Nim - the first high performance
language with full support for hot code-
reloading at runtime

by Viktor Kirilov

Me, myself and |

e my name is Viktor Kirilov - from Bulgaria
e creator of doctest - the fastest C++ testing framework
e apparently | like text-heavy slides and reading from them...!

= deal with it ;|

https://github.com/onqtam/doctest

Talk agenda

some Nim code
the performant programming language landscape

= read: heavily biased C++ rant

Nim compilation model
hot code reloading

m ysage & implementation
= " dlI" => assume .so/.dylib (platform-agnostic)

demo
comments & conclusions
a bit on REPLs

Hello

1 echo "Hello World"

Currencies

type
or use {.borrow.} here to inherit everything
Dollars* = distinct float

proc "+ *(a, b: Dollars): Dollars {.borrow.}

= 20.Dollars

0O o O WD K-

= 25 # Doesn't compile
25.Dollars # Works fine

20.Dollars * 20.Dollars # Doesn't compile
= 20.Dollars + 20.Dollars # Works fine

Operator Description Example Code
in B is a an element of B? 'd" in {'a'..'z'}

notin _

is a not an element of B? 40 notin {2..20}

union of A with B {'a'..'m'} + {'n".."'2"} ==
relative complementof Ain {'a’.. - {'b"'..'d"} ==
B ‘e’

add element b to set A {'b'.. + {'a'} == {'a'..
remove element b fromsetA {'a'.. - {'a'} == {'b'..
intersection of A with B . *{'c'.."'Z'

is A a subset of B? . <= {'a'..'z'}
is A a strict subset of B? . ..'z'}

a
a
B

A
A
A
A
A
A

>
N
oo

|terators

type
CustomRange = object
low: int
high: int

iterator items(range: CustomRange): int =
var i = range.low
while i <= range.high:
yield i
inc i

0O o O WD K-

iterator pairs(range: CustomRange): tuple[a: int, b: char] =
for i in range: # uses CustomRange.items
yield (i, char(i + ord('a')))

for i, ¢ in CustomRange(low: 1, high: 3):
echo c¢

prints: b, c, d

O Jo Ul WDN K-

O

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Variants

This is an example how an abstract syntax tree could be modelled in Nim
type
NodeKind = enum # the different node types
nkInt, # a leaf with an integer value
nkFloat, # a leaf with a float value
nkString, # a leaf with a string value
nkAdd, # an addition
nkSub, # a subtraction
nkIf # an if statement
Node = ref object
case kind: NodeKind # the "~ "kind =~ field is the discriminator
of nkInt: intVal: int
of nkFloat: floatval: float
of nkString: strvVal: string
of nkAdd, nkSub:
leftOp, rightOp: Node
of nkIf:
condition, thenPart, elsePart: Node

var n = Node(kind: nkFloat, floatval: 1.0)
the following statement raises an FieldError exception, because
n.kind's value does not fit:

n.strval =

Multi methods

Thing = ref object of RootObj
Unit = ref object of Thing
X: 1int

method collide(a, b: Thing) {.inline.} =
quit "to override!”

0O o O WD K-

method collide(a: Thing, b: Unit) {.inline.}
echo "1"

method collide(a: Unit, b: Thing) {.inline.}
echo "2"

var a, b: Unit

new a

new b

collide(a, b) # output: 2

Meta-programming
e whatis it

® g program that can read, generate, analyze or transform
other programs

e why do it
® can optimise code - by compile-time rewrites
o think expression templates

® can enforce better coding patterns
® can increase code readability and maintainability

o with great power comes great responsibility

e reflection - when the meta language is the actual language

10

Meta-programming in Nim

e works on the Abstract Syntax Tree
e respects the type system
e |evels of complexity:

= normal procs and inline iterators

m generic procs and closure iterators
= templates

" Macros

11

Templates

template withFile(f: untyped, filename: string,
mode: FileMode,
body: untyped): typed =
let fn = filename
var f: File
if open(f, fn, mode):
try:
body
finally:
close(f)
else:
quit("cannot open: " & fn)

withFile(txt, "ttempl3.txt", fmWrite):
txt.writeLine("line 1")
txt.writeLine("line 2")

dumpTree:
var mt: MyType = MyType(a:123.456, b:"abcdef")

output:
StmtList
VarSection
IdentDefs
Ident "mt"
Ident "MyType"
ObjConstr
Ident "MyType"
ExprColonExpr
Ident "a"
FloatLit 123.456
ExprColonExpr
Ident "b"
StrLit "abcdef”

0O o O WD K-

#
#
#
#
#
#
#
#
#
#
#
#
7#
7#

0O o O WD K-

Macros

import macros

type
MyType = object
a: float
b: string

macro myMacro(arg: untyped): untyped =
var mt: MyType = MyType(a:123.456, b:"abcdef")
let mtLit = newLit(mt)

result = quote do:
echo “arg
echo "mtLit"

myMacro("Hallo")
The call to myMacro will generate the following code:

echo "Hallo"
echo MyType(a: 123.456'f64, b: "abcdef")

More macros

import macros
dumpAstGen:
proc hello() =
echo "hi"

nnkStmtList.newTree(
nnkProcDef .newTree (
newlIdentNode(! "hello"),
newEmptyNode (),
newEmptyNode (),
nnkFormalParams.newTree (
newEmptyNode ()
) 1
newEmptyNode(),
newEmptyNode (),
nnkStmtList.newTree(
nnkCommand.newTree (
newIdentNode(!"echo"),
newLit("hi")

More macros - continue from last slide

import macros
macro gen hello(): typed =
result = nnkStmtList.newTree(
nnkProcDef .newTree (
newIdentNode (! "hello"),
newEmptyNode(),
newEmptyNode (),
nnkFormalParams.newTree (
newEmptyNode ()
) 1
newEmptyNode (),
newEmptyNode(),
nnkStmtList.newTree (
nnkCommand.newTree (
newIdentNode(!"echo"),
newLit ("hi")

)

gen hello()
hello() # << same as from last slide!

HTML DSL

import html dsl

html page:
head:
title("Title")
body:
p("Hello")
p("World")
dv:
p "Example"

0O Jo Ul WDN K-

echo render(page())

HTML DSL result

<html class='has-navbar-fixed-top' >
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1"
<title>Title</title>
</head>
<body class='has-navbar-fixed-top' >
<p >Hello</p>
<p >World</p>
<div>
<p>Example</p>
</div>
</body>
</html>

Simply Nim
statically typed
high performance (compiles to native binaries - comparable to C/C++)
very clean & elegant - no, beauty is NOT subjective!
garbage collected (can do manual memory management too)
expressive - some of the most powerful metaprogramming

= compiler has an interpreter inside
compiles to: C/C++/0bjC/Javascript

= non-idiomatic - not for reading but optimal for execution
suited for: systems programming, applications & web

= all types of software!
backed by Status since 2018 (#65 cryptocurrency by marketshare)

m Status - working on one of the first implementations of Ethereum 2.0
m just like Rust is backed by Mozilla (although with a lot less...)

has a rich stdlib, package manager, docs, some IDE support

19

Feature rundown

uniform call syntax (extension methods) - obj.method() OR method(obj)
» that's why there are no real "methods" defined in types

function call parens are optional - echo("hello") OR echo "hello"
case-insensitive - also underscore-insensitive but that's another topic : |
generics

templates (meta-programming”2)

macros (meta-programming”3) - evaluated in the compiler by the NimVM
concepts

discriminated unions

strong typedefs (distinct type) - can has $ currency?

coroutines & closures

switch & pattern matching

dynamic dispatch & multi-methods

converters - explicit (for implicit conversions)

effect system (transitive)

extensible pragmas, "defer", exceptions, "discard", named args... good defaults! o

My "favourite" aspect of C++

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”

.rr'"'._-_.—

(HEY! GFTBHCF w
\ ,,,fl

.rﬂ'""| |

) Cﬂr PrLJNGf

N ul((f‘

OH CARRY ON

21

A bit on C++

C++20 is shaping up to be a huge release

= |ots of cool stuff, but complexity is through the roof
= Expert-"tolerable" - prestige when you come up with yet more complicated TMP

simple example using ranges from C++20 - blog post
= 3 seconds of compile time for ~20 lines of code, forget about "Debug" builds

Remember the Vasa! - Bjarne Stroustrup
There should come a time for a clean slate

= C++is a great and valuable ongoing research
= The 2 biggest reasons C++ is so widely used today:

o legacy and maturity - too much software written already
o inertia - attachment and lack of interest to learn new languages

= C++is a HUGE time/money cost on the scale of hundreds of millions

o developer productivity, bug & safety
o pbusiness should back a better language & push for development + learning }

http://aras-p.info/blog/2018/12/28/Modern-C-Lamentations/
http://www.stroustrup.com/P0977-remember-the-vasa.pdf

Some quotes & thoughts

Fifty years of programming language research, and we end up with C++?

m Richard A. O'Keefe

There are only two kinds of programming languages: those people
always bitch about and those nobody uses.

m Bjarne Stroustrup

Nim is the next iteration of practical language design
= by humble !l >> me << !l

Nim: speed of C, elegance of Python, flexibility of Perl
= Peter Munch-Ellingsen

Nim is to C++ as CoffeeScript is to JavaScript
m cjhanks, hackernews Apr 18, 2017

23

https://news.ycombinator.com/item?id=14143521

Comparison with others
D, Rust, Jai, Zig
= out of scope for this talk
€lo
= not really a *pinnacle* of abstraction and innovation : |
C++
s <optional> - 5k+ LOC for a T and a bool... safe_int - same horror story
= The next big thing: "Design by introspection” - Andrei Alexandrescu
Nim is one of the most logical paths forward

= on-par performance with C/C++ (compiles to them)

= some of the most easy interop with C/C++ (compiles to them)
= yses any C/C++ compiler (compiles to them)

= already quite far in terms of implementation

= meta-programming on steroids

24

https://www.youtube.com/watch?v=tcyb1lpEHm0

Nim compilation model

main.nim # a.nim # b.nim

import a

import b let local = "B!"

echo a()

proc a*(): string = let from b* = local
return from b A

means "exported"

e Nim c -d:release main.nim

= always compile only the main file, follow the imports

= whole program analysis

= g .cfile for each .nim file in a "nimcache" (temp) folder (also .obj files)
= only referenced (imported) modules are compiled in the end

e entire project is always "compiled" by Nim (currently no "minimal" rebuild)

m ~4-5 sec for the entire source of Nim - 135 files (without the C compiler)
» the C/C++ compiler rebuilds only changed files (takes a bit more time)
= will change when per-module caching is introduced - even faster!

25

Nim to C/C++: nimbase.h
included by all .c/.cpp files

// nimbase.h

#define N NIMCALL(rettype, name) rettype @ fastcall name
#define N CDECL(rettype, name) rettype cdecl name
//...
#define N NIMCALL PTR(rettype, name) rettype (_fastcall *name)
//...
#define N LIB PRIVATE attribute ((visibility("hidden")))
//...
#define N LIB EXPORT extern _ declspec(dllexport)
//...
#define STRING LITERAL(name, str, length) \
static const struct { \
TGenericSeq Sup; \
char data[(length) + 17; \
} name = {{length, (int) ((unsigned)length | NIM STRLIT FLAG)}, str}

1
2
3
A
5
6
7
8

handles different platforms - convenience macros

1
2
3
4
5
6
7
8

Nim procs to C/C++

echo "hello"

foo()

#include <nimbase.h>

// forward declarations / type definitions / constants section
struct TGenericSeq { int len; int reserved; };

struct NimStringDesc : public TGenericSeq { ... };

typedef NimStringDesc* tyArray nHXaesLODJZHyVSO7ARPRA[1];

STRING LITERAL(TM r9bkcJ6PRJ5n70RNxxJ5ryg 3, "hello", 5); // << string litera
NIM CONST tyArray nHXaesLODJZHyVSO7ARPRA TM r9bkcJ6PRJI5n70RNxxJ5ryg 2 =
{((NimStringDesc*) &TM r9bkcJ6PRJI5n70RNxxJI5ryg 3)};

N LIB PRIVATE N NIMCALL(void, foo iineYNh8S9cE6Ry7dr2Tz2A)(void); // << fwd d

// definition section

N LIB PRIVATE N NIMCALL(void, foo iineYNh8S9cE6Ry7dr2Tz2A) (void) { // << def
echoBinSafe(TM r9bkcJ6PRJI5Sn70RNxxJ5ryg 2, 1); // the echo call

}

// code execution section
foo iineYNh8S9cE6Ry7dr2Tz2A(); // << call

1
2
3
4
5
6
7
8

Nim types to C/C++

MyData = object
answer: int
ready: bool
proc newData(): MyData = return MyData(answer: 42, ready: true)
echo newData() .answer

// forward declarations / type definitions / constants section
struct tyObject MyData ({
int answer;
bool ready;
}i
// definition section
N LIB PRIVATE N NIMCALL(tyObject MyData, newData) (void) {
tyObject MyData result; // always an implicit "result"
nimZeroMem((void*) (&result), sizeof(tyObject MyData));
result.answer = ((int) 42);
result.ready = true;
return result;

}

// code execution section
tyObject MyData T2 ;

T2_ = newData(); // << call
//oo.

Nim closures to C/C++ (resumable funcs)

1 iterator closure iter*(): int {.closure.} = # a resumable function
2 var x = 1

3 while x < 10:

4 yield x

5 inc X

6 for i in closure iter(): echo i

struct state type : public RootObj {
int colonstate ; // state progress - there are some GOTOs using this
int x1; // the state

}i

struct closure type {
N NIMCALL PTR(int, c_ptr) (void* e ptr); // function ptr
void* e ptr; // environment ptr

1
2
3
4
5
6
7
8

}i
N LIB PRIVATE N CLOSURE(int, func)(void* e ptr) { // def omitted for simplici

state type st; // the state

closure type local; // the closure

local.c_ptr = func; // assign the func

local.e ptr = &st; // assign environment

/] ...

i = local.c ptr(local.e ptr); // the call in the loop

Nim compilation to C/C++: a BIG win

smaller scope for the compiler

all the cutting-edge optimization for C/C++ for free
out-of-the-box support for tons of platforms

easiest C/C++ interop possible

exceptions - reusing those of C++ when using that backend

nim to C/C++ code mapping with #line directives for debuggers
no generated headers for the exported parts of modules

each .c/.cpp file contains everything (and only what) it needs

m forward declarations for external functions
= type definitions

each .c/.cpp file includes nimbase.h and a few C stdlib headers
high level macros & templates => simple structs and functions

30

Interfacing with C/C++

Foreign Function Interface

proc printf(formatstr: cstring)

{.header: "<stdio.h>", importc: "printf", wvarargs.}

other pragmas - for use in Nim:

{ emit ° mimn
using namespace core;

"y

{.compile: "logic.c".}

We can also call Nim code from C/C++;

fib.nim
proc fib(a: cint): cint {.exportc.} # do not mangle

nim ¢ --noMain --nolLinking --header:fib.h fib.nim

// user.c
#include <fib.h>

31

https://nim-lang.org/docs/manual.html#foreign-function-interface

Interfacing with C/C++

C++ template constructs

type
StdMap {.importcpp: "std::map", header: "<map>".} [K, V] = object
proc []= [K, V](this: var StdMap[K, V]; key: K; val: V) {.
importcpp: "#[#] = #", header: "<map>".}

var x: StdMap[cint, cdouble]
X[6] = 91.4

Generated C++

std: :map<int, double> x;

x[6] = 91.4;

c2nim tool - generate C/C++ bindings for Nim

32

https://nim-lang.org/docs/c2nim.html

Runtime compilation - WHY
much faster iteration times

" NOo need to restart the program - can preserve state
less need for a scripting language

= No need for a virtual machine
® no binding layer
= code in one language

can hack something quickly
® |ntrospection, queries
o debuggers aren't infinitely powerful
= fine-tuning values
interactive (REPL-like): very useful for exploration and teaching _

Runtime compilation for C/C++: HOW

e replacing entire functions: using shared libraries OR hot-patching:

= possible for decades - but not widely used

= usually quite intrusive (interfaces, constraints, complicated setup)
= in game engines: Unreal, others...

= hot-patching (with very little setup): Live++, Recode

= Visual Studio "Edit & Continue" - 0 setup, but limited

= Nt
= Nt
= Nt

ns://github.com/crosire/blink
ns://github.com/ddovod/jet-live

0://bit.ly/runtime-compilation-alternatives << "one link to rule them all"

e interactive: REPL-like
= cling - by researchers at CERN - built on top of LLVM

O

O

= RCRL - basically a hack - the inspiration for the Nim implementation

Inspector, Jupiter
hard to integrate in a platform/compiler agnostic way

34

https://molecular-matters.com/products_livepp.html
http://www.indefiant.com/
https://github.com/crosire/blink
https://github.com/ddovod/jet-live
http://bit.ly/runtime-compilation-alternatives
https://github.com/root-project/cling
https://github.com/inspector-repl/inspector
https://blog.jupyter.org/interactive-workflows-for-c-with-jupyter-fe9b54227d92
https://github.com/onqtam/rcrl

Replace "compiling" with "restarting"

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”

.rr'"-._-_.—

(HEY! GFTBHCF w
\ ,,,fl

.rﬂ'""| |

; Cﬂr PrLJNGf

N ul((f‘

OH CARRY ON

35

Hot code-reloading (HCR) in Nim

e inspired by a hacky REPL for C++ (called RCRL - by me)
e https://github.com/nim-lang/Nim/issues/8927

= mentored by Zahary

e compile with --hotCodeReloading:on
e need also 2 .dlls (the HCR runtime + the GC of Nim)

main.nim

=

other.nim

import hotcodereloading # for reload
import other

import hotcodereloading # for after handler

var glob = 42
while true:
echo readLine(stdin) # pause
performCodeReload() # reload
echo getInt() # call

proc getInt*(): int = return glob + 1 # exported

1
2
3
4
5
6
7
8
9

afterCodeReload:
glob = 666

built as an .exe/.dll depending built as a reloadable .dli
on the project type ends up in the "nimcache" -

O VW oo JOoY ULk WDN

[

https://github.com/onqtam/rcrl
https://github.com/nim-lang/Nim/issues/8927
https://github.com/zah

Effects of HCR

e all interaction between .nim modules => through pointers
e functions - changes:

= forward declarations become function pointers
m definitions get "_actual" as a suffix

m pointers are assigned the "_actual" on startup

m calls stay the same (pointer has the same name)

e globals - changes:

m turned into pointers
m allocated on the heap and initialized on startup

o state is preserved when reloading
m dereferenced wherever used

37

Effects of HCR

// fwd decl/globals section
static N NIMCALL PTR(int, getInt omy6T2FkprLEReOy2ITmIQ) (void);
static int* glob v1zK9aUOu9aNNcsxruuK8NdA;

// definitions

N LIB PRIVATE N NIMCALL(int, getInt omy6T2FkprLEReOy2ITmIQ actual) (void) {
int result; // " the suffix
result = (*glob v1zK9aUOu9aNNcsxruuK8NdA) ;
return result;

0O Jo Ul WD B

}

// usage
(*glob v1zK9aUlOu9aNNcsxruuK8NdA) = getInt omy6T2FkprLEReOy2ITmIQ();

// init on startup (naive)
glob v1zK9aUOu9aNNcsxruuK8NdA = new int(42);
getInt omy6T2FkprLEReOy2ITmIQ getInt omy6T2FKkprLEReOy2ITmIQ actual

Trampolines

fone() ——ﬁﬁable addr 0x2a35ch

/ Jomp OxockeM
fone()

func()

changing addr OxOc'81%
unc_actval

https.//sketch.io/sketchpad/ FTW! :D

Initialization

1 // naive
2 glob v1zK9aUOu9aNNcsxruuK8NdA = new int(42);
3 getInt omy6T2FkprLEReOy2ITmIQ = getInt omy6T2FkprLEReOy2ITmIQ actual

1 // reality

2 getInt omy6T2FKkprLEReOy2ITmIQ = (tyProc vVu2P82aVLv9c8X0xbI1INJw) hcrRegisterProc(

3 "D:\\play\\nimcache/play.cpp.dll", // "domain" (AKA module)

4 "getInt omy6T2FkprLEReOy2ITmIQ", // "key"

5 (void*)getInt omy6T2FkprLEReOy2ITmIQ actual); // the real function

6

7 if(hcrRegisterGlobal("D:\\play\\nimcache/play.cpp.dll”, // "domain" (AKA module)
8 "glob v1zK9aUOu9aNNcsxruuK8NdA", // "key"

9 sizeof ((*glob v1zK9aUOu9aNNcsxruuK8NdA)), // size for allocation
10 NULL, // for the GC - simple integer is simple, so NULL
11 (void**)&glob v1zK9aUOu9aNNcsxruuK8NdA)) // address to pointer
12 {
13 // hcrRegisterGlobal returns "true" only if not already inited
14 (*glob v1zK9aUOu9aNNcsxruuK8NdA) = ((int) 42); // init with value (or side effects)

15 }

Initialization

e the HCR.dIl runtime holds pointers to all globals/functions
e hcrRegisterProc

= allocates executable memory (a few bytes)

m writes a jump instruction (trampoline) to the "_actual”
= returns an address to the trampoline

= this way "_actual" can be changed on reloading

o changed by calling it again with a different address
o all pointers to the trampoline stay the same

e all symbols are registered per "domain" (.dll)

"= no name clashes (even though they are mangled...)
= petter management - can remove all symbols for module X

41

il) S

Initialization

main.nim 1 # a.nim # b.nim

import a, b import b

proc from b*(): string =

return "B!"

echo from a() proc from a*(): string =
echo from b() result = "A!"
result.add from b()

main.exe loads the hcr.dll (and the Nim GC in rtl.dll)

main.exe calls init() from hcr.dll and passes a list of imports (a, b)
hcr.dll loads a.dll and gets a list of imports (b)

hcr.dll loads b.dll and fully initializes it (it has no imports)

1. registers from_b() and does nothing else

. her.dll fully initializes a.dll

1. registers from_a() and gets the address for from_b()

. her.dll skips b.dll (part of the imports of main.exe) since it is already initialized
. main.exe is initialized

1. gets the addresses for from_a() and from_b()
2. executes the top-level code (the 2 echo statements)

42

Initialization

a DFS traversal with POST visit
when module A imports a symbol from B

= symbol is first registered in B
= symbol is "gotten" in A after B is inited

basically a custom dynamic linker : |

imports are discovered on-the-go

HCR.dIl constructs a tree of imports and maintains it
many details omitted

= jnitialization is broken into multiple passes
o registration of type infos (for the GC) is a pre-pass
each .dll exports just a few functions which the HCR.dll uses
= getimports(), and the ones for the passes

43

Reloadin

when we cal performCo?eReload():

HCR.dIl will check hasAnyModuleChanged()
» pasically scanning if any .dll has been modified (timestamp)

changes shouldn't affect .dll files which are part of the current active
callstack when reload() is called! or crash :|

= ==> main module can never be reloaded

execute the "beforeCodeReload" handlers if about to reload
in a DFS traversal, for each modified module;

= same as the init - get its imports, load them (if changed or new), init
everything in proper order

o supports discovery of new imports!
o also removes no longer referenced modules and their symbols

execute the "afterCodeReload" handlers "

Reloading - handlers

main.nim # a.nim

b.nim

import a, b, hotcodereloading import b, hotcodereloading import hotcodereloading

beforeCodeReload: beforeCodeReload:
echo "before main" echo "before a”"

afterCodeReload: afterCodeReload:
echo "after main" echo "after a"

beforeCodeReload:
echo "before b"

afterCodeReload:
echo "after b"

only A changes => all handlers

DFS traversal with POST visit
handlers can be added/removed
can be used to update globals
fine-grained control:

= hasModuleChanged(<module>)

are executed on reload:

before b
before a
before main
after b

after a
after main

45

Reloading - global scope

e top-level code (global scope) is executed only on initial load
= for new top-level code use before/after handlers
e changing the initializer of a global doesn't do anything

m Use a before/after handler
= or remove the global entirely, reload, and re-add it

o brand new symbol!
* new globals can be added - and will be initialized properly

46

The initial HCR example revisited

main.nim # other.nim

import hotcodereloading # for reload
import other

import hotcodereloading # for after handler

var glob = 42
while true:
echo readLine(stdin) # pause
performCodeReload() # reload
echo getInt() # call

proc getInt*(): int = return glob # exported

1
2
3
4
5
6
7
8
9

afterCodeReload:
glob = 666

O WO JOoUL WD K

o

Makes more sense now, doesn't it?

47

MovieHDWallpapers.com

Encountered problems
e processes lock loaded .dll files in the filesystem on Windows

= when reloading we copy x.dll to x_copy.dll and load the copy
e changing module X can affect module Y

= such changes shouldn't reach the main module

= mangling of symbols being affected by attributes (purity)

= mangling affected by where "inline" functions get used first
= mangling affected by which module instantiates a generic

o Cvs C++

= missing forward declarations - fine in C!
= multiple identical forward declarations

o multiple definitions of global function pointers - fine in C!

49

Visual Studio debug symbols - PDB drama

e dll/.exe have hardcoded paths to the .pdb (copying the .dll doesn't matter)
e the VS Debugger keeps the .pdb files locked for .dlls even after unloaded

solutions:

e someone managed to close the file handles to no longer needed .pdb files (.dll
has been unloaded) to the external VS debugger process (live++)

e embed the debug info in the actual binaries just like on unix
m /Z7 embeds it in .obj files but not for the final .dll/.exe when linking them

e different names for the .pdb using /PDB:<filename> (with the date/time
(including milliseconds) as a suffix)

= the "hardcoded" paths to .pdb files are always different
= try to delete all <dll_name>_*.pdb files for a given .dll when linking

o failure to delete them means the VS debugger still holds them locked
o links: 11, 12, 13, |4

50

https://blog.molecular-matters.com/2017/05/09/deleting-pdb-files-locked-by-visual-studio/
https://molecular-matters.com/products_livepp.html
https://ourmachinery.com/post/dll-hot-reloading-in-theory-and-practice/
https://ourmachinery.com/post/little-machines-working-together-part-2/
https://github.com/fungos/cr
https://fungos.github.io/blog/2017/11/20/cr.h-a-simple-c-hot-reload-header-only-library/

HCR performance

snappy compression algorithm - x2-x4 times slower

= for reference: zlib (c code) to javascript (asm.js) ==> x2 slow down
calls within a translation unit are direct (the "_actual" version gets called)
calls between modules => indirection: pointer to function

= + additional jump from trampoline to actual function
link time optimization (AKA whole program optimization) cannot help

= devirtualization techniques are not applicable either

compactness in memory VS a single binary => instruction cache misses
/hotpatch for MSVC and Live++ (which are faster):

= not going through function pointers
= py default there are no jumps in the function preamble (padding)
slowdown depends a lot on the type/scale of software - x2 to x5...

51

https://molecular-matters.com/products_livepp.html

HCR performance

possible optimizations:

write more "inline" procs
= their body is emitted wherever used => skip indirections
pragmas for excluding files (extension of the first point in this list)
= register the module procs but no indirections between them

relocate all code from loaded binaries close in memory?
PLOT TWIST!

= debug builds are currently affected a lot less (<x2 slowdown)
o HCR is mainly for development => probably debug builds

52

HCR TODO

Nim stdlib has trouble compiling with the GC as a separate SO

= "-d:useNimRtl|" needs to be enabled for all compiler tests
= currently no real-world project can be built with HCR

detecting type changes

= error when detected
= OR ability for users to handle it (migrate data)

check if "reload" would affect functions from the current call stack
expose state for outside manipulation with interactive speeds

= imagine a slider in the IDE for a variable or a color picker widget
performance & bug fixes

53

HCR Implementation choice

® pros

any modern (desktop) OS supports dynamic libraries

works with any C/C++ compiler

near-native speeds

final binaries are debuggable

a REPL is easily built on top of this

(arguably) less complex than using LLVM / JIT / whatever
changes are isolated (only the C backend which is a few files)
program can be changed in (almost) any way

novel approach - someone had to try it

® CONs

= not as optimal as the /hotpatch for MSVC or Live++
= (arguably) more complex than using LLVM / JIT / whatever
= not sure how NLVM (Nim on top of LLVM) will support HCR

54

https://molecular-matters.com/products_livepp.html

REPL - Read Eval Print Loop

interpreted languages have it (JavaScript, Python, etc.)
consoles/shells - cmd.exe, bash

can iteratively append/execute code (definitions, side effects, etc.)
education, scientific community, rapid prototyping of any kind

Elements Console Sources Network Performance Memory »

top ¥ | Filter Default levels ¥ & Group similar

function foo(arg) { return arg * 2 }
undefined

let a = foo(5)
undefined

a++

10

a
11

REPL/Nim quote

Nim is the language | have always thought was a brilliant idea that | never get
to use. It's a shame.

Nim is to C/C++ as CoffeeScript is to JavaScript. A highly extensible template
language atop a portable language with libraries for practically everything.
So why haven't | hopped on the bandwagon? Outside of C++, C, and Fortran -
the only way | have ever learned a new language is through using a REPL. How
much of Python's and MATLAB's (and maybe even Julia's) success is due to
having a brilliant REPL?
| am not complaining, and | do not have any free time to fix it. But man... if
Nim just had a killer REPL that allowed me to slowly learn the language
properly while not being blocked from my daily work... it would be just killer!

cjhanks on Apr 18, 2017
https://news.ycombinator.com/item?id=14143521 56

https://news.ycombinator.com/item?id=14143521

REPL on top of HCR

Talk abstract was a lie! didn't get to implementing it in time...

2 files:

e main module

= has the main loop
" handles code submissions

e imported file

m gets modified based on submissions
= repuilt + reloaded

should be well below half a second

57

REPL on top of HCR

you submit this:

import tables

var a = {1l: "one", 2: "two"}.toTable

echo a

and it gets translated to this:

import hotcodereloading # for the before/after handlers

import tables

var a = {1l: "one", 2: "two"}.toTable

afterCodeReload:
echo a

58

REPL on top of HCR

later you append:

and it gets translated to this:

import hotcodereloading # for the before/after handlers

import tables

var a {1: "one", 2: "two"}.toTable

let b a # the new code

only the new side effects are still present

afterCodeReload:
echo b

59

Jupyter kernel

e yesterday on ACCU: Interactive C++ : Meet Jupyter / Cling - The data
scientist’'s geeky younger sibling - by Neil Horlock

e A Jupyter Notebook is an interactive document - a collaborative platform
for prototyping, experimentation and analysis

e Mix and share: code, text, data, computation and visualization

e "Notebooks are the most popular tool for working with data at Netflix."

e Nim REPL => Nim Jupyter kernel

60

https://conference.accu.org/2019/sessions.html#XInteractiveCMeetJupyterClingThedatascientistsgeekyyoungersibling
https://medium.com/netflix-techblog/notebook-innovation-591ee3221233

The road ahead for Nim

version 1.0 - promise of stability
compiler cache for unchanged modules

m pecause compilation starts always from the main module
= of great benefit for HCR/REPL

more features

better tooling

better docs

taking over the world

get involved - still in early stages - you can have an impact

61

12.0107

Q&A

https://nim-lang.org/
https://github.com/nim-lang/Nim
FOSDEM 2019: Metaprogramming with Nim

Slides: https://slides.com/ongtam/nim_hot_code_reloading
Blog: http://ongqtam.com

GitHub: https://github.com/ongtam

Twitter: @KirilovVik

E-Mail: vik.kirilov@gmail.com

63

https://nim-lang.org/
https://github.com/nim-lang/Nim
https://www.youtube.com/watch?v=JMkEJ__2Meg
https://slides.com/onqtam/nim_hot_code_reloading
http://onqtam.com/
https://github.com/onqtam
https://twitter.com/KirilovVik
http://mailto:vik.kirilov@gmail.com/

