~— [[1 | Bloomberg O o —

VIR TUAL EVENT

Frictionless Allocators

et

Alisdair Meredith .~

L

Frictionless Allocators § %0
4 O

& 3

ACCU Conference O
March 2021 2
Alisdair Meredith (o’

Senior Developer

A AT AT P R AR
» . s - '] e
e i Rt b A ;

B Pt S

TechAtBloomberg.com
© 2019 Bloomberg Finance L.P. All rights reserved.

http://TechAtBloomberg.com

Outline of Talk

Why Allocators?

What do allocators look like in C++207
What causes friction?

What should we do about it?

What is our experience?

What next?

What is an allocator?

What is an allocator?

A service that grants exclusive use of a region
of memory to clients

What is an allocator?

A service that grants exclusive use of a region
of memory to clients

Nice clients will return that region to the
service when no longer needed

Why Do We Want Allocators?

Why Do We Want Allocators?

Is the new operator not good enough?

Why Do We Want Allocators?

e Performance
e Performance
e Performance
* |nstrumentation

e Special memory

Performance

 Well chosen allocators can greatly improve memory locality

e See John Lakos talk:
Value Proposition: Allocator Aware Software
hitps://www.youtube.com/watch”?v=ebn1C-mTFVk

* Papers we wrote on measuring allocator performance:
https:/wg21.link/p0089 and https:/wg21.link/p0213

* Factor of 3-5 speedup common for allocation behavior,
compared to new operator

* Order of magnitude or more for extreme cases

10

https://www.youtube.com/watch?v=ebn1C-mTFVk
https:/wg21.link/p0089
https:/wg21.link/p0213

Performance

 Well chosen allocators can greatly improve memory locality

e See John Lakos talk:
Value Proposition: Allocator Aware Software
hitps://www.youtube.com/watch”?v=ebn1C-mTFVk

* Papers we wrote on measuring allocator performance:
https:/wg21.link/p0089 and https:/wg21.link/p0213

* Factor of 3-5 speedup common for allocation behavior,
compared to new operator

* Order of magnitude or more for extreme cases

11

https://www.youtube.com/watch?v=ebn1C-mTFVk
https:/wg21.link/p0089
https:/wg21.link/p0213

A Faster Allocator

e (General purpose allocator tries to minimize contention

A better/replacement operator new

* Avoid synchronization if we can guarantee all access from
a single thread

e Simplified bookkeeping if we never reclaim memory

* monotonic allocator simply advances a pointer through
a buffer on each allocation

12

Performance

e Better memory locality improves runtime after allocation

« Keeping memory in L1/L2 cache has an enormous impact on
runtime performance

 although CPU is trying to manage cache to make this happen
anyway, a local memory pool goes a long way to help

 Memory pools minimize the effect of diffusion on a single task

 Memory pools on the stack reduce fragmentation of long running
Processes

 No synchronization if allocation confined to a single thread

13

Performance

 [wo common strategies to improve locality
* [ry to allocate on the thread stack
e Typically from a pre-sized memory buffer

 Manage a pool of memory to avoid needless trips
back to the memory manager

* This is commonly the implementation strategy of
operator new, but specific pool for each data
structure

14

Utility

e Custom allocators can add extra functionality In
addition to supplying memory, such as
instrumentation for:

* Debugging
* Logging
N celililgle

e Jest drivers

15

Special Memory

e Special memory may be hardware specific, or has some
other property, e.g., shared memory

o Often requires a handle with more info than a native
C++ pointer

e £.9., boost::interprocess for shared memory
containers

e Some architectures provide different access to different
regions of memory

e VRAM on video cards?

16

Emery Berger

* Professor at University of Massachusetts Amherst

 ACM Fellow: For contributions in memory
management and programming language
implementation

* Developed Hoard, first scalable general-purpose
memory allocator

e Algorithm incorporated into IBM & Mac OS X
allocators

* Developed DieHard & DieHarder - reliable & secure
memory allocators

e Directly influenced Windows 7-8 allocator design
* Wrote technical paper evaluating custom allocators

* Reconsidering Custom Memory Allocation, cited
over 200 times, Most Influential Paper

17

Accelerating Programs via
Custom Allocators

* Demonstrate value of custom allocation
e Empirically measure opportunities (past successes)
e Performance impact, space impact
* Help programmers

 Automatically identify opportunities for custom allocation
In legacy code

* Provide tools to ensure efficiency for programs using
custom allocation

18

Initial empirical results

e Replace specific custom allocator: BufferedSequentialAllocator

e Run with three benchmarks:

e stresstest - artificial composition of sorts & filters; changes sort &

filter criteria to make the engine rearrange static data based on random
numbers

e moda moda - extraction of the Datalayer pipeline of some application
that actually drives headline Terminal functions

e Single-stage: benchmarks worksheet computation in a single stage
pipeline. Exercises WorksheetView (Excel formulas)

* Multi-stage: benchmarks worksheet computation in multiple stages
composed by join views. Exercises WorksheetView, UniqueView,

and JoinView

19

Early Results

-03, TurboBoost on, replacing BufferManager

Custom allocators vs. malloc execution time, -O3, TB on

B shim + malloc | shim + Hoard original [original + Hoard

o
D
et
o)
o)
2
e
o
=
o)
N
)
E
whed
c
e
et
-
O
@
X
o
g
@
N
©
€
p—
o
Z

bm_dls_stresstest bm_dls_moda_moda bm_dIls_moda_moda
(single-stage) (multi-stage)

Benchmark

Roughly ~25% improvement using custom allocation

20

Allocators in C++20

Allocator Traits
(since 201 1)

template <class Alloc>
struct allocator traits {

using allocator type = Alloc;

using value type = typename Alloc::value type;
using poilinter = see below;

using const pointer = see below;

using volid pointer = see below;

using const void pointer = see below;

using difference type = see below;

using size type = see below;

//

}r

22

Allocator Traits
(since 201 1)

template <class Alloc>
struct allocator traits {

/] ...

template <class T>
using rebind alloc = see below;

template <class T>
using rebind traits = allocator traits<rebind alloc<T>>;

// ...
b

23

Allocator Traits
(since 201 1)

template <class Alloc>
struct allocator traits {

// e o o

static pointer allocate(Alloc& a, size type n);

static pointer allocate(Alloc& a, size type n, const void pointer hint);
static void deallocate(Alloc& a, pointer p, size type n);

template <class T, class... Args>
static void construct(Alloc& a, T* p, Args&&... args);

template <class T>
static void destroy(Alloc& a, T* p);

static size type max size(const Alloc& a);

/] ...

24

Allocator Traits
(since 201 1)

template <class Alloc>
struct allocator traits {

//

static pointer allocate(Alloc& a, size type n);

static pointer allocate(Alloc& a, size type n, const void pointer hint);
static void deallocate(Alloc& a, pointer p, size type n);

template <class T, class... Args>
static void construct(Alloc& a, T* p, Argsé&&... args);

template <class T>
static void destroy(Alloc& a, T* p);

static size type max size(const Alloc& a);

//
}i

25

Allocator Traits
(since 201 1)

template <class Alloc>
struct allocator traits {

/] «..

using propagate on container copy assignment = see below;
using propagate on container move assignment = see below;
using propagate on container swap = see below;

static Alloc select on container copy construction(const Alloc& rhs);

26

How did we improve
support in C++17

 is always equal
* Improved exception specifications on containers

* Polymorphic Memory Resources in hamespace
std: :pmr

e std: :pmr containers

* Constraint: fancy pointers must be contiguous iterators

27

std::allocator

C++17

template<class T>
struct allocator {

using value type = T,;

using size type = size t
using difference type = ptrdiff_t
using propagate on container_move assignment = true type;
using 1s_always equal = true_type;

allocator () noexcept;

allocator(const allocator&) noexcept;
template<class U>

allocator(const allocator<U>&) noexcept;
~allocator () ;

allocator& operator=(const allocator&) = default;

T* allocate(size t n);
void deallocate(T* p, size t n);

28

std::allocator

C++17 C++20

template<class T>
struct allocator {

using value type = T,;

using size type = size t
using difference type = ptrdiff_t
using propagate on container_move assignment = true type;
using 1s_always equal = true_type;

constexpr allocator() noexcept;

constexpr allocator(const allocator&) noexcept;
template<class U>

constexpr allocator(const allocator<U>&) noexcept;
constexpr ~allocator();

constexpr allocator& operator=(const allocator&) = default;

[[nodiscard]] constexpr T* allocate(size t n);
constexpr void deallocate(T* p, size t n);

s

29

How does pmr work?

Resource derives from std: :pmr::memory resource

e Qverride the pure abstract members

Clients store pointer to memory resource “like a vtable”
Resource pointer never propagates

e Scope resource object with a longer lifetime than consumers
e Data structures “guarantee” all elements using same resource

Alias templates for all standard containers to use this new scheme

30

memory resource

class memory resource {
// For exposition only
static constexpr size t max align = alignof(max align t);

public:
virtual ~memory resource();

void* allocate(size t bytes, size t alignment = max align);
void deallocate(void* p, size t bytes, size t alignment = max align);

bool is equal(const memory resource& other) const noexcept;

protected:
virtual void* do allocate(size t bytes, size t alignment) = 0;
virtual void do deallocate(void* p, size t bytes, size t alignment) = 0;

virtual bool do is equal(const memory resource& other) const noexcept = 0;

}i

31

memory resource

class memory resource {

// For exposition only
static constexpr size t max align = alignof(max align t);

public:
virtual ~memory resource();

void* allocate(size t bytes, size t alignment = max align);

void deallocate(void* p, size t bytes, size t alignment = max align);

bool is equal(const memory resource& other) const noexcept;

protected:
virtual void* do allocate(size t bytes, size t alignment) = 0;
virtual void do deallocate(void* p, size t bytes, size t alignment) = 0;
virtual bool do is equal(const memory resource& other) const noexcept = 0;

}i

32

memory resource

class memory resource {
// For exposition only
static constexpr size t max align = alignof(max align t);

public:
virtual ~memory resource();

void* allocate(size t bytes, size t alignment = max align);
volid deallocate(void* p, size t bytes, size t alignment = max align);

bool is equal(const memory resource& other) const noexcept;

protected:
virtual void* do allocate(size t bytes, size t alignment) = 0;
virtual void do deallocate(void* p, size t bytes, size t alignment) = 0;

virtual bool do is equal(const memory resource& other) const noexcept = 0;

}i

33

memory resource

class memory resource {
// For exposition only
static constexpr size t max align = alignof(max align t);

public:
virtual ~memory resource();

void* allocate(size t bytes, size t alignment = max align);
volid deallocate(void* p, size t bytes, size t alignment = max align);

bool is equal(const memory resource& other) const noexcept;

protected:
virtual void* do allocate(size t bytes, size t alignment) = 0;
virtual void do deallocate(void* p, size t bytes, size t alignment) = 0;

virtual bool do is equal(const memory resource& other) const noexcept = 0;

}i

34

memory resource

class memory resource {
// For exposition only
static constexpr size t max align = alignof(max align t);

public:
virtual ~memory resource();

void* allocate(size t bytes, size t alignment = max align);
void deallocate(void* p, size t bytes, size t alignment = max align);

bool is equal(const memory resource& other) const noexcept;

protected:
virtual void* do allocate(size t bytes, size t alignment) = 0;
virtual void do deallocate(void* p, size t bytes, size t alignment) = 0;

virtual bool do is equal(const memory resource& other) const noexcept = 0;

}i

35

memory resource

class memory resource {
// For exposition only
static constexpr size t max align = alignof(max align t);

public:
virtual ~memory resource();

void* allocate(size t bytes, size t alignment = max align);
volid deallocate(void* p, size t bytes, size t alignment = max align);

bool is equal(const memory resource& other) const noexcept;

protected:
virtual void* do allocate(size t bytes, size t alignment) = 0;
virtual void do deallocate(void* p, size t bytes, size t alignment) = 0;

virtual bool do is equal(const memory resource& other) const noexcept = 0;

}i

36

Standard Resources

e memory resource* new delete resource() noexcept;
e memory resource* null memory resource() noexcept;

e memory resource* get default resource() noexcept;

37

Standard Resources

memory resource* new delete resource() noexcept;
memory resource* null memory resource() noexcept;

memory resource* get default resource() noexcept;

class monotonic buffer resource;
class synchronized pool resource;

class unsynchronized pool resource;

38

ldiom and usage of pmr

* Memory resources are objects, typically scoped to a function, with a lifetime
longer than their clients below them

* Default, object, and global “allocators”
e System-wide default used for all objects unless otherwise specified
e Use the default for function-scope objects within an allocator-aware class

* Use object allocator (supplied at construction) only (and always) for data that
Is part of the object data structure, that persists beyond the function call

* Use another “global allocator” for any object with static or thread-local
storage duration, as may outlive the default resource after main

39

ldiom and usage of pmr

* Memory resources are objects, typically scoped to a function, with a lifetime
longer than their clients below them

* Default, object, and global “allocators”
e System-wide default used for all objects unless otherwise specified
e Use the default for function-scope objects within an allocator-aware class

* Use object allocator (supplied at construction) only (and always) for data that
Is part of the object data structure, that persists beyond the function call

* Use another “global allocator” for any object with static or thread-local
storage duration, as may outlive the default resource after main

* No support for fancy pointers

40

Quick Example

pmr::string make string(const char *s) {
pmr::monotonic _resource res;
pmr::string x(s, &res);
return x;

s

41

Quick Example

pmr::string make string(const char *s) {
pmr::monotonic resource res;
pmr::string x(s, &res);
return x;

String x is declared after resource res, so C++
ifetimes should avoid dangling references

42

Quick Example

pmr::string make string(const char *s) {
pmr::monotonic resource res;
pmr::string x(s, &res);
return x; // potential RVO

'

43

Quick Example

pmr::string make string(const char *s) {
pmr::monotonic _resource res;
pmr::string x(s, &res);
return x; // C++17 guarantees RVO

s

44

Quick Example

pmr::string make string(const char *s) {
pmr::monotonic _resource res;
pmr::string x(s, &res);
return {x};

Force creation of a temporary, using the default allocator

45

Scoped Allocator Model

 Simple idea: every element in the data structure uses the same
allocator/memory-resource

* Class design: every member of the object graph (all bases and
members) use the same allocator

» Key benefit: underpins performance when looking to avoid
diffusion and fragmentation

* Important benefit: easy to guarantee allocator/resource has a
longer lifetime than its clients

* |Implication: allocators can never propagate, or else any swap or
assignment could invalidate the whole system

46

Scoped Allocator Model

 Simple idea: every element in the data structure uses the same
allocator/memory-resource

* Class design: every member of the object graph (all bases and
members) use the same allocator

» Key benefit: underpins performance when looking to avoid
diffusion and fragmentation

* Important benefit: easy to guarantee allocator/resource has a
longer lifetime than its clients

* |Implication: allocators can never propagate, or else any swap or
assignment could invalidate the whole system

47

std: :pmr::allocator

C++1/7 C++20

namespace std::pmr {
template<class Tp = byte>
class polymorphic allocator {
memory resource* memory rsrc,; // exposition only
public:
using value type

Tp;

// 20.12.3.1, constructors

polymorphic _allocator () noexcept,;

polymorphic _allocator(memory resource* r);

polymorphic _allocator(const polymorphic allocator& other) = default;

template<class U>
polymorphic _allocator(const polymorphic allocator<U>& other) noexcept;

polymorphic _allocator& operator=(const polymorphic allocator&) = delete;

48

std: :pmr::allocator

C++1/7 C++20

namespace std::pmr {
template<class Tp = byte>
class polymorphic allocator {
memory resource* memory rsrc,; // exposition only
public:

// 20.12.3.1, constructors

polymorphic _allocator () noexcept,;

polymorphic _allocator(memory resource* r);

polymorphic _allocator(const polymorphic allocator& other) = default;

polymorphic _allocator& operator=(const polymorphic allocator&) = delete;

//

49

std: :pmr::allocator

C++1/7 C++20

//

// 20.12.3.2, member functions
[[nodiscard]] Tp* allocate(size t n);
void deallocate(Tp* p, size t n);

template<class T, class... Args>
void construct(T* p, Args&&... args),;

template<class T>
void destroy(T* p);

polymorphic _allocator select on container_copy construction() const;
memory resource* resource() const;

//

50

}

s

std: :pmr::allocator

C++1/7 C++20

//

[[nodiscard]] void* allocate bytes(size t nbytes,
size t alignment = alignof(max _align t));
void deallocate bytes(void* p, size t nbytes,

size t alignment

template<class T>

alignof (max _align t));

[[nodiscard]] T* allocate object(size t n = 1);

template<class T>
void deallocate object(T* p, size t n
template<class T, class... CtorArgs>

[[nodiscard]] T* new object(CtorArgs&&. ..

template<class T>
void delete object(T* p);

51

1);

ctor_args);

Limitations of pmr

Solves the vocabulary problem, but only if used
consistently (i.e., the vocabulary problem!)

No support for fancy pointers / special memory regions

Storing an extra pointer in every object, repeatedly
through the whole data structure

Cost of dynamic dispatch

e (see Lakos talk for why this may be negligible)

52

Bloomberg Experience

® Using the progenitor for pmr allocators for a decade or
more

® pmr style allocators can be a big win
® Performance-critical code benefits significantly
® |nstrumentation helpful, especially in test drivers

® Users still bridle at code complexity

53

What Causes Friction with pmr
Allocators?

Unsupported use cases

e Without user-supplied constructors, some types cannot support the scoped
allocator model:

e pmr::string data[42];

e std::array<pmr::string, 42> more data;
e | ambda objects

e Structured bindings

e Default member initializers

e Problem is recursive, vector<array<string, 10>>

55

Allocator Propagation

® Allocator is bound at construction
® Should allocator be rebound on assignment?
® Assignment copies data

® Allocator is orthogonal, specific to each
container object

® I[raits give control of the propagation strategy

® Default is to never propagate

56

Complexity of Propagation

® 3 (or 47) fine-grained traits is too many dimensions to
reasonably support

® \What does it mean to propagate on swap, but not on move
assignment”? Or vice-versa?

® T[rait for copy construction is actually a function call”!

57

Syntactic overhead is high

e Mandatory construction through traits looks like expert-level code
e Typically double the number of constructors to allow for optional allocator

e Cannot have a constructor with multiple defaulted arguments, as need
an optional allocator for each subset

e £E.g.,for unordered map
e C++11: 8 constructors
e C++17: 15 constructors (many delegating to original 8)

e |nconsistent argument order: allocator is final argument, or
MyType(allocator _arg, alloc, ..)

58

Copy Constructor Issue

® \\Vith the trait to select allocator on copies, behavior was
unpredictable with optional copy-elision rules

® C++17 nails down mandatory copy elision in the important
cases

® Risk of returning an object with a reference to a memory
resource that is about to leave scope

® Compiler warnings my help in the future

59

Copy Constructor Issue

® \\Vith the trait to select allocator on copies, behavior was
unpredictable with optional copy-elision rules

® C++17 nails down mandatory copy elision in the important
cases

® Risk of returning an object with a reference to a memory
resource that Is about to leave scope

® Compiler warnings my help in the future

60

Reducing Friction

|deal Model

- No allocator spam in the interface

- A single data structure uses the same allocator throughout

- e.g., container and its elements

- e.g., a graph, its nodes, and their contents, etc.

- |f a type manages dynamic memory, it always supports an allocator
- “allocator aware” types are known to the type system

-+ can query if a type is allocator aware

- can query which allocator an object uses

62

Allocator Awareness

+ A type is explicitly allocator aware If:

- it says so (need a way to mark a class)

- A type is implicitly allocator aware if:

- It derives from an allocator-aware class

- It has data members that are allocator aware

- “viral” on members as well as bases

63

Why Implicit from Members”

 Could just make allocator aware classes derive
from a base class with the right behavior

* Generic code would want conditional bases
* Arrays, aggregates, etc., need implicit behavior
* Forces extra vtable pointer in all cases

» Too much syntax for common/essential usage

64

Why Implicit from Members”

 Could just make allocator aware classes derive
from a base class with the right behavior

* Generic code would want conditional bases
* Arrays, aggregates, etc., need implicit behavior
* Forces extra vtable pointer in all cases

* Too much syntax for common/essential usage

65

Allocator Aware Properties

- An allocator-aware class will use its supplied
allocator to acquire all memory for the data
structure’s persistent needs

+ There is a consistent (customizable) APl to query
which allocator an object is using

+ The allocator for an object will not change during
its lifetime

- Il.e., allocators do not propagate

66

Whny querying matters

- Some operations require allocators to be the same,
e.d., move and swap

- Make a temporary with the same allocator if we
expect to move into an existing object

- swap should either have a precondition that
allocators are the same, or make potentially throwing
“copies” with appropriate allocator for swaps

+ Users need a means to detect allocator compatibility
if they are to avoid violating such preconditions

6/

Simplitying Construction

Do notadd allocator overloads to every
constructor

 When user wants to supply an allocator, pass it
out-of-band from the initializer list with a new
syntax

multipool resource res;
set<string>() x{ "hello", “world"} using res;

63

Worked Example

class Object {
std::pmr::string d _name;

public:
using allocator type = std::pmr::polymorphic allocator<>;

explicit Object(allocator type a = {}) : d_name("<UNKNOWN>", 6 a) {}
Object(const Object& rhs, allocator type a = {}) : d _name(rhs.d name, a) {}

Object(Object&&) = default;
Object(Object&& rhs, allocator type a) : d name(std::move(rhs.d name), a) {}

// Apply rule of 6

~0bject() = default;

Object& operator=(const Object& rhs) = default;
Object& operator=(0bject&& rhs) = default;

69

Worked Example

class Object {
std::pmr2::string d name;

public:
// using allocator_type = std::pmr::polymorphic _allocator<>;

Object() : d _name("<UNKNOWN>") {} // no longer explicit
Object(const Object& rhs) = default;

Object(Object&&) = default;
// Object(Object&& rhs, allocator type a);

// Apply rule of 6

~0bject() = default;

Object& operator=(const Object& rhs) = default;
Object& operator=(0bject&& rhs) = default;

70

Worked Example

class Object {
std::pmr2::string d _name = "<UNKNOWN>";

public:

Object() = default;
Object(const Object& rhs) = default;

default;

Object (Object&&)

// Apply rule of 6

~0bject() = default;

Object& operator=(const Object& rhs) = default;
Object& operator=(0bject&& rhs) = default;

71

Worked Example

class Object {
std::pmr2::string d _name = "<UNKNOWN>";

public:

// Rule of zero !!

/2

Worked Example

class Object {
std::pmr2::string d _name = "<UNKNOWN>";

public:
// Rule of zero !!
s

pmr::multipool resource res;
Object x{"Hello world”} using res;

73

Implementing Awareness

e Stash an allocator pointer at construction, much like a vtable pointer
e does not vary through constructing a hierarchy though
« Customization APl to give precise control of storage if needed

e e.g., optional object needs to stash allocator when empty, but can
re-use the storage for the missing object

e |f awareness is implicit, access the allocator through the entity
granting awareness

e do not pay to store excess copies of the pointer

e |eaf nodes of data structures will always need a pointer though

74

Implicit Awareness

e |n Most cases, allocator awareness will be
implicit, greatly reducing the implementation
cost for user code

 Implicit awareness clearly implies a new
anguage feature

o |mplicit awareness can be supported by C++11
containers, using an allocator-aware allocator
object (i.e., the allocator template parameter)

75

Allocator Injection

* |nject an allocator at object creation time, in addition to constructor arguments
* needs language support with an extension syntax (such as using)
* new operator one obvious customization, but need local object support too
« An implicit extra argument for every constructor
* NO constructor spam with allocator overloads
e process-wide default is provided if not supplied by the caller
e note: the move constructor is special

 Implicitly propagate that injection through member initializers for all bases and
members

e pbut not into constructor body

/6

Early Experience

Sean Baxter and Circle

e Sean Baxter has written his own C++20 compiler with an
LLVM back-end over the last 3 1/2 years

 Designed for rapid prototyping and language evolution,
ultimately to advance his own post-C++ language, Circle

/8

Sean Baxter and Circle

e Sean Baxter has written his own C++20 compiler with an
LLVM back-end over the last 3 1/2 years

 Designed for rapid prototyping and language evolution,
ultimately to advance his own post-C++ language, Circle

o After seeing previous talks online, implemented allocator
injection through using in around a week...

79

Injecting Allocators with using

 Works well on existing standard library

* Relies on existing allocator_type mark-up, and existing
allocator-aware constructors

 No implicit generation (yet)

e CTAD support fell out for free

(Constructor Template Argument Deduction)

e Supports full C++20 allocator model, not limited to pmr

80

// allocator-specifier in initializers and postfix-expressions

#include <list>
#include "logger.hxx"

int main() {
logging resource_t logger("logger");

// using-allocator in a braced initializer for a declaration.
// creates a PMR list when the allocator expression derives
// memory resource.

pmr::list<int> my list { 1, 2, 3 } using logger;

// using-allocator 1in a braced initializer on an expression.
auto my list2 = pmr::list<int> { 4.4, 5.5, 6.6 } using logger,

81

Factory Functions

* Functions that return a new object by value
* e.g., std: :make shared, std::to string

e How should we provide an allocator for the return value?
 Pass an extra function argument?

e Add using support?

82

Factory Functions

* Functions that return a new object by value
* e.g.,std::make shared, std::to string

e How should we provide an allocator for the return value?
 Pass an extra function argument

e Add using support

83

Factory Functions

* Functions that return a new object by value
e e.g.,std::make shared, std::to string

e How should we provide an allocator for the return value?

e Add using support (explicit for overloading, or implicit)

84

Factory Functions

* Functions that return a new object by value
* e.g., std: :make shared, std::to string

e How should we provide an allocator for the return value?

e Add using support

e How do we avoid redundant allocations with default
allocator inside the factory?

85

The Conundrum

What should we do with an extended move constructor?

template <class T>
struct NamedValue {
std::string name;

T value;
NamedValue (NamedValue&&) = default;
NamedValue (NamedValue&&) using Alloc = default;

86

Option 1

e Member initializers call extended-move-with-allocator for
each base and member

 The classes that handle memory allocation directly (i.e.,
vector, rather than class with a vector member) will
Implement the custom logic to test the allocator, and
move or make copies as needed

e Supports move-only types as members, as long as they
manage any extended-move logic themselves, which is
trivial by default for non-allocator aware types

87

Option 2

Test whether the allocators are compatible

If compatible, delegate directly to the regular move
constructor

If incompatible, delegate to the extended copy constructor
lll-formed if the extended copy constructor is not available

(ideally) provide custom overload to handle non-default
cases.

88

Option 2

Test whether the allocators are compatible

If compatible, delegate directly to the regular move
constructor

If incompatible, delegate to the extended copy constructor
lll-formed if the extended copy constructor is not available

(ideally) provide custom overload to handle non-default
cases. [we will need more syntax]

89

Internal Pointers

struct highlight {
std2::vector<int> d values;
int * d focus; // invariant: points to an element in d_values

highlight(highlight const &)
highlight(highlight&&)

delete;
default;

s

90

Internal Pointers

struct highlight {
std2::vector<int> d values;
int * d focus; // invariant: points to an element in d_values

delete;
default;

highlight(highlight const &)
highlight(highlight&&)

Copying d focus would violate invariant so delete the copy constructor.
Alternatively, implement with a look-up to fix up pointer to the corresponding
element.

91

Internal Pointers

struct highlight {
std2::vector<int> d values;
int * d focus; // invariant: points to an element in d_values

highlight(highlight const &); // user provided
highlight(highlight&&) = default;

Copying d focus would violate invariant unless allocators match.

Option 2 is the only safe default: delegate to copy if allocators do not match,
and using construction (but not regular move) is deleted if copy constructor
IS deleted.

92

Dispatching Extended Move

struct highlight {

std2::vector<int> d _values;
int * d focus; // invariant: points to an element in d_values

highlight(highlight const &other)
d values(other.d values)
d focus(nullptr)

{
}
highlight(highlight&& other) = default;

// maybe find new address for d_focus in d_values

highlight(highlight&& other) [[?]] // magical using overload
highlight (copy _or_move(other)) {} // delegating constructor

private:

// factory function
static highlight copy _or _move(highlight& other) {
if (allocator_of(other) == allocator_of(copy_or_move)) {
return std::move(other) ;

}
else {

return other;
}

93

Dispatching Extended Move

struct highlight {

std2::vector<int> d _values;
int * d focus; // invariant: points to an element in d_values

highlight(highlight const &other)
d values(other.d values)
d focus(nullptr)

{
}
highlight(highlight&& other) = default;

// maybe find new address for d _focus in d_values

highlight(highlight&& other) [[?]] // magical using overload
highlight (copy _or_move(other)) {} // delegating constructor

private:

// factory function
static highlight copy _or _move(highlight& other) {
if (allocator_of(other) == allocator_of(copy_or_move)) {
return std::move(other) ;

}
else {

return other;
}

94

Dispatching Extended Move

struct highlight {

std2::vector<int> d _values;
int * d focus; // invariant: points to an element in d_values

highlight(highlight const &other)
d values(other.d values)
d focus(nullptr)

{
}
highlight(highlight&& other) = default;

// maybe find new address for d_focus in d_values

highlight(highlight&& other) [[?7]] // magical using overload
highlight (copy _or_move(other)) {} // delegating constructor

private:

// factory function
static highlight copy _or _move(highlight& other) {
if (allocator_of(other) == allocator_of(copy_or_move)) {
return std::move(other) ;

}
else {

return other;
}

95

Dispatching Extended Move

struct highlight {

std2::vector<int> d _values;
int * d focus; // invariant: points to an element in d_values

highlight(highlight const &other)
d values(other.d values)
d focus(nullptr)

{
}
highlight(highlight&& other) = default;

// maybe find new address for d_focus in d_values

highlight(highlight&& other) [[?7]] // magical using overload
highlight (copy _or_move(other)) {} // delegating constructor

private:

// factory function
static highlight copy _or _move(highlight& other) {
if (allocator of(other) == allocator_of(copy or _move)) {
return std: :move(other) ;

}
else {

return other;
}

96

Next Step

Basic Feature Set

Pass allocators to factory functions and initializers through extra using
argument

A special allocator type that imbues enclosing classes as allocator aware
e Fundamental type to avoid specifying customization interface
e Acts like a reference to a pmr: :memory resource

All constructors of allocator aware type are implicitly allocator aware
e Move constructor is special and split in two

allocator_of implicit hidden friend function

Implicit factory functions (only)

98

Implicit Factory Functions

e Support a using when return type is allocator aware
 Will explore what it means when calling from templates
* |Implicitly supply allocator to return value

 Where guaranteed (N)RVO applies, supply allocator to
variable declarations

e P2025 Guaranteed Copy Elision for Named Return
Objects

99

Validation Tests

std2::string
std2::vector<T>
std2::vector<std2::string>
aggregate classes

local arrays

std::array

std::tuple

std::pair

lambda expressions

100

Open Questions

Argument passing in factory functions

Explicit factory functions

Overloading constructors on allocator

More customization points

* e.g.overloading allocator_ of to avoid redundant copy In

optional

using in more places, such as function arguments?

Unions and variant

101

FIn

