# Best practices when accessing Big Data ... or any other data!

Dr Rosemary Francis CEO Ellexus: The I/O profiling company

In this talk I will explore best practices when accessing data on local or shared file systems. I will use examples of what can go wrong taken from real customer problems to back up how simple guidelines and good use of available tools can make a massive difference to the performance, reliability, scalability and portability of your code. There are free and commercial tools that can help, but they need to be combined with good coding and good working practices. Data doesn't have to be big to cause a problem, but as data sets grow, the way we access data has never been a more important consideration. Our customers work in scientific and high-performance computing with different trade-offs to make between time-to-market, reliability and performance, but what they all have in common is that they have to care about I/O.



# Ellexus Ltd: The I/O Profiling Company

diamond

DELLEMC

### Products: We make tools to help you

- improve application performance,
- protect shared storage, and
- manage application dependencies.

### **Customers include:**

TACC TEXAS

wellcome

ger

**ANSYS OLD SYDOPSYS** 

### Ellexus enterprise products Take control of the way you access your data



### Detailed I/O profiling Application discovery



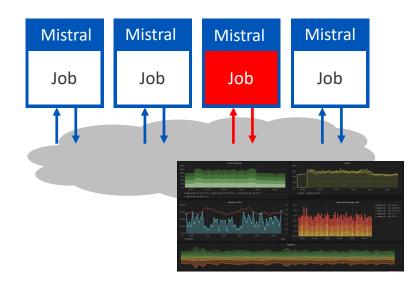
### Dependencies

What do I need to include in my container?

**I/O profiling** What resources do I need to run it?

# **Debug and triage** Why am I not getting the results I expect?

### Ellexus enterprise products Take control of the way you access your data


Protect storage from rogue jobs

Find bottlenecks in production

Chargeback and procurement



### Live system telemetry: I/O monitoring in production



### Why profile I/O

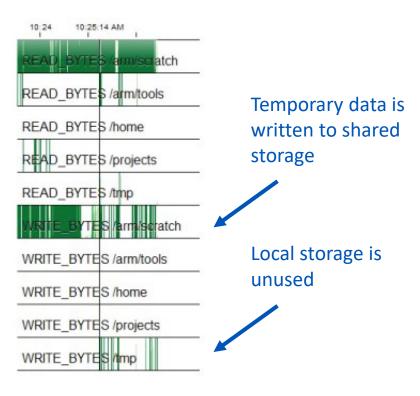
**Detect dependencies** for containerization and migration

Application correctness in delivery and deployment

Understand resources for sizing and procurement of IT resources or cloud

**Profile I/O** for tuning and optimization

Monitor I/O for chargeback and troubleshooting in the field




### The noisy neighbour problem Bad performance case study

A small number of jobs can overload shared file systems and cause system bottlenecks.

This software build is overloading shared storage by putting data in the wrong place.

### Example of a rogue job from Arm:





# Fast, agile and (hybrid) cloud ready



Fast, agile and (hybrid) cloud ready

Performance, portability and planning



Fast, agile and (hybrid) cloud ready Performance, portability and planning

**Performance:** Understand I/O patterns and requirements

**Portability:** Understanding application dependencies

Planning: System telemetry and monitoring





### Where does bad I/O come from?

Third party tools and libraries

Legacy code

Misunderstandings about IT infrastructure

Changes in your working environment

and occasionally... Bad code and lazy design

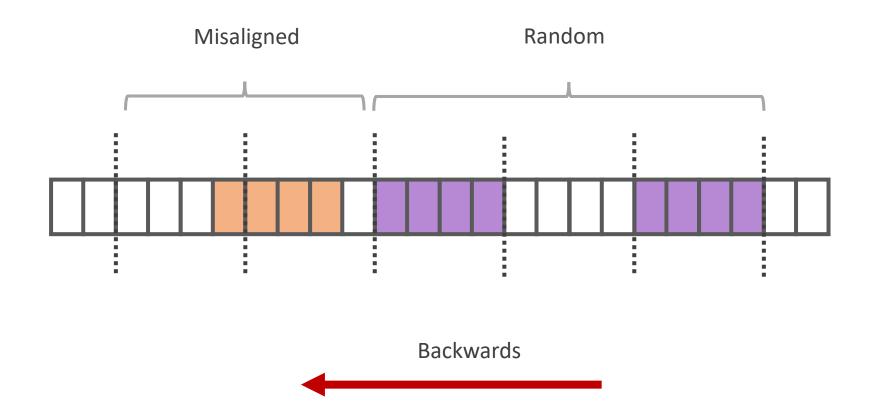


### How much time are you wasting doing bad I/O?





### Small reads and writes are bad for everyone


Libraries may not buffer I/O well

OS may not buffer I/O well

Every read to a shared file system is a write

Application Library Calls Spectre and Meltdown! Library System Calls User space Kernel space OS Disk or Network I/O Filesystem

### Misaligned and random I/O





### Housekeeping and deletes

Delete as you go along – don't delete everything at the end.



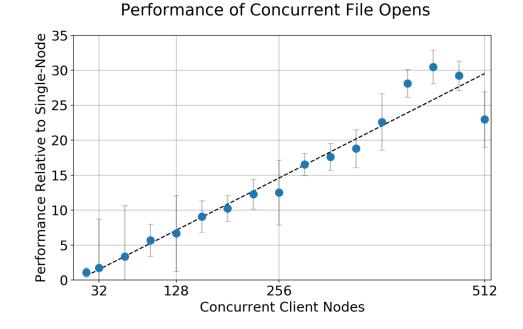
### Failed I/O and file system trawls

Looking for a file? Don't stat everything to find it

PATH variables

ightarrow Zero tolerance on bad I/O




### Opens and closes

Open loops!

```
for(...) {
            open()
            write()
            close()
}
```

One customer crashed Lustre doing this

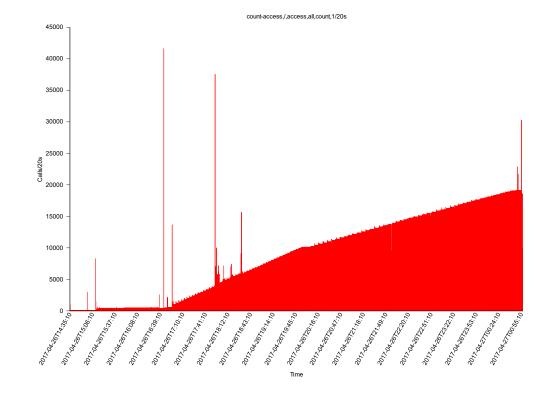
Another got a 700% speed up when they fixed the loop!



Time taken to open a file across a large number of compute nodes

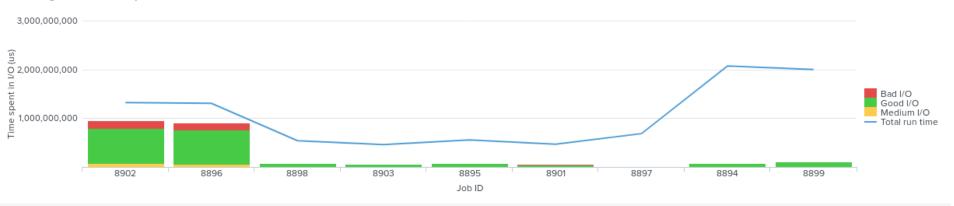
Credit: Glenn Lockwood, Next Platform




### Opens and closes

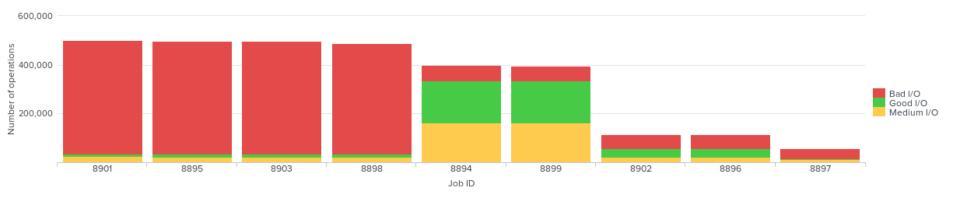
| File Trace Views Liela                                                             |                | Ellexus - Breeze (or |    |     |                         |                                |               |                       | -            |
|------------------------------------------------------------------------------------|----------------|----------------------|----|-----|-------------------------|--------------------------------|---------------|-----------------------|--------------|
| <u>F</u> ile <u>T</u> race <u>V</u> iews <u>H</u> elp                              |                |                      |    |     |                         |                                |               |                       |              |
| 107 %      Select run: 1 - mpirun in /ellexus/cu      Child traces:                | ~              |                      |    |     |                         |                                |               |                       |              |
| Search I I/O Summary 	☐ Timeline 	☐ Duration 	☐ Files                              | Profiling Data |                      |    | - 0 | 🚳 *Node 🔊 Events Σ      | ያ 🖶 Program                    | Program       | 🗋 Program             | - 0          |
|                                                                                    | 0µs            | 2m                   | 4m | 6m  | /lustre/scafellpike/loc | al/HT01812/axc01               | /axc67-axc01/ | /dl-poly/build_mp     | oich/bin/    |
|                                                                                    | 0µs            |                      |    |     | Search                  |                                |               |                       |              |
| l≡/usr/bin/sha1sum - pid_49172                                                     |                |                      |    |     |                         |                                |               | Fi                    | ind Next     |
| /usr/bin/sha1sum - pid_49173                                                       |                |                      |    |     |                         |                                |               |                       |              |
| 🗉 /usr/bin/objdump - pid_49174                                                     |                |                      |    |     | Filter write/read/s     | Time offset                    | Duration      | Event                 | Targe        |
| Ilustre/scafellpike/local/apps/gcc7/mpich/3.2.1/bin/mpiexec.hydra - pid_48954 pid_ |                |                      |    |     |                         | 1min 38s 898m                  |               | MPI Close             | REVC         |
| Illustre/scafellpike/local/apps/gcc7/mpich/3.2.1/bin/hydra_pmi_proxy - pid_4895    |                |                      |    |     |                         | 1min 42s 877m                  |               | MPI Open              | REVC         |
| //ustre/scafellpike/local/HT01812/axc01/axc67-axc01/dl-poly/build_mpich/bin/       |                |                      |    |     |                         | 1min 42s 936m                  |               | MPI WriteFile         | REVC         |
| I/ustre/scafellpike/local/HT01812/axc01/axc67-axc01/dl-poly/build_mpich/bin/       | •              |                      |    |     |                         | 1min 43s 420m<br>1min 47s 693m |               | MPI Close<br>MPI Open | REVC<br>REVC |
| □/lustre/scafellpike/local/HT01812/axc01/axc67-axc01/dl-poly/build_mpich/bin/      |                |                      |    |     |                         | 1min 47s 694m                  |               | MPI WriteFile         | REVC         |
| //ustre/scafellpike/local/HT01812/axc01/axc07 axc01/dl-poly/build_mpich/bin/       | -              |                      |    |     |                         | 1min 48s 167m                  |               | MPI Close             | REVC         |
|                                                                                    |                |                      |    |     | 16:52:45.220            | 1min 52s 202m                  | 72,182 µs     | MPI Open              | REVC         |
| /lustre/scafellpike/local/HT01812/axc01/axc67-axc01/dl-poly/build_mpich/bin/l      |                |                      |    |     |                         | 1min 52s 203m                  |               | MPI WriteFile         | REVC         |
| □ /lustre/scafellpike/local/HT01812/axc01/axc67-axc01/dl-poly/build_mpich/bin/     |                |                      |    |     |                         | 1min 52s 610m<br>1min 56s 832m |               | MPI Close<br>MPI Open | REVC<br>REVC |
| lustre/scafellpike/local/HT01812/axc01/axc67-axc01/dl-poly/build_mpich/bin/l       |                |                      |    |     |                         | 1min 56s 833m                  |               | MPI WriteFile         | REVC         |
| pich/bin/l                                                                         |                |                      |    |     |                         | 1min 57s 316m                  |               | MPI Close             | REVC         |
| pich/bin/l                                                                         |                |                      |    |     | 16:52:54.727            | 2min 1s 708ms                  | 74,218 µs     | MPI Open              | REVC         |
| pich/bin/l                                                                         |                |                      |    |     |                         |                                |               | MPI WriteFile         | REVC         |
| 100/ is a infantion of a second pich/bin/l                                         |                |                      |    |     |                         | 2min 2s 183ms                  | 284 µs        | MPI Close             | REVC         |
| 10% performance pich/bin/                                                          |                |                      |    |     |                         |                                |               |                       |              |
| pich/bin/l                                                                         |                |                      |    |     |                         | 0μs                            | 2m            |                       | 4m           |
| improvement by only                                                                | •              |                      |    |     |                         |                                | <u>_</u>      |                       |              |
| pich/bip/                                                                          | •              |                      |    |     |                         |                                | jimir         | n 56s 281ms 8µs       |              |
| opening files in ranks                                                             |                |                      |    |     | All Events:             |                                |               |                       |              |
| pich/bin/                                                                          | •              |                      |    |     | 🖹 Accept                | l JI                           |               |                       |              |
| that do I/O                                                                        | -              |                      |    |     | 🖹 Bind                  |                                |               |                       |              |
|                                                                                    |                |                      |    |     | Close                   |                                |               |                       |              |
| pich/bin/l                                                                         |                |                      |    |     | Connect                 |                                |               |                       |              |
| pich/bin/l                                                                         |                |                      |    |     | Exec'ed by              |                                |               |                       |              |
| pich/bin/l                                                                         |                |                      |    |     | Listen                  | (1)                            |               |                       |              |
| וווידע איזעראיזעראיזעראיזעראיזעראיזעראיזעראיזער                                    |                |                      |    |     | Load                    | 11 <sup>1</sup>                |               |                       |              |
| l/lustre/scafellpike/local/HT01812/axc01/axc67-axc01/dl-poly/build_mpich/bin/      |                |                      |    |     | MPI Close               | f                              | annin         |                       | 000 📕        |
| l/lustre/scafellpike/local/HT01812/axc01/axc67-axc01/dl-poly/build_mpich/bin/      |                |                      |    |     | MPI Open                |                                |               |                       |              |
| l/lustre/scafellpike/local/HT01812/axc01/axc67-axc01/dl-poly/build_mpich/bin/      |                |                      |    |     | MPI WriteFile           |                                |               |                       |              |
|                                                                                    |                |                      |    |     |                         |                                |               |                       |              |
| Show Applications<br>Events: Events:                                               |                |                      |    |     |                         |                                |               |                       |              |




### Meta-data accesses Case study: genome pipeline

Stat calls are used to track application progress






### How much time are you wasting doing bad I/O?



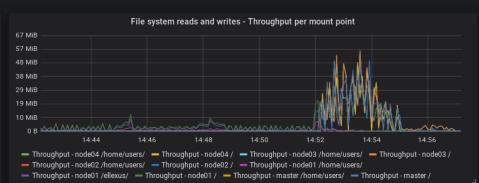
#### Traffic Light View - time spent in I/O





mistral




### What is normal?

LSF - System overview -



user-time node03 user-time node02 user-time node01 user-time master

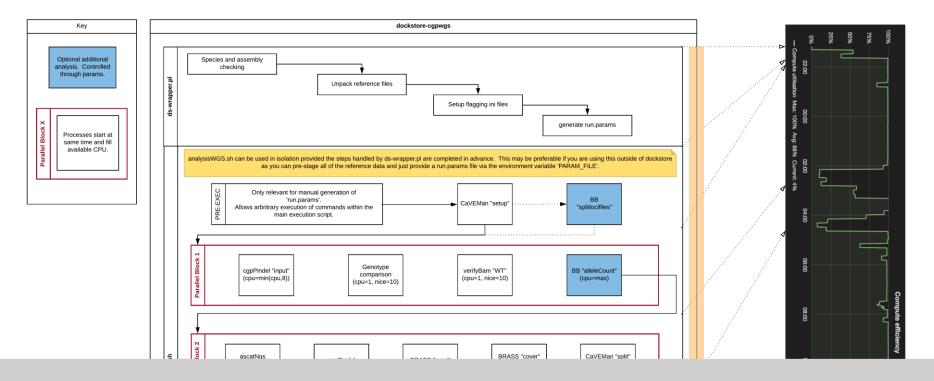
#### 🗤 🔂 🖻 😩 🛠 < Q 🕨 🛛 Last 15 minutes Refresh every 5s 😅



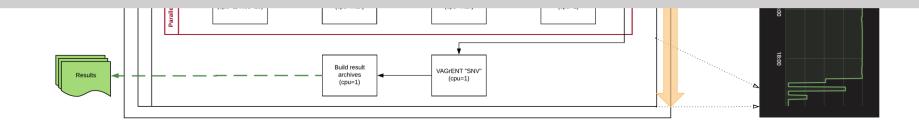


**@**mistral



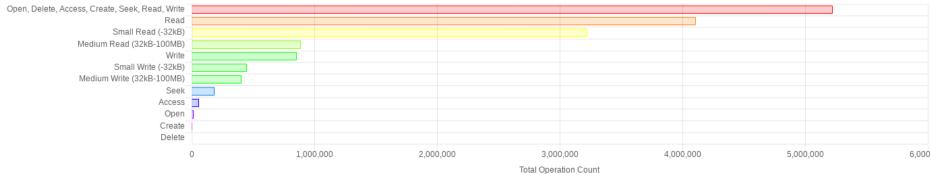

# Tuning cancer pipelines at the Sanger Institute

The Pancancer project: 2000 whole genomes at multiple HPC sites


- $\rightarrow$  Containerised pipelines for portability
- $\rightarrow$  I/O tuned with Ellexus tools
- $\rightarrow$  Storage now needs to be sized correctly



## Tuning cancer pipelines at the Sanger Institute




Runtime was reduced from 32hr to 18hr through profiling I/O and tuning deployment



# Profiling the cancer pipeline AWS m5.xlarge 4vCPU 16GB

### Number of I/O operations() by type

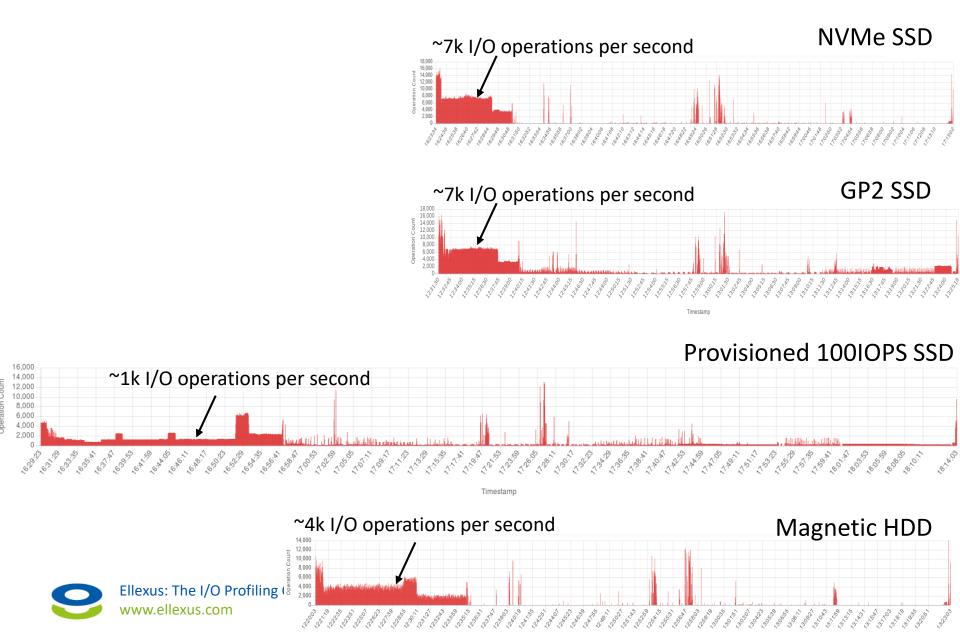






### Storage comparison

|                          | Time*      |      | Cost per m | onth |
|--------------------------|------------|------|------------|------|
| GP2                      | 52m 23s    | 100% | 174.11     | 100% |
| Magnetic EBS             | 1h 01m 44s | 118% | 174.43     | 100% |
| Provisioned 100 IOPS     | 1h 42m 01s | 195% | 184.61     | 106% |
| Throughput optimised HDD | 1h 19m 32s | 152% | 189.01     | 109% |
| 150GB NVMe               | 51m 27s    | 98%  | 191.79     | 110% |
| Provisioned 500 IOPS     | 54m 22s    | 104% | 215.01     | 123% |


 $\Rightarrow$  The Provisioned IOPS SSDs performed very badly

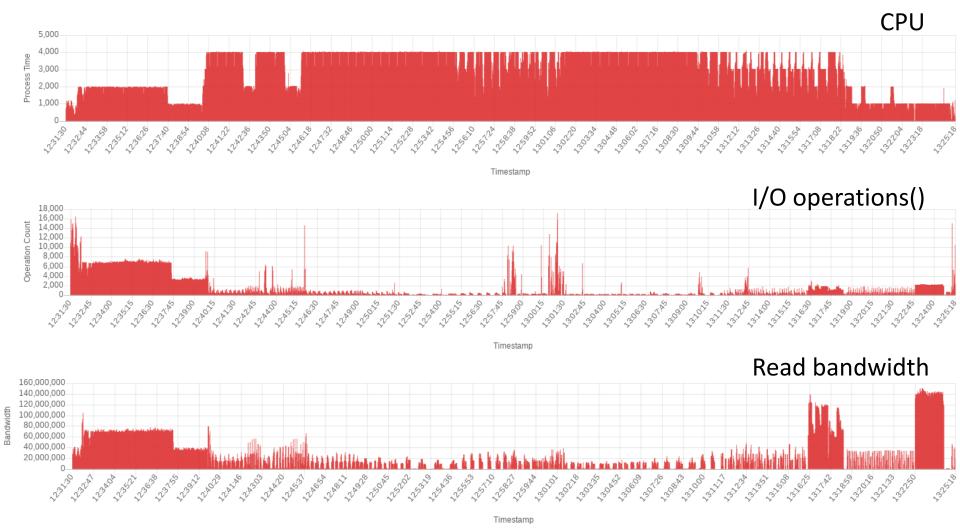
 $\Rightarrow$  AWS default option, GP2 is the best  $\Rightarrow$  NVMe was only 2% faster for a 10% price increase





# I/O Operations() over time




# CPU and I/O Profile (on GP2 SSD)



Timestamp



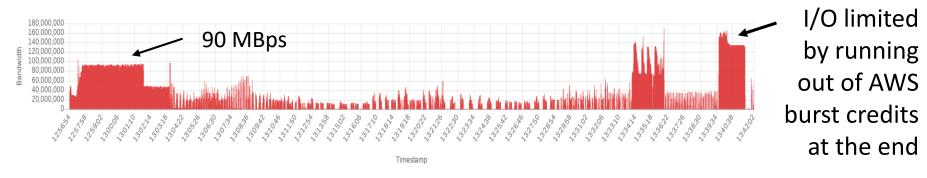
# CPU and I/O Profile (on GP2 SSD)





# More CPU and less memory: m5.xlarge vs c5.xlarge (still on GP2 SSD default storage)

| M5.xlarge           | c5.xlarge           |
|---------------------|---------------------|
| 4 vCPU              | 4 vCPU              |
| 16GB                | 8GB                 |
| Runtime: 53min      | Runtime: 44min      |
| <u>Cost: \$0.21</u> | <u>Cost: \$0.16</u> |




# Read bandwidth: m5.xlarge vs c5.xlarge



### Read bandwidth for mx.large 16GB

Read bandwidth for cx.large 8GB





# How long did this work take?

Tuning the pipeline took a lot of effort ... but runtime went from 32hr to 18hr



Sizing the storage and compute correctly took three days

... and we saved >10% of cloud costs for the project

"Improving run time often doesn't require extensive rewrites. Knowing where to look is key."

Keiran Raine, Cancer researcher, Sanger Institute



### Lessons learnt

 $\Rightarrow$  Containers make it easy to deploy applications

 $\Rightarrow$  Optimising I/O can save you money

 $\Rightarrow$  Need to understand all variables to find bottlenecks:

- $\Rightarrow$  CPU
- $\Rightarrow$  memory
- $\Rightarrow$  I/O patterns
- $\Rightarrow$  I/O performance



### Ellexus best practices for good I/O

Dependencies as the number one check

- Wrong libraries
- Wrong config files
- Changes need to be checked by a human

Regression testing for I/O behaviour

Zero tolerance on bad I/O

Test in production - Often problems are in set up scripts

Tuning and optimisation - if you have time



### Free and open source I/O tools

### Strace

- System call tracing

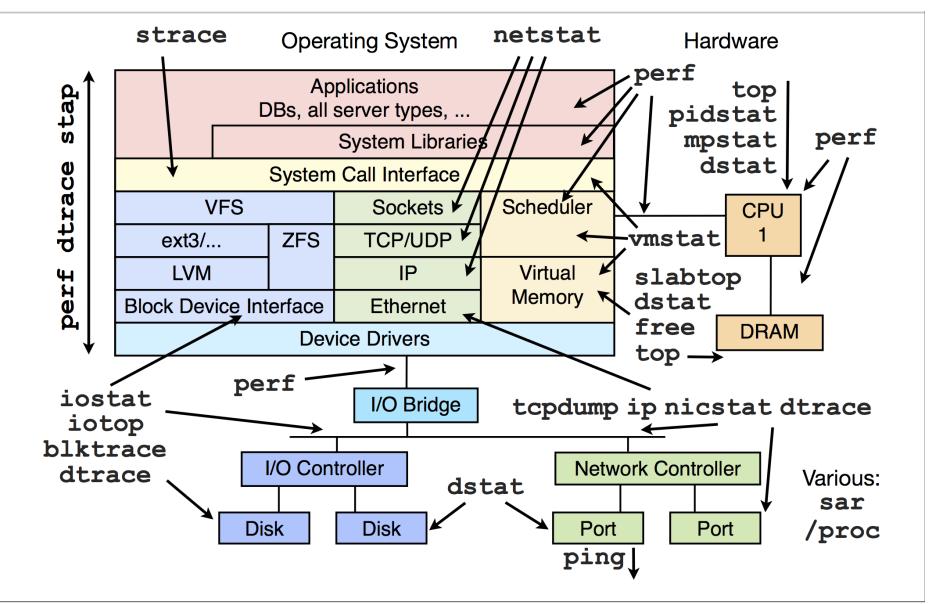
### Darshan

- For MPI I/O profiling

### iotop

- Like top, but for disk I/O

### XALT


- Basic dependency tracking on distributed systems

### Perf

- Low level I/O information



### Brendan Gregg's guide to free and open source I/O tools



### Contact us!

Our tools are trusted by research organisations, financial institutions, semiconductor companies and software vendors around the globe.

- Take control of your I/O on-premise and in the cloud
- Whole-system monitoring with APM solutions
- Detailed dependency analysis and bottleneck resolution

Proven to improve performance, increase up time and keep your customers happy.

Dr Rosemary Francis CEO and director of technology rosemary@ellexus.com

