
Nim - the first high performanceNim - the first high performance
language with full support for hot code-language with full support for hot code-

reloading at runtimereloading at runtime

by Viktor Kirilov

1

Me, myself and IMe, myself and I

my name is Viktor Kirilov - from Bulgaria
creator of - the fastest C++ testing framework
apparently I like text-heavy slides and reading from them...!

deal with it :|

doctest

2

https://github.com/onqtam/doctest

Talk agendaTalk agenda
some Nim code
the performant programming language landscape

read: heavily biased C++ rant
Nim compilation model
hot code reloading

usage & implementation
".dll" => assume .so/.dylib (platform-agnostic)

demo
comments & conclusions
a bit on REPLs

3

HelloHello

echo "Hello World"1

4

CurrenciesCurrencies
type
 # or use {.borrow.} here to inherit everything
 Dollars* = distinct float

proc `+` *(a, b: Dollars): Dollars {.borrow.}

var a = 20.Dollars

a = 25 # Doesn't compile
a = 25.Dollars # Works fine

a = 20.Dollars * 20.Dollars # Doesn't compile
a = 20.Dollars + 20.Dollars # Works fine

1
2
3
4
5
6
7
8
9

10
11
12
13

5

SetsSets

6

IteratorsIterators
type
 CustomRange = object
 low: int
 high: int

iterator items(range: CustomRange): int =
 var i = range.low
 while i <= range.high:
 yield i
 inc i

iterator pairs(range: CustomRange): tuple[a: int, b: char] =
 for i in range: # uses CustomRange.items
 yield (i, char(i + ord('a')))

for i, c in CustomRange(low: 1, high: 3):
 echo c

prints: b, c, d

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

7

VariantsVariants
This is an example how an abstract syntax tree could be modelled in Nim
type
 NodeKind = enum # the different node types
 nkInt, # a leaf with an integer value
 nkFloat, # a leaf with a float value
 nkString, # a leaf with a string value
 nkAdd, # an addition
 nkSub, # a subtraction
 nkIf # an if statement
 Node = ref object
 case kind: NodeKind # the ``kind`` field is the discriminator
 of nkInt: intVal: int
 of nkFloat: floatVal: float
 of nkString: strVal: string
 of nkAdd, nkSub:
 leftOp, rightOp: Node
 of nkIf:
 condition, thenPart, elsePart: Node

var n = Node(kind: nkFloat, floatVal: 1.0)
the following statement raises an `FieldError` exception, because
n.kind's value does not fit:
n.strVal = ""

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

8

Multi methodsMulti methods
type
 Thing = ref object of RootObj
 Unit = ref object of Thing
 x: int

method collide(a, b: Thing) {.inline.} =
 quit "to override!"

method collide(a: Thing, b: Unit) {.inline.} =
 echo "1"

method collide(a: Unit, b: Thing) {.inline.} =
 echo "2"

var a, b: Unit
new a
new b
collide(a, b) # output: 2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

9

Meta-programmingMeta-programming
what is it

a program that can read, generate, analyze or transform
other programs

why do it
can optimise code – by compile-time rewrites

think expression templates
can enforce better coding patterns
can increase code readability and maintainability

with great power comes great responsibility
reflection - when the meta language is the actual language

10

Meta-programming in NimMeta-programming in Nim

works on the Abstract Syntax Tree
respects the type system
levels of complexity:

normal procs and inline iterators
generic procs and closure iterators
templates
macros

11

TemplatesTemplates
template withFile(f: untyped, filename: string,
 mode: FileMode,
 body: untyped): typed =
 let fn = filename
 var f: File
 if open(f, fn, mode):
 try:
 body
 finally:
 close(f)
 else:
 quit("cannot open: " & fn)

withFile(txt, "ttempl3.txt", fmWrite):
 txt.writeLine("line 1")
 txt.writeLine("line 2")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

12

ASTAST
dumpTree:
 var mt: MyType = MyType(a:123.456, b:"abcdef")

output:
StmtList
VarSection
IdentDefs
Ident "mt"
Ident "MyType"
ObjConstr
Ident "MyType"
ExprColonExpr
Ident "a"
FloatLit 123.456
ExprColonExpr
Ident "b"
StrLit "abcdef"

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

13

MacrosMacros
import macros

type
 MyType = object
 a: float
 b: string

macro myMacro(arg: untyped): untyped =
 var mt: MyType = MyType(a:123.456, b:"abcdef")
 let mtLit = newLit(mt)

 result = quote do:
 echo `arg`
 echo `mtLit`

myMacro("Hallo")

The call to myMacro will generate the following code:
echo "Hallo"
echo MyType(a: 123.456'f64, b: "abcdef")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

14

More macrosMore macros
import macros
dumpAstGen:
 proc hello() =
 echo "hi"

1
2
3
4

nnkStmtList.newTree(
 nnkProcDef.newTree(
 newIdentNode(!"hello"),
 newEmptyNode(),
 newEmptyNode(),
 nnkFormalParams.newTree(
 newEmptyNode()
),
 newEmptyNode(),
 newEmptyNode(),
 nnkStmtList.newTree(
 nnkCommand.newTree(
 newIdentNode(!"echo"),
 newLit("hi")
)
)
)
)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

15

More macros - continue from last slideMore macros - continue from last slide
import macros
macro gen_hello(): typed =
 result = nnkStmtList.newTree(
 nnkProcDef.newTree(
 newIdentNode(!"hello"),
 newEmptyNode(),
 newEmptyNode(),
 nnkFormalParams.newTree(
 newEmptyNode()
),
 newEmptyNode(),
 newEmptyNode(),
 nnkStmtList.newTree(
 nnkCommand.newTree(
 newIdentNode(!"echo"),
 newLit("hi")
)
)
)
)
gen_hello()
hello() # << same as from last slide!

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

16

HTML DSLHTML DSL
import html_dsl

html page:
 head:
 title("Title")
 body:
 p("Hello")
 p("World")
 dv:
 p "Example"

echo render(page())

1
2
3
4
5
6
7
8
9

10
11
12

17

HTML DSL resultHTML DSL result
<!DOCTYPE html>
 <html class='has-navbar-fixed-top' >
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Title</title>
 </head>
 <body class='has-navbar-fixed-top' >
 <p >Hello</p>
 <p >World</p>
 <div>
 <p>Example</p>
 </div>
 </body>
</html>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

18

Simply NimSimply Nim
statically typed
high performance (compiles to native binaries - comparable to C/C++)
very clean & elegant - no, beauty is NOT subjective!
garbage collected (can do manual memory management too)
expressive - some of the most powerful metaprogramming

compiler has an interpreter inside
compiles to: C/C++/ObjC/Javascript

non-idiomatic - not for reading but optimal for execution
suited for: systems programming, applications & web

all types of software!
backed by Status since 2018 (#65 cryptocurrency by marketshare)

Status - working on one of the first implementations of Ethereum 2.0
just like Rust is backed by Mozilla (although with a lot less...)

has a rich stdlib, package manager, docs, some IDE support 19

Feature rundownFeature rundown
uniform call syntax (extension methods) - obj.method() OR method(obj)

 that's why there are no real "methods" defined in types
function call parens are optional - echo("hello") OR echo "hello"
case-insensitive - also underscore-insensitive but that's another topic :|
generics
templates (meta-programming^2)
macros (meta-programming^3) - evaluated in the compiler by the NimVM
concepts
discriminated unions
strong typedefs (distinct type) - can has $ currency?
coroutines & closures
switch & pattern matching
dynamic dispatch & multi-methods
converters - explicit (for implicit conversions)
effect system (transitive)
extensible pragmas, "defer", exceptions, "discard", named args... good defaults! 20

My "favourite" aspect of C++My "favourite" aspect of C++

21

A bit on C++A bit on C++
C++20 is shaping up to be a huge release

lots of cool stuff, but complexity is through the roof
Expert-"tolerable" - prestige when you come up with yet more complicated TMP

simple example using ranges from C++20 -
3 seconds of compile time for ~20 lines of code, forget about "Debug" builds

 - Bjarne Stroustrup
There should come a time for a clean slate

C++ is a great and valuable ongoing research
The 2 biggest reasons C++ is so widely used today:

legacy and maturity - too much software written already
inertia - attachment and lack of interest to learn new languages

C++ is a HUGE time/money cost on the scale of hundreds of millions
developer productivity, bug & safety
business should back a better language & push for development + learning

blog post

Remember the Vasa!

22

http://aras-p.info/blog/2018/12/28/Modern-C-Lamentations/
http://www.stroustrup.com/P0977-remember-the-vasa.pdf

Some quotes & thoughtsSome quotes & thoughts
Fifty years of programming language research, and we end up with C++?

Richard A. O’Keefe
There are only two kinds of programming languages: those people
always bitch about and those nobody uses.

Bjarne Stroustrup
Nim is the next iteration of practical language design

 by humble !!! >> me << !!!
Nim: speed of C, elegance of Python, flexibility of Perl

 Peter Munch-Ellingsen
Nim is to C++ as CoffeeScript is to JavaScript

cjhanks, hackernews Apr 18, 2017
23

https://news.ycombinator.com/item?id=14143521

Comparison with othersComparison with others
D, Rust, Jai, Zig

out of scope for this talk
Go

not really a *pinnacle* of abstraction and innovation :|
C++

<optional> - 5k+ LOC for a T and a bool... safe_int - same horror story
The next big thing: - Andrei Alexandrescu

Nim is one of the most logical paths forward
on-par performance with C/C++ (compiles to them)
some of the most easy interop with C/C++ (compiles to them)
uses any C/C++ compiler (compiles to them)
already quite far in terms of implementation
meta-programming on steroids

"Design by introspection"

24

https://www.youtube.com/watch?v=tcyb1lpEHm0

Nim compilation modelNim compilation model

nim c -d:release main.nim
always compile only the main file, follow the imports
whole program analysis
a .c file for each .nim file in a "nimcache" (temp) folder (also .obj files)
only referenced (imported) modules are compiled in the end

entire project is always "compiled" by Nim (currently no "minimal" rebuild)
~4-5 sec for the entire source of Nim - 135 files (without the C compiler)
the C/C++ compiler rebuilds only changed files (takes a bit more time)
will change when per-module caching is introduced - even faster!

main.nim

import a

echo a()

1
2
3
4
5

a.nim

import b

proc a*(): string =
 return from_b

1
2
3
4
5
6

b.nim

let local = "B!"

let from_b* = local
 ^
means "exported"

1
2
3
4
5
6
7

25

Nim to C/C++: nimbase.hNim to C/C++: nimbase.h

// nimbase.h

#define N_NIMCALL(rettype, name) rettype __fastcall name
#define N_CDECL(rettype, name) rettype __cdecl name
//...
#define N_NIMCALL_PTR(rettype, name) rettype (__fastcall *name)
//...
#define N_LIB_PRIVATE __attribute__((visibility("hidden")))
//...
#define N_LIB_EXPORT extern __declspec(dllexport)
//...
#define STRING_LITERAL(name, str, length) \
 static const struct { \
 TGenericSeq Sup; \
 char data[(length) + 1]; \
 } name = {{length, (int) ((unsigned)length | NIM_STRLIT_FLAG)}, str}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

included by all .c/.cpp files

handles different platforms - convenience macros 26

Nim procs to C/C++Nim procs to C/C++
proc foo() =
 echo "hello"

foo()

1
2
3
4

#include <nimbase.h>

// forward declarations / type definitions / constants section
struct TGenericSeq { int len; int reserved; };
struct NimStringDesc : public TGenericSeq { ... };
typedef NimStringDesc* tyArray_nHXaesL0DJZHyVS07ARPRA[1];

STRING_LITERAL(TM_r9bkcJ6PRJ5n7ORNxxJ5ryg_3, "hello", 5); // << string literal
NIM_CONST tyArray_nHXaesL0DJZHyVS07ARPRA TM_r9bkcJ6PRJ5n7ORNxxJ5ryg_2 =
 {((NimStringDesc*) &TM_r9bkcJ6PRJ5n7ORNxxJ5ryg_3)};

N_LIB_PRIVATE N_NIMCALL(void, foo_iineYNh8S9cE6Ry7dr2Tz2A)(void); // << fwd de

// definition section
N_LIB_PRIVATE N_NIMCALL(void, foo_iineYNh8S9cE6Ry7dr2Tz2A)(void) { // << def
 echoBinSafe(TM_r9bkcJ6PRJ5n7ORNxxJ5ryg_2, 1); // the echo call
}

// code execution section
foo_iineYNh8S9cE6Ry7dr2Tz2A(); // << call

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

27

Nim types to C/C++Nim types to C/C++
type
 MyData = object
 answer: int
 ready: bool
proc newData(): MyData = return MyData(answer: 42, ready: true)
echo newData().answer

1
2
3
4
5
6

// forward declarations / type definitions / constants section
struct tyObject_MyData {
 int answer;
 bool ready;
};
// definition section
N_LIB_PRIVATE N_NIMCALL(tyObject_MyData, newData)(void) {
 tyObject_MyData result; // always an implicit "result"
 nimZeroMem((void*)(&result), sizeof(tyObject_MyData));
 result.answer = ((int) 42);
 result.ready = true;
 return result;
}

// code execution section
tyObject_MyData T2_;
T2_ = newData(); // << call
//...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

28

Nim closures to C/C++ (resumable funcs)Nim closures to C/C++ (resumable funcs)
iterator closure_iter*(): int {.closure.} = # a resumable function
 var x = 1
 while x < 10:
 yield x
 inc x
for i in closure_iter(): echo i

1
2
3
4
5
6

struct state_type : public RootObj {
 int colonstate_; // state progress - there are some GOTOs using this
 int x1; // the state
};

struct closure_type {
 N_NIMCALL_PTR(int, c_ptr) (void* e_ptr); // function ptr
 void* e_ptr; // environment ptr
};

N_LIB_PRIVATE N_CLOSURE(int, func)(void* e_ptr) { // def omitted for simplicit

state_type st; // the state
closure_type local; // the closure
local.c_ptr = func; // assign the func
local.e_ptr = &st; // assign environment
//...
i = local.c_ptr(local.e_ptr); // the call in the loop

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

29

Nim compilation to C/C++: a BIG winNim compilation to C/C++: a BIG win
smaller scope for the compiler
all the cutting-edge optimization for C/C++ for free
out-of-the-box support for tons of platforms
easiest C/C++ interop possible
exceptions - reusing those of C++ when using that backend
nim to C/C++ code mapping with #line directives for debuggers
no generated headers for the exported parts of modules
each .c/.cpp file contains everything (and only what) it needs

forward declarations for external functions
type definitions

each .c/.cpp file includes nimbase.h and a few C stdlib headers
high level macros & templates => simple structs and functions

30

Interfacing with C/C++Interfacing with C/C++
Foreign Function Interface

proc printf(formatstr: cstring)
 {.header: "<stdio.h>", importc: "printf", varargs.}

{.emit: """
using namespace core;
""".}

{.compile: "logic.c".}

other pragmas - for use in Nim:

We can also call Nim code from C/C++:
fib.nim
proc fib(a: cint): cint {.exportc.} # do not mangle

nim c --noMain --noLinking --header:fib.h fib.nim

// user.c
#include <fib.h>

31

https://nim-lang.org/docs/manual.html#foreign-function-interface

Interfacing with C/C++Interfacing with C/C++

 tool - generate C/C++ bindings for Nimc2nim

type
 StdMap {.importcpp: "std::map", header: "<map>".} [K, V] = object
proc `[]=`[K, V](this: var StdMap[K, V]; key: K; val: V) {.
 importcpp: "#[#] = #", header: "<map>".}

var x: StdMap[cint, cdouble]
x[6] = 91.4

1
2
3
4
5
6
7

std::map<int, double> x;
x[6] = 91.4;

1
2

C++ template constructs

Generated C++

32

https://nim-lang.org/docs/c2nim.html

much faster iteration times
no need to restart the program - can preserve state

less need for a scripting language
no need for a virtual machine
no binding layer
code in one language

can hack something quickly
introspection, queries

debuggers aren't infinitely powerful
fine-tuning values

interactive (REPL-like): very useful for exploration and teaching

Runtime compilation - WHYRuntime compilation - WHY

33

replacing entire functions: using shared libraries OR hot-patching:
possible for decades - but not widely used
usually quite intrusive (interfaces, constraints, complicated setup)
in game engines: Unreal, others...
hot-patching (with very little setup): ,
Visual Studio "Edit & Continue" - 0 setup, but limited

 << "one link to rule them all"
interactive: REPL-like

 - by researchers at CERN - built on top of LLVM
,

hard to integrate in a platform/compiler agnostic way
 - basically a hack - the inspiration for the Nim implementation

Live++ Recode

https://github.com/crosire/blink
https://github.com/ddovod/jet-live
http://bit.ly/runtime-compilation-alternatives

cling
inspector Jupiter

RCRL

Runtime compilation for C/C++: HOWRuntime compilation for C/C++: HOW

34

https://molecular-matters.com/products_livepp.html
http://www.indefiant.com/
https://github.com/crosire/blink
https://github.com/ddovod/jet-live
http://bit.ly/runtime-compilation-alternatives
https://github.com/root-project/cling
https://github.com/inspector-repl/inspector
https://blog.jupyter.org/interactive-workflows-for-c-with-jupyter-fe9b54227d92
https://github.com/onqtam/rcrl

Replace "compiling" with "restarting"Replace "compiling" with "restarting"

35

Hot code-reloading (HCR) in NimHot code-reloading (HCR) in Nim
inspired by a hacky REPL for C++ (called - by me)

mentored by
compile with --hotCodeReloading:on
need also 2 .dlls (the HCR runtime + the GC of Nim)

RCRL
https://github.com/nim-lang/Nim/issues/8927

Zahary

main.nim

import hotcodereloading # for reload
import other

while true:
 echo readLine(stdin) # pause
 performCodeReload() # reload
 echo getInt() # call

1
2
3
4
5
6
7
8
9

other.nim

import hotcodereloading # for after handler

var glob = 42

proc getInt*(): int = return glob + 1 # exported

afterCodeReload:
 glob = 666

1
2
3
4
5
6
7
8
9

10

built as an .exe/.dll depending
on the project type

built as a reloadable .dll
ends up in the "nimcache" 36

https://github.com/onqtam/rcrl
https://github.com/nim-lang/Nim/issues/8927
https://github.com/zah

Effects of HCREffects of HCR
all interaction between .nim modules => through pointers
functions - changes:

forward declarations become function pointers
definitions get "_actual" as a suffix
pointers are assigned the "_actual" on startup
calls stay the same (pointer has the same name)

globals - changes:
turned into pointers
allocated on the heap and initialized on startup

state is preserved when reloading
dereferenced wherever used

37

Effects of HCREffects of HCR
// fwd decl/globals section
static N_NIMCALL_PTR(int, getInt_omy6T2FkprLEReOy2ITmIQ)(void);
static int* glob_v1zK9aUOu9aNNcsxruuK8NdA;

// definitions
N_LIB_PRIVATE N_NIMCALL(int, getInt_omy6T2FkprLEReOy2ITmIQ_actual)(void) {
 int result; // ^^ the suffix
 result = (*glob_v1zK9aUOu9aNNcsxruuK8NdA);
 return result;
}

// usage
(*glob_v1zK9aUOu9aNNcsxruuK8NdA) = getInt_omy6T2FkprLEReOy2ITmIQ();

// init on startup (naive)
glob_v1zK9aUOu9aNNcsxruuK8NdA = new int(42);
getInt_omy6T2FkprLEReOy2ITmIQ = getInt_omy6T2FkprLEReOy2ITmIQ_actual

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

38

TrampolinesTrampolines

39

InitializationInitialization
// naive
glob_v1zK9aUOu9aNNcsxruuK8NdA = new int(42);
getInt_omy6T2FkprLEReOy2ITmIQ = getInt_omy6T2FkprLEReOy2ITmIQ_actual

1
2
3

// reality
getInt_omy6T2FkprLEReOy2ITmIQ = (tyProc_vVu2P82aVLv9c8X0xbI1NJw) hcrRegisterProc(
 "D:\\play\\nimcache/play.cpp.dll", // "domain" (AKA module)
 "getInt_omy6T2FkprLEReOy2ITmIQ", // "key"
 (void*)getInt_omy6T2FkprLEReOy2ITmIQ_actual); // the real function

if(hcrRegisterGlobal("D:\\play\\nimcache/play.cpp.dll", // "domain" (AKA module)
 "glob_v1zK9aUOu9aNNcsxruuK8NdA", // "key"
 sizeof((*glob_v1zK9aUOu9aNNcsxruuK8NdA)), // size for allocation
 NULL, // for the GC - simple integer is simple, so NULL
 (void**)&glob_v1zK9aUOu9aNNcsxruuK8NdA)) // address to pointer
{
 // hcrRegisterGlobal returns "true" only if not already inited
 (*glob_v1zK9aUOu9aNNcsxruuK8NdA) = ((int) 42); // init with value (or side effects)
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

40

InitializationInitialization
the HCR.dll runtime holds pointers to all globals/functions
hcrRegisterProc

allocates executable memory (a few bytes)
writes a jump instruction (trampoline) to the "_actual"
returns an address to the trampoline
this way "_actual" can be changed on reloading

changed by calling it again with a different address
all pointers to the trampoline stay the same

all symbols are registered per "domain" (.dll)
no name clashes (even though they are mangled...)
better management - can remove all symbols for module X

41

InitializationInitialization
main.nim

import a, b

echo from_a()
echo from_b()

1
2
3
4
5
6

a.nim

import b

proc from_a*(): string =
 result = "A!"
 result.add from_b()

1
2
3
4
5
6
7

b.nim

proc from_b*(): string =
 return "B!"

1
2
3
4

1. main.exe loads the hcr.dll (and the Nim GC in rtl.dll)
2. main.exe calls init() from hcr.dll and passes a list of imports (a, b)
3. hcr.dll loads a.dll and gets a list of imports (b)
4. hcr.dll loads b.dll and fully initializes it (it has no imports)

1. registers from_b() and does nothing else
5. hcr.dll fully initializes a.dll

1. registers from_a() and gets the address for from_b()
6. hcr.dll skips b.dll (part of the imports of main.exe) since it is already initialized
7. main.exe is initialized

1. gets the addresses for from_a() and from_b()
2. executes the top-level code (the 2 echo statements) 42

a DFS traversal with POST visit
when module A imports a symbol from B

symbol is first registered in B
symbol is "gotten" in A after B is inited

basically a custom dynamic linker :|
imports are discovered on-the-go
HCR.dll constructs a tree of imports and maintains it
many details omitted

initialization is broken into multiple passes
registration of type infos (for the GC) is a pre-pass

each .dll exports just a few functions which the HCR.dll uses
getImports(), and the ones for the passes

InitializationInitialization

43

when we call performCodeReload():

HCR.dll will check hasAnyModuleChanged()
basically scanning if any .dll has been modified (timestamp)

changes shouldn't affect .dll files which are part of the current active
callstack when reload() is called! or crash :|

==> main module can never be reloaded
execute the "beforeCodeReload" handlers if about to reload
in a DFS traversal, for each modified module:

same as the init - get its imports, load them (if changed or new), init
everything in proper order

supports discovery of new imports!
also removes no longer referenced modules and their symbols

execute the "afterCodeReload" handlers

ReloadingReloading

44

Reloading - handlersReloading - handlers
main.nim
import a, b, hotcodereloading

beforeCodeReload:
 echo "before main"
afterCodeReload:
 echo "after main"

1
2
3
4
5
6
7

a.nim
import b, hotcodereloading

beforeCodeReload:
 echo "before a"
afterCodeReload:
 echo "after a"

1
2
3
4
5
6
7

b.nim
import hotcodereloading

beforeCodeReload:
 echo "before b"
afterCodeReload:
 echo "after b"

1
2
3
4
5
6
7

DFS traversal with POST visit
handlers can be added/removed
can be used to update globals
fine-grained control:

hasModuleChanged(<module>)

only A changes => all handlers
are executed on reload:

before b
before a
before main
after b
after a
after main

45

Reloading - global scopeReloading - global scope

top-level code (global scope) is executed only on initial load
for new top-level code use before/after handlers

changing the initializer of a global doesn't do anything
use a before/after handler
or remove the global entirely, reload, and re-add it

brand new symbol!
new globals can be added - and will be initialized properly

46

The initial HCR example revisitedThe initial HCR example revisited

main.nim

import hotcodereloading # for reload
import other

while true:
 echo readLine(stdin) # pause
 performCodeReload() # reload
 echo getInt() # call

1
2
3
4
5
6
7
8
9

other.nim

import hotcodereloading # for after handler

var glob = 42

proc getInt*(): int = return glob # exported

afterCodeReload:
 glob = 666

1
2
3
4
5
6
7
8
9

10

Makes more sense now, doesn't it?

47

LIVELIVE
DEMODEMO

48

Encountered problemsEncountered problems
processes lock loaded .dll files in the filesystem on Windows

when reloading we copy x.dll to x_copy.dll and load the copy
changing module X can affect module Y

such changes shouldn't reach the main module
mangling of symbols being affected by attributes (purity)
mangling affected by where "inline" functions get used first
mangling affected by which module instantiates a generic

C vs C++
missing forward declarations - fine in C!
multiple identical forward declarations

multiple definitions of global function pointers - fine in C!
49

Visual Studio debug symbols - PDB dramaVisual Studio debug symbols - PDB drama
.dll/.exe have hardcoded paths to the .pdb (copying the .dll doesn't matter)
the VS Debugger keeps the .pdb files locked for .dlls even after unloaded

someone managed to to no longer needed .pdb files (.dll
has been unloaded) to the external VS debugger process ()
embed the debug info in the actual binaries just like on unix

/Z7 embeds it in .obj files but not for the final .dll/.exe when linking them
different names for the .pdb using /PDB:<filename> (with the date/time
(including milliseconds) as a suffix)

the "hardcoded" paths to .pdb files are always different
try to delete all <dll_name>_*.pdb files for a given .dll when linking

failure to delete them means the VS debugger still holds them locked
links: , , ,

close the file handles
live++

l1 l2 l3 l4

solutions:

50

https://blog.molecular-matters.com/2017/05/09/deleting-pdb-files-locked-by-visual-studio/
https://molecular-matters.com/products_livepp.html
https://ourmachinery.com/post/dll-hot-reloading-in-theory-and-practice/
https://ourmachinery.com/post/little-machines-working-together-part-2/
https://github.com/fungos/cr
https://fungos.github.io/blog/2017/11/20/cr.h-a-simple-c-hot-reload-header-only-library/

HCR performanceHCR performance
snappy compression algorithm - x2-x4 times slower

for reference: zlib (c code) to javascript (asm.js) ==> x2 slow down
calls within a translation unit are direct (the "_actual" version gets called)
calls between modules => indirection: pointer to function

+ additional jump from trampoline to actual function
link time optimization (AKA whole program optimization) cannot help

devirtualization techniques are not applicable either
compactness in memory VS a single binary => instruction cache misses
/hotpatch for MSVC and (which are faster):

not going through function pointers
by default there are no jumps in the function preamble (padding)

slowdown depends a lot on the type/scale of software - x2 to x5...

Live++

51

https://molecular-matters.com/products_livepp.html

HCR performanceHCR performance
possible optimizations:

write more "inline" procs
their body is emitted wherever used => skip indirections

pragmas for excluding files (extension of the first point in this list)
register the module procs but no indirections between them

relocate all code from loaded binaries close in memory?
PLOT TWIST!

debug builds are currently affected a lot less (<x2 slowdown)
HCR is mainly for development => probably debug builds

52

HCR TODOHCR TODO

Nim stdlib has trouble compiling with the GC as a separate SO
"-d:useNimRtl" needs to be enabled for all compiler tests
currently no real-world project can be built with HCR

detecting type changes
error when detected
OR ability for users to handle it (migrate data)

check if "reload" would affect functions from the current call stack
expose state for outside manipulation with interactive speeds

imagine a slider in the IDE for a variable or a color picker widget
performance & bug fixes

53

HCR Implementation choiceHCR Implementation choice
pros

any modern (desktop) OS supports dynamic libraries
works with any C/C++ compiler
near-native speeds
final binaries are debuggable
a REPL is easily built on top of this
(arguably) less complex than using LLVM / JIT / whatever
changes are isolated (only the C backend which is a few files)
program can be changed in (almost) any way
novel approach - someone had to try it

cons
not as optimal as the /hotpatch for MSVC or
(arguably) more complex than using LLVM / JIT / whatever
not sure how NLVM (Nim on top of LLVM) will support HCR

Live++

54

https://molecular-matters.com/products_livepp.html

REPL - Read Eval Print LoopREPL - Read Eval Print Loop
interpreted languages have it (JavaScript, Python, etc.)
consoles/shells - cmd.exe, bash
can iteratively append/execute code (definitions, side effects, etc.)
education, scientific community, rapid prototyping of any kind

55

REPL/Nim quoteREPL/Nim quote
Nim is the language I have always thought was a brilliant idea that I never get

to use. It's a shame.
Nim is to C/C++ as CoffeeScript is to JavaScript. A highly extensible template
language atop a portable language with libraries for practically everything.

So why haven't I hopped on the bandwagon? Outside of C++, C, and Fortran -
the only way I have ever learned a new language is through using a REPL. How

much of Python's and MATLAB's (and maybe even Julia's) success is due to
having a brilliant REPL?

I am not complaining, and I do not have any free time to fix it. But man... if
Nim just had a killer REPL that allowed me to slowly learn the language

properly while not being blocked from my daily work... it would be just killer!

cjhanks on Apr 18, 2017
https://news.ycombinator.com/item?id=14143521 56

https://news.ycombinator.com/item?id=14143521

REPL on top of HCRREPL on top of HCR

2 files:

main module
has the main loop
handles code submissions

imported file
gets modified based on submissions
rebuilt + reloaded

Talk abstract was a lie! didn't get to implementing it in time...

should be well below half a second
57

REPL on top of HCRREPL on top of HCR
you submit this:

import tables

var a = {1: "one", 2: "two"}.toTable

echo a

and it gets translated to this:
import hotcodereloading # for the before/after handlers

import tables

var a = {1: "one", 2: "two"}.toTable

afterCodeReload:
 echo a

58

REPL on top of HCRREPL on top of HCR
later you append:

let b = a

echo b

and it gets translated to this:
import hotcodereloading # for the before/after handlers

import tables

var a = {1: "one", 2: "two"}.toTable

let b = a # the new code

only the new side effects are still present
afterCodeReload:
 echo b

59

Jupyter kernelJupyter kernel

yesterday on ACCU:

A Jupyter Notebook is an interactive document - a collaborative platform
for prototyping, experimentation and analysis
Mix and share: code, text, data, computation and visualization

Nim REPL => Nim Jupyter kernel

Interactive C++ : Meet Jupyter / Cling - The data
scientist’s geeky younger sibling - by Neil Horlock

"Notebooks are the most popular tool for working with data at Netflix."

60

https://conference.accu.org/2019/sessions.html#XInteractiveCMeetJupyterClingThedatascientistsgeekyyoungersibling
https://medium.com/netflix-techblog/notebook-innovation-591ee3221233

The road ahead for NimThe road ahead for Nim

version 1.0 - promise of stability
compiler cache for unchanged modules

because compilation starts always from the main module
of great benefit for HCR/REPL

more features
better tooling
better docs
taking over the world
get involved - still in early stages - you can have an impact

61

62

Q&AQ&A

FOSDEM 2019:

Slides:

Blog:

GitHub:

Twitter:

E-Mail:

https://nim-lang.org/

https://github.com/nim-lang/Nim

Metaprogramming with Nim

https://slides.com/onqtam/nim_hot_code_reloading

http://onqtam.com

https://github.com/onqtam

@KirilovVik

vik.kirilov@gmail.com
63

https://nim-lang.org/
https://github.com/nim-lang/Nim
https://www.youtube.com/watch?v=JMkEJ__2Meg
https://slides.com/onqtam/nim_hot_code_reloading
http://onqtam.com/
https://github.com/onqtam
https://twitter.com/KirilovVik
http://mailto:vik.kirilov@gmail.com/

