
Windows Native API

Roger Orr

OR/2 Limited

How do applications communicate with the O/S kernel?

– ACCU 2019 –

Applications and the Kernel

● In common with many operating systems, Windows has
two modes

– A mode for user programs ('user')

– A mode for the O/S ('kernel')

● A user mode application program
– cannot directly access hardware

– can only access memory locations it 'owns'

● Kernel mode allows
– direct access to hardware

– access to the whole of physical memory

Applications and the Kernel

● Applications request services from the O/S by making a
system call

– the mode changes to kernel mode

– the request and its parameters are verified

– the operation is performed

– the kernel returns a status code (to indicate whether the
request succeeded)

● However, it is rare to make these requests directly:
Windows provides a higher level API known as the Win32*
API

* (even when it's 64-bit)

Applications and the Kernel

● Programming languages in turn often further wrap the
Win32 API to provide their library runtime functions

Application program

Language runtime

Win32 API

Windows Native API

O/S kernel

A simple example

● Consider this C++ program

#include <cstdlib>

int main() { exit(42); }

● This calls the C++ library function exit()
● This (eventually) invokes the Win32 function ExitProcess()
● This in turn invokes the Windows Native function
NtTerminateProcess()

A simple example

● Consider this C++ program

#include <cstdlib>

int main() { return 42; }

● This implicitly calls the C++ library function exit()
● So it behaves like the previous example
● However, I highlight this as there's more to the language

runtime than just your calls

A simple example

● Let's go one layer down...

#include <windows.h>
int main()
{
 ExitProcess(42);
}

● Note that this does not let the C++ runtime terminate as
gracefully, but it does allow some Win32 teardown (eg DLL
unload)

A simple example

● Or we can terminate 'with prejudice':

#include <windows.h>
int main()
{
 auto self = GetCurrentProcess();
 TerminateProcess(self, 42);
}

● This does less Win32 tear-down

A simple example

● Another layer down... NtTerminateProcess
● Firstly, we need to provide a prototype for the function,

since only a few Windows Native calls are provided in the
Windows Kits

extern "C" NTSTATUS NTAPI

NtTerminateProcess(

 IN HANDLE ProcessHandle,

 IN NTSTATUS ExitStatus);

A simple example

● Then we call the function

int main()
{
 auto self = GetCurrentProcess();
 NtTerminateProcess(self, 42);
}

● Note that this may not let the Win32 runtime terminate
gracefully: for example it skips Silent Process Exit
monitoring

Inside a native call

● The function body is something* like this:

NtTerminateProcess:
 mov r10,rcx
 mov eax,2Ch
 syscall
 ret

● The syscall instruction transitions to kernel mode. Register
eax is the code for the function to invoke.
* dependent on the version of Windows (see next slide)

Inside a native call

● The precise details of the function body differ as the
mechanisms used to enter kernel mode have changed
subtly with different versions of Windows and changes in
hardware support:

● int 2E - initially windows used an interrupt
sysenter - a special instruction simply added for speed
syscall - a 'new improved' instruction (AMD/Intel split)

● The principle is unchanged: inside the kernel there is
basically a jump table driven by the function code argument
and targetting the desired function

Inside a native call

● The target function in the kernel has the same name as the
original NtXxx function

● However, this implementation function runs in the kernel
with the O/S privileges and can therefore perform actions
that the user mode program is not able to do

Note on kernel development

● The target NtXxx functions are also callable from within the
kernel too. However, in this case since the caller is trusted
code there is an additional choice of an 'internal' function,
with a prefix of 'Zw' rather than of 'Nt'

● The Zw version of the function can skip some of the
validation of the arguments supplied in the function call

● If you're trying to find information about a native call, try to
search for both the names

Inside the kernel

● I'm not going to cover much about the Windows kernel
itself.

– It'd take too long

– I'm not a driver level guy

● There is information about the Windows kernel available
from many sources, such as:

– Windows Driver Kit (WDK)

– Books, such as “Windows Internals”

– “NT Insider” at www.osr.com/nt-insider/

Argument validation

● The native API is where applications transition from the
'protected' environment into the kernel. It's important to
verify the arguments passed to the service call to ensure
that the program cannot accidentally - or maliciously -

– Crash or corrupt the O/S

– Use resources it does not own

– Perform actions requiring higher privilege

Return codes

● The native API normally returns an NTSTATUS value (a 32-bit
unsigned value), with the top two bits set on error

● Some of the possible error values are documented in
WinNt.h, or in NtStatus.h, such as:

STATUS_OBJECT_NAME_NOT_FOUND (0xC0000034)

STATUS_NO_TOKEN (0xC000007C)

Return codes

● The function RtlNtStatusToDosError in NtDll converts the
NTSTATUS native error value into a user-mode error value

● For example, the native error code 0xC0000034 is translated
to 2 which is ERROR_FILE_NOT_FOUND

Types of arguments

● There arguments used by the native API can be broken
down into the following rough categories:

– Simple values

– Handles

– Pointers to memory

– Strings

– Object Attributes

Simple value arguments

● Many of the simple values are integers – the commonest
example being ULONG (a 32-bit unsigned value). There are
also a number of arguments that are enumeration values

● For example, NtQueryInformationProcess takes an argument of type
PROCESS_INFORMATION_CLASS which has values like
ProcessMemoryPriority

● Other types include LARGE_INTEGER (64-bit) and BOOL

● In quite a few cases the simple values are the same ones as that of a
corresponding higher-level Win32 API, as we saw earlier with
NtTerminateProcess

Enumeration values

● Some of the enumerations used in the Native API are the
same as those used in the Win32 API and some of the
others are documented by Microsoft

● Most of the others can be found in the PDB file for
WinTypes.dll; for example:
> dt ALPC_MESSAGE_INFORMATION_CLASS
wintypes!ALPC_MESSAGE_INFORMATION_CLASS
 AlpcMessageSidInformation = 0n0
 AlpcMessageTokenModifiedIdInformation = 0n1
 AlpcMessageDirectStatusInformation = 0n2
 AlpcMessageHandleInformation = 0n3

Handle arguments

● While on 64-bit Windows handles are 64-bit values in
practice they currently seem to be (possibly sign-extended)
32-bit values

● This provides obvious benefits for interoperability with 32-
bit programs running on the WOW subsystem

Handle arguments

● Many kernel resources expose themselves via an opaque
handle type

● Typically the initial Open or Create call takes a pointer to
handle as the first argument, and subsequent operations
take the handle value as the first argument

● The handle value is usually the same value as that
exposed by equivalent Win32 calls, so a mix of native and
Win32 calls can be used (with some restrictions)

Pointer to memory arguments

● Pointers to memory are usually presented as a pair: an
address and a length

● Many of the APIs have a clear separation between input
and output buffers

● In a few cases buffers are modified in-place

String arguments

● Most of the native API takes strings as:
struct UNICODE_STRING {
 USHORT Length; // Length of string in bytes
 USHORT MaximumLength; // Maximum length
 PWSTR Buffer; // Pointer to Unicode string
};

● A small number of APIs take a PWSTR argument (together
with a length)

● In both cases note the string is of 16-bit Unicode (UTF-16)
characters

String arguments

● The UNICODE_STRING structure uses unsigned 16-bit integers
for the length, even on a 64-bit platform, which means that
strings are limited to 32,767 characters

● This is rarely a significant issue in practice!

Object attributes arguments

● Many of the APIs take an OBJECT_ATTRIBUTES argument
which specifies the name and some additional attributes of
the object being accessed. Here's the structure:

typedef struct _OBJECT_ATTRIBUTES {
 ULONG Length;
 HANDLE RootDirectory;
 PUNICODE_STRING ObjectName;
 ULONG Attributes;
 PVOID SecurityDescriptor;
 PVOID SecurityQualityOfService;
} OBJECT_ATTRIBUTES;

Object attributes arguments

● The root directory is a handle to use for relative names.
The name is a little misleading as it applies to more than
files – for example it is used for registry keys

● Unlike the Win32 API there is no implicit 'current directory'
for calls

● The full names for files and directories in the native API
may be unfamiliar:

\??\C:\projects\accu\conference\2019 or
\Device\HarddiskVolume5\projects\accu\conference\2019

● We'll come back to that shortly!

Some security considerations

● The Native API is the gateway from user mode to
privileged mode and so there are a number of implications
for both security and process separation

● The degree of caution taken over argument handling has
increased since the early days of Windows NT

● I'm not going to cover the recent hardware level
vulnerabilities (Meltdown and Spectre) although they have
affected the O/S API

Simple value arguments

● The security implications of simple values are similar to
those in any API; the only difference is that if something is
out of range it might produce exploitable behaviour in the
kernel which is at a higher privilege level

● NTSTATUS ZwCreateEvent(
 Out PHANDLE EventHandle,
 In ACCESS_MASK DesiredAccess,
 _In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,
 In EVENT_TYPE EventType,
 In BOOLEAN InitialState);

● What could happen if I were to provide an invalid value?

Handle arguments

● It is important to check that the handle value being passed
in is right for the API being used, that it belongs to the
calling process, and that is has the right permissions

● Earlier checks were done with the handle value as it
arrived; but malicious programs found they could close and
reopen the handle in other threads so that the same handle
value referred to a different entity later on in the call,
allowing access above the privilege level of the caller

Pointer to memory arguments

● Memory buffers present a few challenges:
– Does the calling process have access to it?

– With the right permissions?

– All of it?

– How does the kernel ensure that it maps the right page(s)
from the user program?

– What if the memory is swapped out?

– What if the user changes the contents?

Access to memory arguments

● The kernel needs to check that the calling program has
provided a valid pointers to memory for which it holds the
required access (for example, write access if the API will
write into the buffer).

● This check needs to be made for the full range of
addresses in the buffer

Lifetime of memory arguments

● If the kernel will be retaining the buffer (for example, for
I/O) then the memory may need locking so that the
physical addresses of pages can be passed to hardware

● Remember that while this thread is no longer active in the
user's application, other threads can be modifying the
memory being addressed

String arguments

● The buffers used to hold string arguments have the same
set of restrictions as other pointers to memory

● However, there are additional wrinkles with strings as they
may contain various 'odd' characters or invalid character
sequences

● UTF-16 processing is notoriously hard to get right
● Embedded NUL characters (among others) can cause

'interesting' interaction with the Win32 API which often
uses LPCSTR

Object namespace

● As I briefly mentioned when looking at 'object attributes' the
names of entities may be different when using the Native
API rather than the Win32 API

● The kernel has a hierarchical namespace containing
objects of various classes, such as: Device, Event, Key,
Mutant*, Section, Semaphore, and SymbolicLink

● The Sysinternals “WinObj” tool lets you view the object
hierarchy
* A Mutex, with an odd name for historical reasons

Object namespace - WinObj

Object namespace

● We saw earlier:

\??\C:\projects\accu\conference\2019 or
\Device\HarddiskVolume5\projects\accu\conference\2019

● The top level “??” is the global namespace, which has a
symbolic link to the actual device

● \Device\HarddiskVolume5 is the device name for the C:
drive on my desktop PC

● The rest of the path is not in the object namespace, but is
understood by the device driver itself

Object namespace

● There are quite a few symbolic links in the object
namespace – here are some of the other aliases for the
same hard disk:
\Device\BootDevice
\??\BootPartition
\??\Volume{661a4c3d-06b0-45e2-98aa-3e6b647c1f37}

● These are typically set up when the system starts up and
devices are initialised

● Few application programmers need to be concerned about
the set of names

Object namespace

● Some of the Win32 API calls support access via the global
namespace – but, just to make it more confusing, using the
prefix of \\? rather than \??

● For example: dir \\?\c:\temp
● This actually opens \??\c:\temp
● However, this syntax allows filenames longer than MAX_PATH

and disables some the Win32 mappings - for instance you
can create a filename called “...”

More than just the filesystem

● As is probably already obvious from the list of classes the
object namespace is used for much more that just the
filesystem

● Most of the Win32 calls that take names start by finding a
root name in the object namespace

● For example, the registry API accesses paths like
\Registry\Machine\Software

● Creating a named Semaphore adds an item to the object
namespace – for example

CreateSemapore(0,0,1,"example.sema4")

Object namespace - WinObj

Categorising the Native API

● There are various ways to categorise the 500 or so functions in
the Native API. For example:

● And a few that are hard to categorize (28)

Atom (5)
Device (31)
File (48)
LPC (47)
Object (20)
Registry (42)
Synchronization (35)
Transaction (49)

Debug (17)
Environment (17)
Job (8)
Memory (35)
Process (44)
Security (38)
Time (17)
WOW64 (20)

Categorising the Native API

● But wait – there's more!
● So far I have only mentioned the functions located in NtDll.dll
● There are (at least) three other mechanisms that give user

mode programs access to functionality in the Windows kernel
– NtUserXxx functions for UI functionality

– NtGdiXxx functions for graphics

– WSL system calls (lxss.sys and lxcore.sys)

Categorising the Native API

● Most of the work for the windowing subsystem takes place in
kernel (for various reasons, such as performances). The API is
loosely split into “user” (winuser.h) and “gdi” (wingdi.h) functions

● NtUserXxx functions such as NtUserCreateWindowEx provide
the core functionality for the Win32 CreateWindowEx

● NtGdiXxx functions such as NtGdiSaveDC implement SaveDC
● (The mapping is not always quite this direct)

Categorising the Native API

● While the graphic subsystem uses some new data structures
the basic mechanism is essentially the same

– The function codes are above 0x1000

– The implementation entry point is in win32k.sys

● The return codes are messier – functions return a variety of
types (such as BOOL and various handle types) so there's not
such a consistent way to detect failures

● I won't cover any more ground about this set of functions

Windows Subsystem for Linux

● Windows 10 supplied a whole new way to execute user-mode
programs – WSL

● This allows running native Linux binaries on Windows
● The interface to the O/S is via the standard Linux syscall

mechanism
● Inside the kernel there is a device driver lxss.sys that provides

the functionality of the Linux system call interface
● The implementation provides a cached shim over direct calls to

ZwXxx functions

Windows Subsystem for Linux

● The Linux syscall mechanism uses the same underlying syscall
mechanism as NtDLL - but with different register conventions

● The set of codes used is stable (unlike on Windows) but does
overlap

● When the O/S detects that the calling process is running as a
“pico process” it passes the system call on to lxss.sys

● Again, this talk is not primarily about WSL so that's all I intend to
say about it

WOW64

● The 64-bit version of Windows (“x64”) can also run 32-bit
programs (“x86”). How is this achieved?

● The 32-bit EXE and its required DLLs are loaded into the low
4GB of linear address space for the process and the selectors
(CS, DS, etc):

– Have a 32-bit address range

– Use 32-bit mode (this defines the interpretation of the instructions
and the register set available)

WOW64

● The running program makes calls exactly as usual to other
functions in the 32-bit address space

● It also makes calls to the 32-bit Native API to access O/S
resources

● On a genuine 32-bit O/S these calls would go into the kernel in
a corresponding way to the 64-bit cases discussed above

● On a 64-bit O/S the calls are intercepted by the wow64
subsystem and eventually call the 64-bit Native API

WOW64

32-bit address range

64-bit address range

Program.exe

NTDLL (32-bit)

Kernel32.dll

Wow64win.dll

NTDLL (64-bit)

Wow64.dll

Wow64cpu.dll

32-bit 'bubble'

Wow64 subsystem

WOW64

● The 32-bit Native API makes an indirect call to invoke the
system call, for example:

NtTerminateProcess:
 mov eax,0x7002c
 mov edx,Wow64SystemServiceCall
 call edx
 ret 0x4

● Register eax is the code for the function to invoke (low word)
and some mapping information (encoded into the high word)

● Wow64SystemServiceCall contains a jump into 64-bit land

WOW64

● Wow64SystemServiceCall makes a “far jump” to a 48-bit target
address consisting of a 16-bit selector (segment register) and a
32-bit offset. The new CS is a 64-bit one and so the process
can access 64-bit instructions and registers.

● A load of a different DS gives access to the full 64-bit address
range

● On return from 64-bit land another far jump returns to the 32-bit
world

● Sometime the jump to 64-bit land is referred to as “Heaven's
Gate”

WOW64

● Once in 64-bit land the arguments to the system call need to be
translated

● 32-bit values are zero-extended and 32-bit addresses are also
zero-extended (as the first 4GB of the 64-bit world maps to the
same linear address range as the 32-bit world)

● Data structures may need converting
● For example, in 32-bit programs UNICODE_STRING is 8 bytes and
OBJECT_ATTRIBUTES is 24 bytes

● In the 64-bit API they are 16 and 48 bytes respectively, so new
structures need creating

WOW64

● Next some additional data transformations are applied (see next
slide) to help provide a familiar environment to 32-bit programs

● Then the 64-bit Native API call is made
● On return reverse translations are performed:

– 64 bit values are narrowed

– Returned data structures are converted into the 32-bit format

● This is normally transparent to the user; there are occasionally
places where the join shows

WOW64

● The translation layer changes filenames and registry keys to
provide a (nearly) seamless 32-bit environment on the 64-bit
O/S. For example:

● The directory System32 in C:\Windows is mapped to SysWow64
● The registry key Software in HKEY_LOCAL_MACHINE is mapped to
Software\Wow6432Node

● The mappings are relatively complex, change a little between
versions of Windows, and have exceptions

WOW64

● The 32-bit Windows API adds some extra functions to allow 32-
bit programs to opt out of the mappings and access the
underlying 64-bit filesystem and registry

● For the file system a call to Wow64DisableWow64FsRedirection
will affect subsequent calls by the calling thread

● For the registry access the function RegDisableReflectionKey
can be called for a specified registry key

WOW64

● The Windows Native API also adds some extra functions to
allow 32-bit programs to access a limited amount of 64-bit
functionality.

For example:
● NtWow64GetNativeSystemInformation can be used to obtain

information about the hosting 64-bit system
(NtQuerySystemInformation returns information about the 32-bit
'virtual' system)

● NtWow64[Read/Write]VirtualMemory64 allows a 32-bit process to
access memory above the 4Gb limit

WOW64

● WOW64 even supports debugging of 32-bit programs (with a
very small number of restrictions)

● You can also debug a 32-bit program with a 64-bit debugger
(since it 'is' a 64-bit program)

● There is no support for debugging a 64-bit program with a 32-bit
debugger...

Documentation

● The WDK (Windows Driver Kit) does now document a
proportion of the Native API

– I believe some of this was in response to pressure from
customers and OEMs

● Many functions have been re-engineered by the open
source ReactOS project

● undocumented.ntinternals.net has some useful information
● Other web sites, especially ones on software security (!)

Tools

● There are some free tools that let you debug calls to the
Native API including:

● Strace for NT from BindView (archive.org)
● drstrace from Dr Memory www.drmemory.org
● StraceNT from intellectualheaven.com
● NtTrace from github.com/rogerorr/NtTrace
● There are also some commercial tools

Conclusion
● I need one of these, too.

	Title
	Intro
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Conclusion

