function

O
@
@)

O
@
@

O
O
@

O
@
@)

O
O
@

O
@
@)

O
@
@)

JS

julia

py
t)
Y
A
®

JavasScript
Julia
Lua
GO
N1im
Swift

Rust

function

function

function
func
func

func

fn

O
@
@)

O
O
@)

O
@
@)

O
@
@

O
O
@

O
@
@)

O
O
@

|D
O
O

Rust fn

O
@
@

Z1ig fn

O
O
@

Clojure defn

Kotlin fun

O
@
@)

Racket define

O
@
@)

C++ auto

Q @ MO

LISP defun

O
@
@)

[[end of digression]]

auto add(int a, int b) -> int { return a + b; }

int add(int a, int b) { return a + b; }

fn add(a: 132, b: i32) -> i32 { a + b }

func add(_ a: Int, b: Int) -> Int { a + b }

add :: Int -> Int -> Int
add a b=a+b

template <typename T>
auto add(T a, T b) -> T { return a + b; }

int add(int a, int b) { return a + b; }

fn add(a: 132, b: i32) -> i32 { a + b }

func add(_ a: Int, b: Int) -> Int { a + b }

add :: Int -> Int -> Int
add a b=a+b

auto add(auto a, auto b) { return a + b; }

int add(int a, int b) { return a + b; }

fn add(a: 132, b: i32) -> i32 { a + b }

func add(_ a: Int, b: Int) -> Int { a + b }

add :: Int -> Int -> Int
add a b=a+b

auto add(auto a, auto b) { return a + b; }

T add(T)(T a, T b) { return a + b; }

fn add(a: 132, b: i32) -> i32 { a + b }

func add(_ a: Int, b: Int) -> Int { a + b }

add :: Int -> Int -> Int
add a b=a+b

auto add(auto a, auto b) { return a + b; }

T add(T)(T a, T b) { return a + b; }

fn add<T>(a: T, b: T) -> T { a+ b }

func add(_ a: Int, b: Int) -> Int { a + b }

add :: Int -> Int -> Int
add a b=a+b

auto add(auto a, auto b) { return a + b; }

T add(T)(T a, T b) { return a + b; }

fn add<T>(a: T, b: T) -> T { a+ b }

func add<T>(_ a: T, b: T) ->T { a+ b}

add :: Int -> Int -> Int
add a b=a+b

TIL@ORO

auto add(auto a, auto b) { return a + b; } 4."

T add(T)(T a, T b) { return a + b; } 4"’
fn add<T>(a: T, b: T) ->T { a + b }

func add<T>(_ a: T, b: T) ->T { a+ b}

add :: t -> t -> t
add a b =a+ b

‘n\ T add(T)(T a, T b) { return a + b; }

fn add<T: std::ops::Add<Output = T>>(a: T, b: T) -> T { a + b }

func add<T>(_ a: T, b: T) ->T { a+ b}

add :: t -> t -> t
add a b=a+b

o auto add(auto a, auto b) { return a + b; }
IS
N

auto add(auto a, auto b) { return a + b; }

L

T add(T)(T a, T b) { return a + b; }

fn add<T: std::ops::Add<Output = T>>(a: T, b: T) -> T { a + b }

func add<T: Numeric>(_ a: T, b: T) ->T { a+b }

-— add :: t -> t -> t
X‘ add ab=a+b

auto add(auto a, auto b) { return a + b; }

L

T add(T)(T a, T b) { return a + b; }

fn add<T: std::ops::Add<Output = T>>(a: T, b: T) -> T { a + b }

func add<T: Numeric>(_ a: T, b: T) ->T { a+b }

®
N |

-— add :: Num €t => t -> t -> t
X‘ add ab=a+b

Type Type
Constraints ve Classes
““consent”’’

& 2

Q template< typename T> 00
auto F(T t) -> T

S

template< typename T>
auto f(T t) -> T

id :: t -> t
Std::identity

Defined in header <functional>
struct identity; (since C++20)

LLVM DEVELOPERS” MEETING
e g

Constrained Generics J

SLAVA PESTOV, |
JOHN MCCALI

—

Implementing

: - | John McCall, Apple
Swift Generics

4" LLVM.org

LLVM DEVELOPERS” MEETING

Swift Generics

* Bounded parametric polymorphism
« Similar to Java, C#, Haskell, ML...

; « Constraints described in terms of “protocols”

-

VA PESTOV |
'JOHN MCCALL |

Implementing
Swift Generics

4" LLVM.org

* Bounded parametric polymorphism

Type Type
Constraints ve Classes
““consent”’’

& 2

Agenda
®

9. Final Thoughts

Example #2

Shapes: Circle & Rectangle

class circle {

float r;
public:
explicit circle(float radius) : r{radius} {}
auto name() const -> std::string { return "Circle"; }
auto area() const -> float { return pi * r * r; }
auto perimeter() const -> float { return 2 * pi * r; }
}s
class rectangle {
float w, h;
public:
explicit rectangle(float height, float width) : h{height}, w{width} {}
auto name() const -> std::string { return "Rectangle"; }
auto area() const -> float { return w * h; }
auto perimeter() const -> float { return 2 * w + 2 * h; }

s

e B ® N ¢

D

class Circle {

float r;
this(float radius) { r = radius; }
string name() const { return "Circle"; }
float area() const { return PI * r * pr; }
float perimeter() const { return 2 * PI * r; }
}
class Rectangle {
float w, h;
this(float width, float height) { w = width; h = height; }
string name() const { return "Rectangle"; }
float area() const { return w * h; }

float perimeter() const { return 2 * w + 2 * h; }

e B ® N ¢

struct Circle { r: 32 }
struct Rectangle { w: 32, h: 32 }

impl Circle {

fn name(&self) -> String { "Circle".to string() }
fn area(&self) -> 32 { PI * self.r * self.r }
fn perimeter(&self) -> 32 { 2.0 * PI * self.r }
}
impl Rectangle {
fn name(&self) -> String { "Rectangle".to string() }
fn area(&self) -> 32 { self.w * self.h }

fn perimeter(&self) -> 32 { 2.0 * self.w + 2.0 * self.h }

e 2 ® 2

class Rectangle {

}

let w, h: Float

init(w: Float, h: Float) { self.w = w; self.h = h }

func name() -> String { "Rectangle" }
func area() -> Float { w * h }
func perimeter() -> Float {2 *w+ 2 * h }

class Circle {

let r: Float

init(r: Float) { self.r =r }

func name() -> String { "Circle" }

func area() -> Float { Float.pi * r * r }

func perimeter() -> Float { 2 * Float.pi * r }

e B ® N ¢

data Circle
data Rectangle

Circle {r :: Float}
Rectangle {w :: Float, h :: Float}

name :: Circle -> String
name (Circle) = "Circle"
area :: Circle -> Float

area (Circle r) pi * r N 2

perimeter :: Circle -> Float
perimeter (Circle r) =2 * pi * pr

name :: Rectangle -> String
name (Rectangle =) = "Rectangle"
area :: Rectangle -> Float

area (Rectangle w h) = w * h

perimeter :: Rectangle -> Float
perimeter (Rectangle w h) =2 * w + 2 * h

e 2 ® N ¢

data Circle
data Rectangle

Circle {r :: Float}

circleName :: Circle -> String
circleName (Circle) = "Circle"
circleArea :: Circle -> Float

circleArea (Circle r)

pi * r ™ 2

circlePerimeter :: Circle -> Float
circlePerimeter (Circle r) =2 * pi * pr

rectangleName :: Rectangle -> String
rectangleName (Rectangle _) = "Rectangle"

rectangleArea :: Rectangle -> Float
rectangleArea (Rectangle w h) = w * h

rectanglePerimeter :: Rectangle -> Float

Rectangle {w :: Float, h ::

Float}

rectanglePerimeter (Rectangle w h) = 2 * w + 2 * h

e 2 ® N ¢

void print_shape info(auto s) {
fmt: :print("Shape: {}\nArea: {}\nPerim: {}\n\n",
s.name(), s.area(), s.perimeter());

e B ® N ¢

void printShapeInfo(T)(T s) {
writeln("Shape: ", s.name(),
"\nArea: ", s.area(),

"\nPerim: ", s.perimeter(), "\n");

e B ® N ¢

fn print_shape_info<T>(s: T) {
println! ("Shape: {}\nArea: {}\nPerim: {}\n",
s.name(), s.area(), s.perimeter());

fn print_shape _info<T>(s: T) {
println! ("Shape: {}\nArea: {}\nPerim: {}\n",
s.name(), s.area(), s.perimeter());

fn print_shape_info<T>(s: T) {
println! ("Shape: {}\nArea: {}\nPerim: {}\n",
s.name(), s.area(), s.perimeter());

e 2 ® 2

[[digression]]

impl Circle {
fn name(&self) -> String { "Circle" }
}

impl Circle {
fn name(&self) -> String { "Circle" }
}

e B ® N ¢

®

fn add<T>(a: T, b: T) -> T { a + b }

fn add<T>(a: T, b: T) -> T { a + b }

e 2 ® N ¢

let mut ¢ = Circle { r: 1.0 };

let mut ¢ = Circle { r: 1.0 };

e 2 ® N ¢

[[end of digression]]

func printShapeInfo<T>(_ s: T) {
print("Shape: \(s.name())\n" +
"Area: \(s.area())\n" +
"Perim: \(s.perimeter())\n")

e 2 ® N ¢

func printShapeInfo<T>(_ s: T) {
print("Shape: \(s.name())\n" +
"Area: \(s.area())\n" +
"Perim: \(s.perimeter())\n")

e 2 ® N ¢

void print_shape info(auto s) {
fmt: :print("Shape: {}\nArea: {}\nPerim: {}\n\n",
s.name(), s.area(), s.perimeter());

e B ® N ¢

template <typename S>

concept shape = requires(S s) {
{ s.name() } -> std::same_as<std::string>;
{ s.area() } -> std::floating point;
{ s.perimeter() } -> std::floating point;

s

void print_shape info(auto s) {
fmt: :print("Shape: {}\nArea: {}\nPerim: {}\n\n",
s.name(), s.area(), s.perimeter());

e B ® N ¢

template <typename S>

concept shape = requires(S s) {
{ s.name() } -> std::same_as<std::string>;
{ s.area() } -> std::floating point;
{ s.perimeter() } -> std::floating point;

s

void print _shape info(shape auto s) {
fmt::print("Shape: {}\nArea: {}\nPerim: {}\n\n",
s.name(), s.area(), s.perimeter());

e B ® N ¢

void printShapeInfo(T)(T s) {
writeln("Shape: ", s.name(),
"\nArea: ", s.area(),

"\nPerim: ", s.perimeter(), "\n");

e B ® N ¢

D

template shape(T) {

const shape = _ traits(compiles, (T t) {
t.name();
t.area();
t.perimeter();

1)

void printShapeInfo(T)(T s) {
writeln("Shape: ", s.name(),
"\nArea: ", s.area(),

"\nPerim: ", s.perimeter(), "\n");

e B ® N ¢

D

template shape(T) {

const shape = _ traits(compiles, (T t) {
t.name();
t.area();
t.perimeter();

1)

void printShapeInfo(T)(T s)
1f (shape!(T))

{
writeln("Shape: ", s.name(),
"\nArea: ", s.area(),
"\nPerim: ", s.perimeter(), "\n");
}

e B ® N ¢

impl Circle { ... }
impl Rectangle { ... }

fn print_shape _info<T>(s: T) {

println! ("Shape: {}\nArea: {}\nPerim: {}\n",
s.name(), s.area(), s.perimeter());

e B2 ® 3N ¢

trait Shape {

fn name(&self) -> String;
fn area(&self) -> 32;
fn perimeter(&self) -> f32;
}
impl Shape for Circle { ...}
impl Shape for Rectangle { ... }

fn print_shape _info<T>(s: T) {
println! ("Shape: {}\nArea: {}\nPerim: {}\n",
s.name(), s.area(), s.perimeter());

e 2 ® 2

trait Shape {

fn name(&self) -> String;
fn area(&self) -> 32;
fn perimeter(&self) -> f32;
}
impl Shape for Circle { ...}
impl Shape for Rectangle { ... }

fn print_shape _info<T: Shape>(s: T) {
println! ("Shape: {}\nArea: {}\nPerim: {}\n",
s.name(), s.area(), s.perimeter());

e 2 ® 2

class Rectangle { ... }
class Circle { ...}

func printShapeInfo<T>(_ s: T) {
print("Shape: \(s.name())\n" +
"Area: \(s.area())\n" +
"Perim: \(s.perimeter())\n")

e 2 ® N ¢

protocol Shape {
func name() -> String
func area() -> Float
func perimeter() -> Float

¥

class Rectangle : Shape { ... }
class Circle : Shape { ... }

func printShapeInfo<T>(_ s: T) {
print("Shape: \(s.name())\n" +
"Area: \(s.area())\n" +
"Perim: \(s.perimeter())\n")

e B ® N ¢

protocol Shape {

func name() -> String
func area() -> Float
func perimeter() -> Float

}

class Rectangle : Shape { ... }

class Circle : Shape { ... }

func printShapeInfo<T: Shape>(_ s: T) {
print("Shape: \(s.name())\n" +
"Area: \(s.area())\n" +
"Perim: \(s.perimeter())\n")

e B ® N ¢

data Circle
data Rectangle

Circle {r :: Float}
Rectangle {w :: Float, h :: Float}

name :: Circle -> String
name (Circle) = "Circle"
area :: Circle -> Float

area (Circle r) pi * r N 2

perimeter :: Circle -> Float
perimeter (Circle r) =2 * pi * pr

name :: Rectangle -> String
name (Rectangle =) = "Rectangle"
area :: Rectangle -> Float

area (Rectangle w h) = w * h

perimeter :: Rectangle -> Float
perimeter (Rectangle w h) =2 * w + 2 * h

e 2 ® N ¢

class Shape a where

name :: a -> String
area :: a -> Float
perimeter :: a -> Float
data Circle = Circle {r :: Float}
data Rectangle = Rectangle {w :: Float, h :: Float}
instance Shape Circle where
name (Circle) = "Circle"
area (Circle r) = pi * r ~ 2
perimeter (Circle r) =2 * pi * r
instance Shape Rectangle where
name (Rectangle _) = "Rectangle"
area (Rectangle w h) = w * h
perimeter (Rectangle w h) =2 * w + 2 * h

printShapelnfo ::
printShapeInfo s =

Shape a => a -> I0()
putStrLn ("Shape: "

++ (name s) ++ "\n" ++
++ show (area s) ++ "\n" ++
++ show (perimeter s) ++ "\n")

"Area:
"Perim:

e 2 ® N ¢

class Shape a where

name :: a -> String

area :: a -> Float

perimeter :: a -> Float
instance Shape Circle where ...

instance Shape Rectangle where ...

printShapeInfo :: Shape a => a -> I0()
printShapeInfo s = putStrLn ("Shape: "
"Area: "
"Perim: "

++ (name s) ++ "\n" ++
++ show (area s) ++ "\n" ++
++ show (perimeter s) ++ "\n")

e 2 ® N ¢

Agenda

Final Thoughts

Least to Greatest

1. 3

2. Tfr‘:e

3. ® Implement
4.

5. €&

Final Thoughts

1. 25

2. 3 33 LOC:
Lines

3, 36 of

a. 44 Code

5. 47

Final Thoughts

Half the time I just “guessed right”
PDoC: Progressive Disclosure of Complexity
Defaults are all correct

Compiler messages are amazing
Defaults are all co

Seems too simi - e s s
Added comple e

Steep learning curve
Compiler messages are bad

40 years of history = less elegance
Most defaults are wrong
C++20 is a work in progress

V¥ Mean Score V¥

= Programming Language Trends - =
La n g uis h ... for more, subscribe to Context Free C :)

7%
Haskell 2
. . :
5%
4%
3%
2%
1%
o) Empty || Reset
0% &= (
N S & S & N I P Q

Google
Trends

Languish TIOBE PYPL RedMonk

200000

180000

160000

140000

120000

100000

The Swift Forums are governed by the Swift Code of Conduct

all categories » | all tags » Latest

Top

-ness
Final Thoughts ©

» Half the time I just “guessed right”
* PDoC: Progressive Disclosure of Complexity
e Defaults are all correct

* Compiler messages are amazing
* Defaults are all correct

e Seems too similar to C++
 Added complexity in some places

* Steep learning curve
° Compiler messages are bad

z * 40 years of history = less elegance
R 2 » Most defaults are wrong
» C++201s a work in progress

#include

https://github.com/codereport/Talks

#include

https://github.com/codereport/Talks

Podcast Links:

Podcast Guest Date
Magic Read Along - 2016-12-01
The Swift
) - 2019 - 2020
Community Podcast
Swift by Sundell Dave Abrahams 2020-04-23

Swiftly Speaking

Chris Lattner 2020-06-18

cpp.chat Conor Hoekstra ~ 2020-10-08

Lex Fridman Podcast

cpp.chat

YouTube Video Links:

Speaker
Panel
Chris Lattner
Dave Abrahams
Scott Schurr
Marijn Haverbeke

Slava Pestov
John McCall

Bryan Cantrill
Sean Allen

Daniel Steinberg

Chris Lattner 2020-10-18

Panel 2020-10-20

Conference/Meetup
LangNext
WwWDC
WWDC
CppCon

RustFest

LLVM Developers' Meeting

Systems We Run Meetup
YouTube Video

GOTO

Link

Episode 28: | Am Not Full of Beans!

All Episodes (1 - 8)

Polymorphic Interfaces
Episode 11

Episode 75: | Really Like Sugar

Episode 131: The Future of Computing and Programming Languages

Year

2014

2014

2015

2015

2016

2017

2018

2019

2019

Episode 78: The C++ and Rust Round Table

Talk
C++ vs Rust vs D vs Go
Swift Introduction
Protocol-Oriented Programming in Swift
constexpr: Applications

The Rust That Could Have Been

Implementing Swift Generics

The Summer of RUST
Swift Programming Language Introduction - A Brief History

What's New in Swift

rrnpE vdaicl M~iialinnici o 1 2ciiinial 2Tliico [y <A Fatliclivvciyglit JaY

Context Free (Tom Palmer) YouTube Video 2020 Demo: C++20 Concepts Feature
Payas Rajan C++ London Meetup 2020 Are Graphs Hard in Rust?
Henrik Niemeyer C++ London Meetup 2020 A Friendly Introduction to Rust
James Munns C++ London Meetup 2020 Access All Arenas

Paper Links:

Author Date Link

Philip Wadler

1988 How to make ad hoc polymorphism less ad hoc
Stephen Blott

Paul Roe . . . :
1997 Lightweight Parametric Polymorphism for Oberon

Clemens Szyperski

Jeremy G. Siek) o
) 2008 A language for generic programming in the large
Andrew Lumsdaine

Yizhou Zhang . . .
2020 Unifying Interfaces, Type Classes, and Family Polymorphism
Andrew C. Myers

Article/Other Links:

Author Site Date Link
Philip Fong URegina 2008-04-02 CS 115: Parametric Polymorphism: Template Functions
Zuu StackOverflow 2016-04-16 Why is C++ said not to support parametric polymorphism?
matt_d HackerNews 2016-12-16 Concepts: The Future of Generic Programming
Austin_Aaron_Conlon reddit/cpp 2020-01-13 Influence of C++ on Swift
David Vandevoorde Quora 2020-01-13 ~ What are similarities and differences between C++ and Swift?

- Wikipedia - Parametric Polymorphism

Thank You!

Conor Hoekstra

C‘/ code_report I3

<A NVIDIA. RAPIDS

nclude <C++>

Questions / Feedback?

Conor Hoekstra

Q code_report I3

<A NVIDIA. RAPIDS

nclude <C++>

