
Sane and Safe C++ Class Types

Prof. Peter Sommerlad @PeterSommerlad
Director of IFS peter.cpp@sommerlad.ch
ACCU April 2019

© Peter Sommerlad

Typical C++ problems ? 2

https://resources.whitesourcesoftware.com/blog-whitesource/is-one-language-more-secure

© Peter Sommerlad

C bugs are 100% avoidable in modern C++, except for dangling 3

100%	avoidable:	unique_ptr,	containers,	or	values
100%	avoidable:	unique_ptr,	containers,	or	values	
100%	avoidable:	values,	references,	checks	(gsl::not_null)	

partially	avoidable:	values	instead	of	pointers,	references,	views	

Modern	C++:	NO	PLAIN	POINTERS	or	C-ARRAYS

except	tightly	encapsulated

Requires	Discipline!

© Peter Sommerlad

Dimensions Safety and Sanity... 4

sane

ill-advised

high-discipline
safedangerous

easy to use

© Peter Sommerlad

• Value Types

• Empty Types

• Managing Types (different flavors)

• OO-polymorphic-hierarchy Types

• semi-sane: "potentially dangling object types" aka "pointing types"

Safe and sane user-defined class types 5

© Peter Sommerlad

Values

"When in doubt, do as the ints do!"
 -- Scott Meyers

"But may be not always..."
 -- Peter Sommerlad

© Peter Sommerlad

• Properties of types satisfying concept Regular<T>

■ EqualityComparable (==, !=)

■ DefaultConstructible T{}

■ Copyable T(T const&), T& operator=(T const&)&,

■ Movable T(T&&), T& operator=(T&&)&, is_object_v

■ Swappable swap(T&,T&)

■ Assignable t1 = t2

■ MoveConstructible T(T&&)

Value Types - Regular Types 7

C++ standard containers assume (semi-)regular
types as template arguments for elements.  
They might work with non-default constructible or
move-only types but with limited functionality.

Sometimes Ordering is also required
std::less<T> should work,  

usually by defining  
bool operator<(T,T)

If comparison works, it should be
consistent!

C++20 will make that more easy,
through the "spaceship" operator<=>

! Just Works™

If comparison works, it should be
consistent!

C++20 will make that differently, 
 through the "spaceship" operator<=>

© Peter Sommerlad

Value (class) Types are Sane and Safe! 8

sane

ill-advised

high-discipline
safedangerous

Value Types

Empty Types

Pointing Types

Managing Types

OO polymorphic Types

plain pointers managing memory

Library Experts

where are int,
double, bool?

un
iqu

e_
ptr

<T>

Expert (S
ean Parent)

weird combinations
of special members

plain pointers

std::variant<...>
 or

© Peter Sommerlad

• Safety: int, char, bool, double are Regular value types, OK

■ copying, equality is given

• BUT:

Are primitive language types "sane" and "safe"? 9

void InsaneBool() {
 using namespace std!::string_literals;
 auto const i { 41 };
 bool const throdd = i % 3;
 auto const theanswer= (throdd & (i+1)) ? "yes"s : "no"s;
 ASSERT_EQUAL("",theanswer);
}

What makes the
test run?

© Peter Sommerlad

• Safety: int, char, bool, double are Regular value types, OK

■ copying, equality is given

• BUT:

Are language types "sane" and "safe"? 10

void InterestingSetDouble(){
 std!::vector v{0.0,0.01,0.2,3.0};
 std!::set<double> s{};
 for (auto x:v){
 for (auto y:v)
 s.insert(x/y);
 }
 ASSERT_EQUAL(v.size()*v.size()-v.size()+1,s.size()); !// really?
}

What is the size?

© Peter Sommerlad

• Safety: containers are Regular value types, if their elements and other template arguments are.

■ copying, equality is given

• BUT: they still use built-in types resulting in interesting behavior

Are library types "sane" and "safe"? 11

void	printBackwards(std::ostream	&out,	std::vector<int>	const	&v){	
	 for(auto	i=v.size()	-	1;	i	>=	0;	--i)	
	 	 out	<<	v[i]	<<	"	";	
}

Can you spot
the bug!

© Peter Sommerlad

• Integral promotion (inherited from C)

■ with very interesting rules no one can remember correctly, including bool and char as integer types

■ signed - unsigned mixtures in arithmetic

■ silent wrapping vs. undefined behavior on overflow, vs. signaling of overflow (want the carry bit!)

• Automatic (numeric) conversions

■ integers <-> floating points <-> bool

■ and that complicated with types with non-explicit constructors and conversion operators

• Special values for floating point numbers

■ +Inf, -Inf, NaN (often forgotten)

Some of the Problems with primitive built-in types 12

Do not make your class
types implicitly convert!

Make comparison strict
weak order or stronger!

warnings often silenced
with arbitrary casts

© Peter Sommerlad

• Consciously wrap primitive, or built-in types into types with meaning to the application

■ fluximate(int,int,int) is hard to call correctly! fluximate(3,2,1) or fluximate(1,2,3)

■ BTW: Named Parameters are only curing a symptom (IMHO in the wrong way)!

■ C++ can do so without (significant) run-time overhead

• Standard library is guilty of using built-ins as type aliases where they do not fit nicely

■ size_t, size_type --> count elements = natural numbers including 0 - absolute value

■ ptrdiff_t, difference_type -> distance in contiguous sequences, difference between counts! - relative value

Further problems of using primitive types in C++ 13

 size_type !__n = std!::distance(!__first, !__last); !// implicit conversion to unsigned

 if (capacity() - size() !>= !__n) !// aha to avoid warning in comparison
 {
 std!::copy_backward(!__position, end(),
 this!->_M_impl._M_finish
 + difference_type(!__n)); !// cast to the real thing again
 std!::copy(!__first, !__last, !__position);
 this!->_M_impl._M_finish += difference_type(!__n); !// and cast again!
 }

warnings often silenced
with arbitrary casts

© Peter Sommerlad

Dimensions Safety and Sanity... 14

sane

ill-advised

high-discipline
safedangerous

Value Types

doubleint

std::string

unsigned

Whole Value Pattern

© Peter Sommerlad

• Parameters can be confusing, when multiple parameters of the same type occur.

• Names can help, but...

• Some time ago, an IFS assistant searched for a bug, where two arguments were in the wrong order

• Type aliases as in the standard library are no solution:

• Need: "Strong" Type Aliases - each role/usage gets its own type that is not a primitive type

Whole Value Pattern - motivation 15

check_counters(0,1);// which is which?

void check_counters(size_t waits, size_t notifies);

using WaitCounter=size_t;
using NotifyCounter=size_t;
void check_counters(WaitCounter w, NotifyCounter n);

© Peter Sommerlad

• When parameterizing or otherwise quantifying a business (domain) model there remains an overwhelming desire to express
these parameters in the most fundamental units of computation.

■ Not only is this no longer necessary (it was standard practice in languages with weak or no abstraction), it actually
interferes with smooth and proper communication between the parts of your program and with its users.

■ Because bits, strings and numbers can be used to represent almost anything, any one in isolation means almost nothing.

• Therefore:

• Construct specialized values to quantify your domain model and use these values as the arguments of their messages and as
the units of input and output.

■ Make sure these objects capture the whole quantity with all its implications beyond merely magnitude, but, keep them
independent of any particular domain.

■ Include format converters in your user-interface that can correctly and reliably construct these objects on input and print
them on output.

■ Do not expect your domain model to handle string or numeric representations of the same information.

Whole Value Pattern (Ward Cunningham - CHECKS Pattern Language) 16

Value Types

constructors, I/O

no implicit conversions

like C

functions, operators

© Peter Sommerlad

What does that mean? 17

Whenever you have a function taking
multiple arguments of the same type,  

 
it will be called wrongly!

check_counters(0,1);// which is which?

© Peter Sommerlad

• Documents which counter has which role at call site (note: no implicit constructors!)

• Overloading is possible to allow more flexibility (but not necessarily recommended)

• Define a struct/class wrapping the simple type (with required operators):

Whole Value Pattern in the most simple way: just define a struct type 18

check_counters(Wait{0},Notify{2});

void check_counters(Wait w, Notify n);

struct Wait {
 size_t count{};
}; // minimal version

void operator++(Wait &w){ // retrofit increment for use case
 w.count++;
}

Aggregate Initialization: structtype{members}

The simplest strong type version

© Peter Sommerlad

• Common attempt: Extract Base Class --> Not that simple...

Well, we have two counters.. Avoiding Duplication 19

struct CounterBase{
 size_t count;
 void operator++(){ // what to return?
 ++count;
 }
 bool operator==(CounterBase const &other)const{
 return count==other.count;
 }
};
struct WaitB:CounterBase{};
struct NotifiesB:CounterBase{}; void CompareWaitsWithNotifies() {

 WaitB waits{5};
 ASSERT_EQUAL(NotifiesB{5},waits);
}

No	more	 
separation

delete	via		
base	pointer

© Peter Sommerlad

• Extract Templated Base Class:

CRTP: Curiously Recurring Template Parameter Pattern 20

template <typename TAG>
struct Counter{
 size_t count{};
 bool operator==(Counter const &other) const {
 return count == other.count;
 }
 Counter& operator++(){
 ++count;
 return *this;
 }
};
struct Wait:Counter<Wait> {
};
struct Notify:Counter<Notify> {
};

void CompareWaitsWithNotifiesCRTP() {
 Wait waits{5};
 ASSERT_EQUAL(Notify{5},waits);
}

../src/Test.cpp:9:7: note: no known
conversion for argument 1 from 'const
Wait' to 'const Counter<Notify>&'

Does not compile!

delete	via	 
base	pointer

© Peter Sommerlad

• Yes, whenever there is a natural default or neutral value in your type's domain

■ int{} == 0

■ Be aware that the neutral value can depend on the major operation: int{} is not good for multiplication

• May be, when initialization can be conditional and you need to define a variable first

■ consider learning how to use ?: operator or an in-place called lambda, requires assignability otherwise

• No, when there is not natural default value

■ PokerCard (2-10, J, Q, K, Ace of ♤♧♡♢) What should be the default? - no default constructor!

• No, when the type's invariant requires a reasonable initialization

■ e.g., class CryptographicKey --> to be useful needs real key data

Should I make a (whole) value type default-constructible? T()=default; 21

© Peter Sommerlad

• <chrono> is a good example to follow:

■ time_point and duration: tp1 - tp2 -> duration, tp + d -> time_point, tp+tp -> nonsense, d1 + d2 -> duration

• position vs. direction

■ Vec3d/Vec3 and similar are problematic, because identical representation is used for both roles

■ location and displacement

• generic units must make this distinction

■ easily forgotten in dimensional analysis

Units beware: relative vs. absolute - often misunderstood or easily misapplied 22

 size_type !__n = std!::distance(!__first, !__last); !// implicit conversion to unsigned

 if (capacity() - size() !>= !__n) !// aha to avoid warning in comparison
 {
 std!::copy_backward(!__position, end(),
 this!->_M_impl._M_finish
 + difference_type(!__n)); !// cast to the real thing again
 std!::copy(!__first, !__last, !__position);
 this!->_M_impl._M_finish += difference_type(!__n); !// and cast again!

relative

relative wrong result type!

"affine spaces"

© Peter Sommerlad

• see video presentations and libraries by

• Björn Fahller (ACCU2018)

• Jonathan Boccara

• Jonathan Müller

• Me: PSST - Peter's simple strong typing

■ uses aggregates and CRTP mix-ins (work in progress)

• IMHO, "Strong Typing" frameworks/infrastructure are often too generic.

• Aggregate types are OK -> Rule of Zero, No automatic conversion, unless specified!

■ If there is no invariant to be ensured, ie., all member-type values are valid

■ C++17 allows operations to be CRTP-mixed-in without space overhead, if first base contains actual value

More generic "Strong" Types 23

struct WaitC:strong<unsigned,WaitC>
 ,ops<WaitC,Eq,Inc,Out>{};
static_assert(sizeof(unsigned)!==sizeof(WaitC));

void testWaitCounter(){
 WaitC c{};
 WaitC const one{1};
 ASSERT_EQUAL(WaitC{0},c);
 ASSERT_EQUAL(one,!++c);
 ASSERT_EQUAL(one,c!++);
 ASSERT_EQUAL(2,c.get());
}

EBO

CRTP

delete	via	 
base	pointer

Thanks Loïc Joly

© Peter Sommerlad

Empty Classes - useful?

"Oh you don't get something for nothing"
 -- Rush

"Something for Nothting" -- Kevlin Henney,
1999

With a C++ Empty Class  
you get something for nothing!

© Peter Sommerlad

Dimensions Safety and Sanity... 25

sane

ill-advised

high-discipline
safedangerous

Value Types

Empty Types

Pointing Types

Managing Types

OO polymorphic Types

weird combinations
of special members

CRTP Mix-ins

Tags & Traits
EBO

© Peter Sommerlad

• Iterator Tags

■ input_iterator_tag,	
output_iterator_tag,	
forward_iterator_tag,	
bidirectional_iterator_tag,	
random_access_iterator_tag	

• in place marker: in_place_t

■ std::in_place global value

Tag Types: Overload selection - sometimes with universally usable constants 26

template<	class	BDIter	>	
void	alg(BDIter,	BDIter,	std::bidirectional_iterator_tag)	
{	
				std::cout	<<	"alg()	called	for	bidirectional	iterator\n";	
}	
template	<class	RAIter>	
void	alg(RAIter,	RAIter,	std::random_access_iterator_tag)	
{	
				std::cout	<<	"alg()	called	for	random-access	iterator\n";	
}	
template<	class	Iter	>	
void	alg(Iter	first,	Iter	last)	
{	
				alg(first,	last,	
								typename	std::iterator_traits<Iter>::iterator_category());	
}	
int	main()	
{	
				std::vector<int>	v;	
				alg(v.begin(),	v.end());	
		
				std::list<int>	l;	
				alg(l.begin(),	l.end());	
		
//				std::istreambuf_iterator<char>	i1(std::cin),	i2;	
//				alg(i1,	i2);	//	compile	error:	no	matching	function	for	call	
}

template<	class...	Args	>		
constexpr	explicit		
optional(std::in_place_t,	Args&&...	args);	

//	calls	std::string(size_type	count,	CharT	ch)	constructor	
std::optional<std::string>	o5(std::in_place,	3,	'A');	 ■ nullptr_t and nullptr are similar but built-in

http://en.cppreference.com/w/cpp/io/cout
http://en.cppreference.com/w/cpp/io/cout
http://en.cppreference.com/w/cpp/iterator/iterator_traits
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/list
http://en.cppreference.com/w/cpp/utility/in_place
http://en.cppreference.com/w/cpp/utility/optional
http://en.cppreference.com/w/cpp/string/basic_string
http://en.cppreference.com/w/cpp/utility/in_place

© Peter Sommerlad

• represent values as types

■ integral_constant<T,T v>

■ true_type, false_type

■ ratio<5,3>

■ integer_sequence<T, T...vs>

• What for?

• SFINAE

■ template specialization selection

■ overload selection

• Periods/scale in duration (ratio)

• tuple element access (integer_sequence)

Traits - compile-time-meta-programming <type_traits> <ratio>- values as types 27

template<class T, T v>
struct integral_constant {
 using value_type=T;
 static constexpr value_type value = v;
 using type=integral_constant; // injected-class-name
 constexpr operator value_type() const noexcept {
 return value; }
 constexpr value_type operator()() const noexcept {
 return value; }
};
using true_type=integral_constant<bool,true>;

static_assert(integral_constant<bool,true>::value,"");
static_assert(true_type::value,"member access");
static_assert(true_type{},"auto-conversion");
static_assert(true_type{}(),"call operator");
static_assert(std::is_same_v<true_type, true_type::type>,
 "type meta");

© Peter Sommerlad

• determine type properties ..._v

■ constexpr bool variable template

• often used in generic code

■ static_assert to check argument properties

■ SFINAE with enable_if

■ determining noexcept status

■ if constexpr (is_nothrow_movable<T>)

■ when type is not specified (auto variables)
used with decltype(var)

• classic implementation used inheritance
from either true_type and false_type

■ C++17: variable templates for _v versions

Traits - compile-time-meta-programming <type_traits> - type properties 28

void demonstrate_type_queries(){
 using namespace std;
 ASSERT(is_integral_v<int>);
 ASSERT(not is_integral_v<double>);
 ASSERT(is_reference_v<int&>);
 ASSERT(not is_object_v<
 decltype(demonstrate_type_queries)>);
 ASSERT(is_object_v<int>);
 ASSERT(not is_object_v<int&>);
}

template <typename T>
struct Sack{
 static_assert(std::is_object_v<T> && !std::is_pointer_v<T>,
 "you can not use Sack with references or pointers");
};
Sack<int> sack;
//Sack<int*> ptrsack;// does not compile
//Sack<int&> refsack;// does not compile

© Peter Sommerlad

• compute new types ..._t

• get to the template argument's guts

■ remove_xxxx_t, decay_t

• adapt integral types

■ make_unsigned_t, make_signed_t

• build up needed types in generic code

■ add_xxx_t

• classic versions (withou _t) exist, but you need to use typename and ::type

■ using	S=typename	make_signed<U>::type;

Traits - compile-time-meta-programming <type_traits> - type computations 29

 using X=int const volatile[5];
 using X1=remove_all_extents_t<X>;
 ASSERT((is_same_v<X1,int const volatile>));
 using X2=remove_cv_t<X1>;
 ASSERT((is_same_v<X2,int>));
 using RCV=int const volatile &; // cv ref to plain
 ASSERT((is_same_v<int,decay_t<RCV>>));
 using FR=void(&)(int); // func to funcptr
 ASSERT((is_same_v<void(*)(int),decay_t<FR>>));
 using AR=int const [42]; // array to ptr
 ASSERT((is_same_v<int const *,decay_t<AR>>));

 using I=decltype(42L);
 using U=make_unsigned_t<I>;

 using Tref=add_lvalue_reference_t<T>;
 using Tcref=add_const_t<Tref>;
 using Tptr=add_pointer_t<T>;

© Peter Sommerlad

• a class without members has at least size 1

• but not if it is used as a base class

■ unless the derived type starts with a member of the
same type

• Often used to optimize away size

■ see uniqe_ptr with default_delete or with my
suggested default_free class instead of using a
function pointer for free

■ also good for (CRTP-)Mix In classes, so they do
not enlarge the object unnecessarily

• C++20 adds that possibility even for "empty"
members

■ [[no_unique_address]]	attribute

Empty class speciality: EBO Empty Baseclass Optimization 30

struct empty{};
static_assert(sizeof(empty)>0,
 "there must be something");

struct plain{
int x;

};
static_assert(sizeof(plain)==sizeof(int),
 "no additional overhead");

struct combined : plain, private empty{
};
static_assert(sizeof(combined)==sizeof(plain),
 "empty base class should not add size");

© Peter Sommerlad

• a class without members has at least size 1

• but not if it is used as a base class

■ unless the derived type starts with a member of
the same type

■ each subobject of the same type must then have a
unique address

• For EBO to work nicely, have the first base hold
the member(s) and further bases refer to it

• In addition use CRTP to ensure that each type
differs

When EBO does not work 31

struct empty{};
static_assert(sizeof(empty)>0
 && sizeof(empty)<sizeof(int),
 "there should be something");

struct ebo : empty{
empty e;
int i; // aligned to int

};
static_assert(sizeof(ebo)==2*sizeof(int),
 "ebo must not work");

struct noebo: empty{
ebo e;
int i;

};
static_assert(sizeof(noebo)==4*sizeof(int),
 "subojects must have unique addresses");

© Peter Sommerlad

• a class without members has at least size 1

• but not if it is used as a base class

■ unless the derived type starts with a member of the same type

■ each subobject of the same type must then have a unique address

• For EBO to work nicely, have the first base hold the member(s) and further bases refer to it

• In addition use CRTP to ensure that each type differs

A glimpse of PSST (Peter's Simple Strong Typing) - EBO and CRTP-Mix-ins 32

template <typename V, typename TAG>
struct strong {
 using value_type=V;
 V val;
};

template <typename U>
struct Eq{
 friend constexpr bool
 operator!==(U const &l, U const& r) noexcept {
 auto const &[vl]=l;
 auto const &[vr]=r;
 return {vl !== vr};
 }
 friend constexpr bool
 operator!!=(U const &l, U const& r) noexcept {
 return !(l!==r);
 }
};
template <typename U>
struct Inc{
 friend constexpr auto operator!++(U &rv) noexcept {
 auto &[val]=rv;
 !++val;
 return rv;
 }

 friend constexpr auto operator!++(U &rv,int) noexcept {
 auto res=rv;
 !++rv;
 return res;
 }
};
template <typename U>
struct Out {
 friend std!::ostream&
 operator!<<(std!::ostream &l, U const &r) {
 auto const &[v]=r;
 return l !<< v;
 }
};
template <typename U, template <typename !!...> class !!...BS>
struct ops:BS<U>!!...{};

struct WaitC:strong<unsigned,WaitC>
 ,ops<WaitC,Eq,Inc,Out>{};
static_assert(sizeof(unsigned)!==sizeof(WaitC));
void testWaitCounter(){
 WaitC c{};
 WaitC const one{1};
 ASSERT_EQUAL(WaitC{0},c);
 ASSERT_EQUAL(one,!++c);
 ASSERT_EQUAL(one,c!++);
 ASSERT_EQUAL(3,c.val);
}

aggregate

structured
bindings

CRTP and
EBO Mixin

no overhead

delete	via	 
base	pointer

© Peter Sommerlad

• My ACCU 2017 Lightning talk

EBO in action: unique_ptr for C-allocated pointers 33

struct free_deleter{
template <typename T>
void operator()(T *p) const {

std::free(const_cast<std::remove_const_t<T>*>(p));
}

};
template <typename T>
using unique_C_ptr=std::unique_ptr<T,free_deleter>;

static_assert(sizeof(char *)==sizeof(unique_C_ptr<char>),"");
// compiles!

inline std::string plain_demangle(char const *name){
if (!name) return "unknown";
unique_C_ptr<char const>

 toBeFreed {abi::__cxa_demangle(name,0,0,0)};
std::string result(toBeFreed?toBeFreed.get():name);
return result;

}

inline std::string plain_demangle(char const *name){
if (!name) return "unknown";
std::unique_ptr<char const, decltype(&std::free)>
toBeFreed { abi::__cxa_demangle(name,0,0,0), &std::free};
std::string result(toBeFreed?toBeFreed:name);
return result;

}

inline std::string plain_demangle(char const *name){
if (!name) return "unknown";
char const *toBeFreed = abi::__cxa_demangle(name,0,0,0);
std::string result(toBeFreed?toBeFreed:name);
::free(const_cast<char*>(toBeFreed));
return result;

}

© Peter Sommerlad

• "invalid" inheritance, sometimes violating
Liskov Substitution Principle

■ but OK, if only extending or adapting functionality
and never sliced to base class

■ inherits constructors from base - C++11 made
those adapters much more practical

• requires discipline in use, should never
implicitly "downgraded" (upcasted)

■ slicing harmful then, beware of use in code taking
the base class type as parameter

■ If you use this to strengthen the invariant, e.g., a
SortedVector inheriting from std::vector, very high
discipline required, better wrap then!

"Empty" Adapters - possible, but requires discipline! 34

template<typename T, typename CMP=std!::less<T!>>
class indexableSet : public std!::set<T,CMP>{
 using SetType=std!::set<T,CMP>;
 using size_type=int;
public:
 using std!::set<T,CMP>!::set;

 T const & operator[](size_type index) const {
 return at(index);
 }
 T const & at(size_type index) const {
 if (index < 0) index += SetType!::size();
 if (index < 0 !|| index !>= SetType!::size())
 throw std!::out_of_range{"indexableSet:"};
 return *std!::next(this!->begin(),index);
 }
 T const & front() const {
 return at(0);
 }
 T const & back() const {
 return at(-1);
 }
};

delete	via	 
base	pointer

© Peter Sommerlad

"I just wanted to point to something"
Jonathan Müller (@foonathan), ACCU 2018

"Potentially Dangling Object Types or
Potentially Dangling Types describe objects
that depend on the lifetime of other referred
objects. If a referred object's lifetime ends
before the referring object, one risks
undefined behavior." 
(paraphrased from WG21-SG12/WG23 workshop in Kona 2019)

© Peter Sommerlad

Dimensions Safety and Sanity... and "pointing" types 36

sane

ill-advised

high-discipline
safedangerous

Pointing Types

Managing Types

OO polymorphic Types

Use only down the call chainmight
 need

nullable

dangling

smart

can
be

© Peter Sommerlad

• C++ allows to define types that refer to other objects

• This means life-/using-time of the referring object needs not to extend the lifetime of the referred

• While often Regular, those types are not Value Types

■ they do not exist "out of time and space"

• Iterators

• Pointers

• Reference Wrapper

• Views and Spans (std::string_view!)

"Pointing" Class Types 37

Dangling	
References

Invalid/Null	
Pointers

Invalidated	
Iterators

Past-the-end	
Iterators

© Peter Sommerlad

• Iterators satisfy concept Regular<T>, except for the need of DefaultConstructible

■ istream(buf)_iterators have a special "eof" value, that is default constructed

• Most iterators refer to other objects in containers

■ relationship to the "pointed to" object as well as the container

■ changing the container can invalidate an iterator, but not always

■ dual role: reference to an object (e.g., find() result) and iteration

• special iterator values (non-dereferencable):

■ past the end-of-sequence iterator (end()) or before begin-of-sequence (forward_list::before_begin())

■ "singular" iterators (nullptr)

■ invalidated iterators due to changes in the container

■ Do not rely on iterator staying valid if a container's content can change

Iterators - Regular but not Values - they are potentially dangling types 38

Usually invalid iterators
can not be detected: UB

Invalid(ated)	
Iterators

© Peter Sommerlad

• role: re-assignable lvalue (const) reference

■ is not "nullable"! But can be dangling!

• can be used for class members to keep class "regular"

■ T& as a member disables assignment

• can be used in container to refer to elements  
in other container

■ use a container of (indices) into other container

• automatically converts to reference

■ or access via get()

• wraps function references

■ overloads operator()

• Factory functions: std::ref(T&), std::cref(T const&)

Special "pointer": std::reference_wrapper (non-null, non-owning, assignable, callable) 39

template	<class	T>	
class	reference_wrapper	{	
public:	
		//	types	
		typedef	T	type;	
		
		//	construct/copy/destroy	
		reference_wrapper(T&	ref)	noexcept	:	_ptr(std::addressof(ref))	{}	
		reference_wrapper(T&&)	=	delete;	
		reference_wrapper(const	reference_wrapper&)	noexcept	=	default;	
		
		//	assignment	
		reference_wrapper&	operator=(const	reference_wrapper&	x)		
				noexcept	=	default;	
		
		//	access	
		operator	T&	()	const	noexcept	{	return	*_ptr;	}	
		T&	get()	const	noexcept	{	return	*_ptr;	}	
		
		template<	class...	ArgTypes	>	
		std::invoke_result_t<T&,	ArgTypes...>	
				operator()	(ArgTypes&&...	args)	const	{	
				return	std::invoke(get(),	std::forward<ArgTypes>(args)...);	
		}	
		
private:	
		T*	_ptr;	
};

http://en.cppreference.com/w/cpp/memory/addressof
http://en.cppreference.com/w/cpp/utility/functional/invoke
http://en.cppreference.com/w/cpp/utility/forward

© Peter Sommerlad

• observer_ptr<T> better: jss::object_ptr<T>

■ "borrows" object, does not own pointee

■ library fundamentals TS v2 (not std)

■ object_ptr - a safer replacement for raw pointers

• unique_ptr<T> - can not dangle!

■ owns pointee, cleans afterwards

• shared_ptr<T>, weak_ptr<T> - can not dangle!

■ shared ownership

■ overhead for atomic counting

■ may "pseudo-leak", even when object is deleted

Smart Pointers - are not necessarily "potentially dangling types" 40

template <typename T>
using observer_ptr=T *;

My current recommendation:
■ prefer unique_ptr<T> for heap-allocated

objects
■ for sharing keep unique_ptrs in a

managing container and use references
or reference_wrapper (some would say
to use T* pointers)

■ absolutely NO plain pointers with
arithmetic (as in C)

https://www.justsoftwaresolutions.co.uk/cplusplus/object_ptr.html

© Peter Sommerlad

• References to contiguous sequences (e.g., from std::vector, std::array, std::string)

• Naming is contentious

■ does a view allow changing the elements? --> span does

• today: std::string_view

■ std::string, std::array<char, N>, std::vector<char>

■ caveat: almost all of std::string bloated interface, except for mutation of characters

■ pure read-only, idea to replace (char const *) function parameters, but existing overloads :-(

• C++20 (and core guidelines support library): span<T, int Extent>

■ contention: static (compile-time) vs. dynamic extent (run-time)

■ allows mutation of elements

■ replacement for (T* , size_t len) function interfaces (C)

Views and Spans - Range-References for contiguous memory 41

Dangling	
References

High-performance computing
people define span<> to

support multi-dimensional
array views with mutable

elements (P0546)

© Peter Sommerlad

• As a parameter type for functions that do not copy, save or change a string

■ If read-only string processing is required

• enables calling with C-style (char array) strings and std::string

■ safer than (char const *)

■ better performance than (std::string const &)

■ beware of generic overloads when replacing existing APIs

■ might need overloads for all available character types (string_view, wstring_view) - no CharT deduction possible

■ I tried for the standard and failed!

• In practice much less useful than I originally thought

■ std::string pass-by-value often better when serious processing is required

• Do never return std::string_view!

Where should I use string_view? - also a potentially dangling type 42

Dangling	
string_view

© Peter Sommerlad

• Always define pointer variables const

■ absolutely no pointer arithmetic!!!!!

■ especially for pointer parameters

• Sidestep plain C-style pointers completely in user code

• Absolutely NO C-style arrays, because they are pointers in disguise

■ they degenerate to pointers and require pointer arithmetic!

■ even built-in operator[] is pointer arithmetic!

C-style pointers: T*, T const *, T[] - also a potentially dangling types 43

int demo(int *const pi){
//*pi++;
(*pi)++;
return *pi;

}

void dont_demo(int *const pi){
1[pi]=42;
pi[0]=41;

}
void testDont(){

std::array<int,2> a{};
dont_demo(a.data());
std::initializer_list<int> exp{41,42};
ASSERT_EQUAL_RANGES(begin(exp),end(exp),begin(a),end(a));

}

No	Pointer 
Arithmetic

© Peter Sommerlad

• All "pointing" Types live in the "dangerous" half

• High programmer discipline required

• Unfortunately code compiles

■ often for backward compatibility

■ rules for iterator invalidation are subtle and rely on knowing implementation details

■ changing a container breaks code

■ Do not rely on iterator staying valid if a container's content can change

• Ideas exist for static analysis (-> Herb Sutter)

■ it is safe to pass them down the call chain

■ it is often unsafe to use them if you do not control the lifetime of the pointee

What to do about it? 44

Invalidated	
Iterators

© Peter Sommerlad

• problem with reverse adapter for range for (CPPCon 2018 ⚡ Talk)

■ https://github.com/PeterSommerlad/ReverseAdapter

■ init-statements with additional variable is just too ugly, IMHO

• Just an idea (may be worth a ISO C++ paper?)

■ provide deleted overloads for begin(), end() etc for rvalue references.

■ might break already wrong code

■ members returning elements by reference should return by value for temporaries

Referring stuff obtained from temporaries is dangerous 45

Dangling	
References

Invalidated	
Iterators

void testTemporaryArrayAccess(){
 ASSERT_EQUAL(2,(std!::array{1,2,3}).at(1));
 int &i = std!::array{2,3}[0];
 i=1; !// UB
}
void testBeginTemporaryShouldNotCompile(){
 auto it = std!::array{1,2,3}.begin();
 ASSERT_EQUAL(1,*it);
}

constexpr iterator
begin() & noexcept
{ return iterator(data()); }
constexpr const_iterator
begin() const & noexcept
{ return const_iterator(data()); }
constexpr iterator
begin() !&& noexcept = delete;

constexpr reference
operator[](size_type !__n) & noexcept
{ return _AT_Type!::_S_ref(_M_elems, !__n); }
constexpr const_reference
operator[](size_type !__n) const & noexcept
{ return _AT_Type!::_S_ref(_M_elems, !__n); }
constexpr value_type
operator[](size_type !__n) !&& noexcept
{ return std!::move(_M_elems[!__n]); }

https://github.com/PeterSommerlad/ReverseAdapter

© Peter Sommerlad

Managing stuff

"monomorphic object types"
 -- Richard Corden, PRQA

"SBRM - scope-based resource management"
 -- a better name for RAII

© Peter Sommerlad

Dimensions Safety and Sanity... 47

sane

ill-advised

high-discipline
safedangerous

Pointing Types

Managing Types

OO polymorphic Types

weird combinations
of special members

RAII & move only

Use only down the call chain

might need

© Peter Sommerlad

• Common to Managing types

■ define "interesting" destructor: ~manager() { !/* clean up stuff !*/}

• 0: locally usable SBRM (e.g., std!::lock_guard)

■ Rule of DesDeMovA: manager& operator=(manager !&&) noexcept=delete;

■ No movability implies also no copyability

■ C++17: can still return from factory if needed

• 1: unique - move-only type (e.g., std!::unique_ptr)

■ requires a sane moved-from state for transfer of ownership, copy operations implicitly deleted

• N: value type (e.g., std!::vector)

■ requires duplicatable resource (aka memory)

Managing types complexity staging 48

Expert-level 
Experience!

#

© Peter Sommerlad

• Instances of monomorphic object types have significant
identity (they are not values)

• Copying and assignment is prohibited

■ Factories can still return by value from a temporary (C++17!)

■ Apply "Rule of DesDeMovA"

• Passed by Reference (or Pointer-like type)

■ "long" lifetime, allocated high-up the call hierarchy or on heap

• No virtual members, no inheritance (except for mix-ins)

• Roles

■ manage other objects, i.e., contain a container of something:
vector<unique_ptr<T>> as member

■ wrap hardware or stateful I/O

■ encapsulate other stateful behavior, e.g., context of State
design pattern, Builder, Context Object

Manager Design Pattern: Monomorphic Object Types (SBRM) 49

struct	ScreenItems{	
	 void	add(widget	w){	
	 	 content.push_back(std::move(w));	
	 }	
	 void	draw_all(screen	&out){	
	 	 for(auto	&drawable:content){	
	 	 	 drawable->draw(out);	
	 	 }	
	 }	
private:	
	 ScreenItems&	operator=(ScreenItems	&&)	noexcept		
					=delete;	//	all	others	deleted,	except	default	
	 widgets	content{};	
};	
static_assert(!std::is_copy_constructible_v<ScreenItems>,"no copying");
static_assert(!std::is_move_constructible_v<ScreenItems>,"no moving");

ScreenItems	makeScreenItems(){	
	 return	ScreenItems	{};	//	must	be	a	temporary	
}	

© Peter Sommerlad

• OK, make_unique() (and make_shared) for heap allocation.

• What else?

• Use std-library RAII classes, e.g., string, vector, fstream, ostringstream, thread, unique_lock

• Use boost-library RAII classes, if needed, e.g., boost.asio’s tcp::iostream

•Don’t write your own generic RAII!

• wait for unique_resource<T,D>: http://wg21.link/p0052

■ You can help with me https://github.com/PeterSommerlad/scope17

Use existing RAII (Resource Acquisition Is Initialization) for SBRM 50

http://wg21.link/p0052
https://github.com/PeterSommerlad/scope17

© Peter Sommerlad

Dynamic Polymorphism

"inheritance is the base class of Evil"
 -- Sean Parent, Adobe

© Peter Sommerlad

Do you Remember: What Special Member Functions Do You Get? 52

Howard Hinnant's Table: https://accu.org/content/conf2014/Howard_Hinnant_Accu_2014.pdf
Note: Getting the defaulted special members denoted with a (!) is a bug in the standard.

default
constructor destructor copy

constructor
copy

assignment
move

constructor
move

assignment

nothing defaulted defaulted defaulted defaulted defaulted defaulted

any
constructor not declared defaulted defaulted defaulted defaulted defaulted

default
constructor user declared defaulted defaulted defaulted defaulted defaulted

destructor defaulted user declared defaulted (!) defaulted (!) not declared not declared

copy
constructor not declared defaulted user declared defaulted (!) not declared not declared

copy
assignment defaulted defaulted defaulted (!) user declared not declared not declared

move
constructor not declared defaulted deleted deleted user declared not declared

move
assignment defaulted defaulted deleted deleted not declared user declared

W
ha

t y
ou

 w
rit

e

What you get

https://accu.org/content/conf2014/Howard_Hinnant_Accu_2014.pdf

© Peter Sommerlad

Making a OO base class T non-copyable: T& operator=(T&&) noexcept=delete; 53

Howard Hinnant's Table: https://accu.org/content/conf2014/Howard_Hinnant_Accu_2014.pdf
Note: Getting the defaulted special members denoted with a (!) is a bug in the standard.

default
constructor destructor copy

constructor
copy

assignment
move

constructor
move

assignment

nothing defaulted defaulted defaulted defaulted defaulted defaulted

any
constructor not declared defaulted defaulted defaulted defaulted defaulted

default
constructor user declared defaulted defaulted defaulted defaulted defaulted

destructor defaulted user declared defaulted (!) defaulted (!) not declared not declared

copy
constructor not declared defaulted user declared defaulted (!) not declared not declared

copy
assignment defaulted defaulted defaulted (!) user declared not declared not declared

move
constructor not declared defaulted deleted deleted user declared not declared

move
assignment defaulted defaulted deleted deleted not declared user declared

W
ha

t y
ou

 w
rit

e

What you get

https://accu.org/content/conf2014/Howard_Hinnant_Accu_2014.pdf

© Peter Sommerlad

Rule of DesDeMovA: T& operator=(T!&&) noexcept=delete; 54

Howard Hinnant's Table: https://accu.org/content/conf2014/Howard_Hinnant_Accu_2014.pdf
Note: Getting the defaulted special members denoted with a (!) is a bug in the standard.

default
constructor destructor copy

constructor
copy

assignment
move

constructor
move

assignment

nothing defaulted defaulted defaulted defaulted defaulted defaulted

any
constructor not declared defaulted defaulted defaulted defaulted defaulted

default
constructor user declared defaulted defaulted defaulted defaulted defaulted

destructor defaulted user declared defaulted (!) defaulted (!) not declared not declared

copy
constructor not declared defaulted user declared defaulted (!) not declared not declared

copy
assignment defaulted defaulted defaulted (!) user declared not declared not declared

move
constructor not declared defaulted deleted deleted user declared not declared

move
assignment defaulted defaulted deleted deleted not declared user declared

W
ha

t y
ou

 w
rit

e

What you get
DesDeMovA

Rule of if
Destructor defined

Deleted
Move Assigment

#

https://accu.org/content/conf2014/Howard_Hinnant_Accu_2014.pdf

© Peter Sommerlad

• Base in class in hierarchy defines abstraction

■ usually abstract (pure virtual destructor)

• Instances of polymorphic object types have important identity

• Copying and assignment is prohibited (implicitly or explicitly) - non-Regular types

• Passed by Reference (or Pointer-like type)

■ "long" lifetime, allocated up in the call hierarchy (best) or on the heap (doable)

• Virtual member functions and (pure) virtual destructor in base class

■ subclasses should not add additional virtual members, define pure virtual destructor of base

■ Most other attempts with multiple layers of inheritance or even multiple inheritance are often futile

Polymorphic Object Types -- think thrice about using virtual! 55

good OO design?

© Peter Sommerlad

Polymorphic Hierarchy example: Composite Design Pattern 56

struct	drawable	{	
	 virtual	~drawable()=0;	
	 virtual	void	draw(screen&	on)=0;	
protected:	
	 drawable&	
operator=(drawable&&)noexcept=delete;	
		//	prohibit	move	and	copy	
};	
drawable::~drawable()=default;

struct	rect:drawable{	
	 rect(Width	w,	Height	h):	
	 	 width{w},height{h}{}	
	 void	draw(screen&	on){	
	 	 on	<<	"rectangle:"		
							<<	width	<<	","	<<	height;	
	 }	
	 Width	width;	
	 Height	height;	
};

struct	circle:drawable{	
	 circle(Radius	r):	
	 	 radius{r}{}	
	 void	draw(screen&	on){	
	 	 on	<<	"circle:"	<<	radius;	
	 }	
	 Radius	radius;	
};

struct	composite:drawable{	
	 composite()=default;	
	 void	add(widget	w){	
	 	 content.push_back(std::move(w));	
	 }	
	 void	draw(screen	&on){	
	 	 on	<<	"{	";	
	 	 for(auto	&w:content){	
	 	 	 w->draw(on);	
	 	 }	
	 	 on	<<	"	}";	
	 }	
private:	
	 widgets	content{};	
};

How are widget and widgets
usefully defined?

DesDeMovA #

© Peter Sommerlad

Polymorphic Hierarchy: Composites with references 57

struct	drawable	{	
	 virtual	~drawable()=0;	
	 virtual	void	draw(screen&	on)=0;	
protected:	
	 drawable&	
operator=(drawable&&)noexcept=delete;	
		//	prohibit	move	and	copy	
};	
drawable::~drawable()=default;

struct	rect:drawable{	
	 rect(Width	w,	Height	h):	
	 	 width{w},height{h}{}	
	 void	draw(screen&	on){	
	 	 on	<<	"rectangle:"		
							<<	width	<<	","	<<	height;	
	 }	
	 Width	width;	
	 Height	height;	
};

struct	circle:drawable{	
	 circle(Radius	r):	
	 	 radius{r}{}	
	 void	draw(screen&	on){	
	 	 on	<<	"circle:"	<<	radius;	
	 }	
	 Radius	radius;	
};

struct	refcomposite:drawable{	
	 refcomposite()=default;	
	 void	add(widget	w){	
	 	 content.push_back(w);	
	 }	
	 void	draw(screen	&on){	
	 	 on	<<	"{	";	
	 	 for(drawable&	w:content){	
	 	 	 w.draw(on);	
	 	 }	
	 	 on	<<	"	}";	
	 }	
private:	
	 widgets	content{};	
};

How are widget and widgets
usefully defined?

DesDeMovA #

© Peter Sommerlad

• An observation:

■ std::function<ret(params)>	var; // can store any kind of function matching signature

■ How?

• std::any	some; can store any value type

■ can only access what was stored

■ and can be empty

■ often better std::variant	when  
when set of possible types is known

■ a variant can not be empty

■ except under exceptional condition

Type-erasure Object/Value dualities 58

void	demoAny(){	
	 std::any	some;	
	 ASSERT(!some.has_value());	
	 some	=	42;	
	 ASSERT(some.has_value());	
	 ASSERT_EQUAL(42,std::any_cast<int>(some));	
	 some	=	3.14;	
	 ASSERT_THROWS(std::any_cast<int>(some),std::bad_any_cast);	
	 some	=	"anything";	
	 ASSERT_EQUAL("anything",std::any_cast<char	const*>(some));	
}

© Peter Sommerlad

• Sean Parent: dynamic Polymorphism without inheritance

■ make polymorphic stuff regular and extendible without inheritance

■ requires also a mechanism called "type erasure"

■ combines inheritance and templates internally

■ can store arbitrary values, like any

■ and provide interface to them

• How?

Type-erasure-based Object/Value dualities 59

void	testComposite(){	
	 std::ostringstream	out{};	
	 composite	c{};	
	 c.add(circle{Radius{42}});	
	 c.add(rect{Width{4},Height{2}});	
	 c.add(circle{Radius{4}});	
	 c.add(42);	
	 c.add("a	c	string");	
	 widget	w{c};	
	 draw(w,out);	
	 ASSERT_EQUAL("{	circle:42,rectangle:"				
		"4,2,circle:4,an_int:42,"	 
		"a	c	string,	}",out.str());	
}	

concept_t

model<T>
T

widget
self_

© Peter Sommerlad

• Sean Parent: dynamic Polymorphism without inheritance

■ make polymorphic stuff regular and extendible without inheritance

■ requires also a mechanism called "type erasure"

■ combines inheritance and templates internally

■ can store arbitrary values, like any

■ and provide interface to them

• How?

Sean Parent's magical polymorphic Regular objects 60

struct	widget	{	
		template<typename	T>	
		widget(T	x)		
		:self_(std::make_unique<model<T>>(std::move(x)))		
		{}	

		widget(widget	const	&	x)		
		:	self_(x.self_->copy_())	{}	
		widget(widget&&)	noexcept	=	default;	

		widget&	operator=(widget	const	&	x)	{	
				return	*this	=	widget(x);	
		}	
		widget&	operator=(widget&&)	noexcept	=	default;	

		friend	void	draw(widget	const	&	x,	screen&	out)		
		{	
				x.self_->draw_(out);	
		}	

private:	

		struct	concept_t	{	//	polymorphic	base	
				virtual	~concept_t()	=	default;	
				virtual	std::unique_ptr<concept_t>		
						copy_()	const	=	0;	
				virtual	void	draw_(screen&)	const	=	0;	
		};	
		template<typename	T>	
		struct	model:	concept_t	{	
				model(T	x)	:	
								data_(std::move(x))	{	
				}	
				std::unique_ptr<concept_t>	copy_()	const	{	
						return	std::make_unique<model>(*this);		
				}	
				void	draw_(screen&	out)	const	{	
						draw(data_,	out);			
				}	

				T	data_;	
	 };	
	 std::unique_ptr<concept_t>	self_;	
};	
using	widgets=std::vector<widget>;	

© Peter Sommerlad

• Sean Parent: dynamic Polymorphism without inheritance

■ make polymorphic stuff regular and extendible without inheritance

■ requires also a mechanism called "type erasure"

■ combines inheritance and templates internally

■ can store arbitrary values, like any

■ and provide interface to them

• How?

Sean Parent's magical polymorphic Regular objects - usage 61

struct	rect{	
	 rect(Width	w,	Height	h):	
	 	 width{w},height{h}{}	
	 Width	width;	
	 Height	height;	
};	

void	draw(rect	const	&r,	screen&	on){	
	 on	<<	"rectangle:"	<<	r.width		
		<<	","	<<	r.height;	
}	

struct	circle{	
	 circle(Radius	r):	
	 	 radius{r}{}	
	 Radius	radius;	
};	
void	draw(circle	const	&c,	screen&	on){	
	 on	<<	"circle:"	<<	c.radius;	
}	

struct	composite{	
	 void	add(widget	w){	
	 	 content.emplace_back(std::move(w));	
	 }	
	 friend	void		
		draw(composite	const	&c,	screen	&on){	
	 	 on	<<	"{	";	
	 	 for(widget	const	&drawable:c.content){	
	 	 	 draw(drawable,	on);	on	<<	',';	
	 	 }	
	 	 on	<<	"	}";	
	 }	
private:	
	 widgets	content{};	
};	

void	testRect(){	
	 std::ostringstream	out{};	
	 widget	r{rect{Width{2},Height{4}}};	
	 draw(r,out);	
	 ASSERT_EQUAL("rectangle:2,4",out.str());	
}	

© Peter Sommerlad

Sane and less sane combinations 62

Some
constructor

default
constructor destructor copy

constructor
copy

assignment
move

constructor
move

assignment

Aggregates none defaulted defaulted defaulted defaulted defaulted defaulted

Simple Values yes none /
=default defaulted defaulted defaulted defaulted defaulted

Simple typical none /
 =default implemented deleted deleted deleted =delete

Unique typical defined /
=default implemented deleted deleted implemented implemented

Value yes defined /
=default implemented implemented implemented implemented implemented

OO - Base may be may be =default
virtual! deleted deleted deleted =delete

OO & Value
Sean Parent yes no Expert Level -

=default
Expert Level

Implementation
Expert Level

Implementation
Expert Level

Implementation
Expert Level

Implementation

M
an

ag
er

#

#

© Peter Sommerlad

Dimensions Safety and Sanity... 63

sane

ill-advised

high-discipline
safedangerous

Value Types

Empty Types

Pointing Types

Managing Types

OO polymorphic Types

plain pointers managing memory

Library Experts

un
iqu

e_
ptr

<T>

Expert (
Sean Parent)

weird combinations
of special members

plain pointers doubleint
std::string

unsigned

Whole Value Pattern

std::variant<...>
 or

© Peter Sommerlad

• Learn to appreciate the C++ Type System - every cast is an indication to think & refactor!

•Model with Value Types almost always

■ but be aware of the relative vs. absolute dimension problem in your units!

•Wrap primitives using Whole Value, even a named simple struct communicates better than int

• Be aware of the required expertise and discipline for Manager types and OO hierarchies

■ Remember "Rule of DesDeMovA"

• Be very disciplined about using Pointing types, this includes references and string_view

• Run away from types with weird special member function combinations, even if defaulted

■ usually they attempt to do too much or the wrong thing

Take aways 🍔 🍟 64

