
Elsewhere Memory

Niall Douglas

Contents:
1. Background:

a. The C++ 20 object and memory model (addressing,
not concurrency, scheme)

b. Virtual Memory (simplified)
c. Memory Elsewhere to ‘here’

2. Possible futures for C 2x and C++ 2y:
a. WG21 P1631 Object attachment and detachment
b. WG21 P???? Page-based object storage
c. WG14 N2362 Moving to a provenance-aware

memory model for C2x
2

https://wg21.link/P1631
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2362.pdf

The C++ 20 object and
memory model

(addressing not concurrency memory model)

C++ 20 abstract machine

● (Unfair but not untrue) Basically requires
that implementations emulate the
observable behaviour of the original
PDP-11/20 mainframe:
○ Memory is a single flat space with equal access

latency, and all parts are [equally] reachable
○ Every live object has a single, unique address

within that memory which can be referred to by a
pointer to that type (or void*)

4

C++ 20 abstract machine
○ The totality of the live objects within that memory

represent the program’s current, valid, state
○ Programs are a time-incremental stream of

sequence points where objects are transformed
from one valid state into another valid state
through the application of operations upon those
objects
■ Sequence points are barriers preventing

reordering of operations IF those operations
have observable side effects

5

C++ 20 abstract machine
○ Only the program may apply operations to objects

■ There is only one C++ program
■ Objects cannot be the program itself

○ Memory consists of bytes, therefore object storage
is always [zero or] one or more arrays of bytes

○ Thus objects are not stored contiguously, though
arrays of objects are indexable contiguously
■ Thus we get structure padding!
■ Thus implementation of some types of object is

utterly dependent on the running C++ program
6

C++ 20 abstract machine
○ Objects have (paraphrased) lifetime one of:

■ Program-lifetime duration
■ Thread-lifetime duration
■ Stack frame-lifetime duration

● Note: no stack is defined in C++, but stack
unwinding is!

■ Expression-lifetime (temporary) duration
■ Programmer-managed (i.e. malloc)

○ Thus no object lifetime exceeds the program

7

C++ 20 abstract machine
○ Concurrency model assumes:

■ Data shared between program threads could
always mutate (i.e. const is soft-const, can
always be cast off)

■ There is only one C++ program at a time
○ Thus if given the same i/o, all valid C++ programs

always have identical observable behaviour
○ BUT may have different valid states at sequence

points between program start and end
■ I.e. road destination != road travelled

8

Further reading

● CppCon 2017: Patrice Roy “Which Machine
Am I Coding To?”
https://www.youtube.com/watch?v=KoqY50HSuQg

9

https://www.youtube.com/watch?v=KoqY50HSuQg

Virtual Memory
(simplified)

Virtual Memory - Overview
● The default memory abstraction mechanism on all the

major desktop and mobile operating systems for over
20 years
○ And a large chunk of high end embedded systems e.g. QNX

● Originates from the 1970s when low latency (10e-6)
memory was expensive (~$4/byte), and high latency
(10e-1) memory was much less so (~$0.001/byte)
○ The ability to just-in-time substitute high latency for low latency

memory was key to building reliable systems

● Was controversial when first proposed (1970), it has
‘won’ and is now fully standardised into POSIX.2017

11

Virtual Memory - Pages

● The 64-bit address space is composed of
varying size pages
○ On x64: 4Kb, 2Mb, 1Gb, (512Gb)

● The CPU’s MMU maps a physical page of
RAM to an address, using kernel-maintained
page tables to look up each mapping

● A page can be marked fault-never,
fault-on-read, fault-on-write, fault-always.

12

Virtual Memory - Private pages

● Virtual Memory is lazy:
○ Unallocated address space is simply always-fault

pages, fault handler kills the process
○ New memory allocations from the system simply

map the single all-bits-zero system page repeatedly
○ First write faults, causing a real empty page to be

allocated and mapped into the process
○ Actual RAM (data) consumption of a process is the

total number of written-at-least-once pages

13

Virtual Memory - Files

● Kernels read and write files from storage in
whole (4Kb, occasionally 2Mb) pages

● The kernel page cache is those parts of files
currently cached in RAM

● The kernel page cache can be mapped into
processes (memory mapped files)

● Single, unified, page cache architecture has
‘won’, all major kernels use it

14

Virtual Memory - Files

● Same lazy fault-driven mechanism applies
as for allocating new memory
○ At process start, none of an executable binary may

actually be mapped into the process (pages all
marked fault-on-read)

○ Each time a page is first read, only then is that
page read from the storage device

○ Every filled page is marked fault-on-write. On the
first write, the dirty bit is set for that page

15

Virtual Memory - Files
○ Every X seconds, all dirty pages are written to

storage, reset to fault-on-write and dirty bit
cleared

○ read() and write() do memcpy() to the exact
same kernel page cached pages as when a process
does memcpy() to memory mapped files

○ Actual RAM (code) consumption of a process is the
total number of read-at-least-once pages

16

Virtual Memory - Swap file

● Private pages (fresh memory allocations),
on first write and therefore actual
allocation, usually have space reserved for
them in the system swap file

● Then if physical RAM runs low, a
not-recently used private page can be
placed in swap, and the physical RAM page
used more productively elsewhere

17

Virtual Memory - Swap file

● One only ‘runs out of memory’ when all the
space in the swap file is consumed
○ Long before that the system may slow to a crawl
○ Even on very fast storage (12Gb/sec), anything PCIe

connected will be at least 20x worse latency than
main memory (~500ns vs ~25ns)

○ And all the memory copying (2μs/page) and TLB
shootdown (1μs)!

○ And spinning rust storage is more like 10,000x
higher latency again! 18

Further reading

● ‘What every programmer should know about
memory’ by Ulrich Drepper
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

19

https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

Elsewhere Memory

Elsewhere Memory - What is it?

● There is an increasing trend in computing of
ever more dedicated-purpose CPUs
○ SSDs and shingled hard drives have two or three

medium spec ARM CPUs each equal to a high end
mobile phone a few years ago

○ Graphics CPUs long ago became very powerful
○ >= 10Gbps NICs tend to have non-trivial CPUs
○ Even a USB controller has significant memory

bandwidth - think USB 3.0
21

Q: What is becoming ever
more important in these

bundles of
dedicated-purpose CPUs?

A: Getting state between
these CPUs

How do we share memory
across CPUs?

Elsewhere Memory - Accessing it

Main memory sharing mechanisms:
1. Copy-based (usually kernel-implemented)

○ Memory elsewhere is copied to local memory by
software using PIO or DMA as needed

○ Optionally ‘oplock’ cached in the local CPU’s
memory
■ With optional remote invalidation (i.e. remote

knows who has/could have a copy of its
memory, and says when it has been modified)

25

Elsewhere Memory - Accessing it

Main memory sharing mechanisms:
2. Directly mapped (as-if memory)

○ Memory elsewhere appears as-if main memory to
the CPU

○ Some memory is higher latency (‘further away’)
than other memory

○ Fits well into NUMA software design strategies
○ BUT makes atomic operations particularly

expensive - coarse grained synchronisation is best
26

Elsewhere Memory - Accessing it

Main memory sharing mechanisms:
3. Offload of whole chunks of kernel

implementation to custom hardware (i/o)
○ Move graphics rasterisation into dedicated device

(GPUs)
○ Move kernel page cache into dedicated device

(Intel Optane SCM, 50ns vs 2000ns)
○ Move file system into dedicated device (Samsung

KV-SSD edition of Z-SSD, 30μs vs 170μs)
27

(Elsewhere Memory - Confounding)

● (The OS kernel may emulate Directly
Mapped using PIO/DMA and a kernel cache,
so user mode code sees Directly Mapped
○ E.g. Memory mapped files)

● (OR the OS kernel may hide Directly
Mapped, so user mode code sees only
copy-based
○ E.g. socket i/o on high end NICs)

28

Problem to solved:

The C++ abstract machine needs to be taught:
1. That some memory is shareable
2. Shared memory can be modified outside the

current C++ program by others
3. Some objects are shareable

○ Either trivially, or by user-defined customisation
point

○ Must handle different memory locations in each C++
program sharing the object 29

Problem to solved:

Other problems not addressed for now:
1. Cache coherency
2. Synchronisation

○ SMP threading model is insufficient
3. Inter-process communication
4. Lots of other stuff …

(Baby steps first!) 30

Questions before the
proposal papers?

WG21 P1631 Object
attachment and

detachment

https://wg21.link/P1631

Object attachment/detachment

● C++ objects are stored in zero, one or many
arrays of bytes

● One can reinterpret cast an object into its
byte array only for trivially copyable types

● It is undefined behaviour to do this for any
other kind of C++ object
○ And no defined mechanism exists for reinterpreting

such C++ objects as an array of bytes
33

Object attachment/detachment

This means:
● Well defined code must therefore employ

serialisation i.e. memory copying for
non-trivially copyable types
○ I.e. translate objects into a trivially copyable

representation
● Even then, how do you ‘release’ a set of

bytes from the abstract machine?
34

Object detachment

P1631 proposes two new operations:
1. Detachment, which is the in-place

conversion of C++ objects into a byte array
representing the formerly live object
○ Read/write reordering barrier (compiler only)
○ Object lifetime ends
○ No memory copying
○ Objects without reference to other objects are by

default trivially detachable
35

Detachment operations
// A "one-way" reinterpret cast operator without possibility

// of aliasing. Upon return, input array of T is now an array of byte.

// It is UB to "speak T" to the output byte array

span<byte> detach_cast(span<T>)

// Main customisation point (free function)

// For trivially detachable T's (i.e. not containing pointers nor

// references - including vptrs!), it has a default implementation

// equal to detach_cast()

template<class T> [constexpr|consteval]

span<byte> in_place_detach(span<T>) [noexcept|throws];

36

Object attachment

2. Attachment, which is the in-place
conversion of a previously detached object
representation into a live object
○ Lifetime begins
○ Only reachable C++ programs may reattach object

representations that they previously detached
○ Constexpr global static data init at process launch

becomes redefined into detachment and
attachment

37

Attachment operations
// A "one-way" reinterpret cast operator without possibility

// of aliasing. Upon return, input array of byte is now an array of T.

// It is UB to "speak byte" to the output T array

span<T> attach_cast(span<byte>)

// Main customisation point (free function)

// For trivially attachable T's (i.e. not containing pointers nor

// references - including vptrs!), it has a default implementation

// equal to attach_cast()

template<class T> [constexpr|consteval]

span<T> in_place_attach(span<byte>) [noexcept|throws];

38

‘Reachable C++ programs’

Reachable C++ programs 1/3

Required to be one of the following:
1. The currently running C++ program only. In

this definition, all modifications to storage
instances are lost when the C++ program's
execution ends

(this is the existing model in C++ 20)
40

Reachable C++ programs 2/3

2. Sequential executions of the unmodified
current C++ program over time, where at
least one modification to shared storage
instances by one execution is made
available to subsequent executions of the
same C++ program, so long as each
execution forms a total sequential ordering.

41

Reachable C++ programs 3/3

3. Concurrent executions of many instances of
the current, unmodified, C++ program,
where modified shared storage instances
can be passed between those concurrently
executing instances, including across
heterogeneous compute.

42

But this still isn’t enough
to implement abstract
machine support for
mapped memory …

Potential std::detach to elsewhere
template<class T>

span<byte> std::detach_to_other_program(T &v) {

 // Step 1: Turn object into array of bytes

 span<byte> bytearray = in_place_detach(span<T>{&v, 1});

 // Step 2: Prevent dead store elimination

 atomic_signal_fence(memory_order_seq_cst);

 // Step 3: Tell abstract machine to treat this byte array as

 // indeterminate from now onwards

 for(byte &b : bytearray)

 b.~byte(); // assumes this does not modify memory!!!

 return bytearray;

} 44

Potential std::attach from elsewhere
template<class T>

span<T> std::attach_from_other_program(span<byte> bytearray) {

 // Step 1: Tell abstract machine the contents of this byte

 // array is not indeterminate, and contains valid objects

 memmove(bytearray.data(), bytearray.data(), bytearray.size());

 // Step 2: Turn byte array into live objects

 return in_place_attach<T>(bytearray);

}

45

Observable side effects 1/2

1. Shared memory
○ Detach, IPC, other side attach

2. Memory mapped storage
○ Detach, program end, program begin, attach

3. Object relocation
○ Detach, memcpy, Attach

4. More powerful object moves
○ Many more types gain defaultable move

constructors and move assignment
46

Observable side effects 2/2

5. New type category: ByteCopyable
○ Solves small-value C++ ABI inefficiency!
○ Superset of TriviallyCopyable

■ Can include types with non-trivial destructors
○ Enables CPU register storage for all (trivially?

constexpr?) detachable and attachable types
■ (though this would be an ABI break)

○ C++ objects can pass from C++, through C code,
back into C++, a major gain for the ecosystem

47

Missing parts

● How best to make types containing dynamic
memory allocations ByteCopyable? E.g.
std::vector, P0709 std::error, etc
○ Move constructor = relocate?
○ Split attach/detach into sub-operations e.g.

reanimate/zombify?
○ Something else entirely? Perhaps merge aspects of

WG21 P1144 Object relocation in terms of move
plus destroy

48

https://wg21.link/P1144

Links

● WG21 P1631 will be in the Cologne (July)
mailing
○ NOT available yet (so the URL in these slides will

404 until June 2019!)

49

https://wg21.link/P1631

WG21 P???? Page-based
object storage

Uniquely identifying object storage

● How does reachable C++ program A
uniquely identify a detached object in
shared memory to reachable C++ program
B, so B can reattach it?
○ Must be as fast as possible!
○ Must work well over a network-connected HPC

cluster! (i.e. high latency high bandwidth fabric)
○ Ideally must be amenable to pointer provenance

validation
51

Uniquely identifying object storage

● Objects are stored in one or more memory
pages

● Figuring out which memory pages store an
object is fast (page table walk)

● Figuring out which storage duration
(program, thread, automatic, stack), and
thus its shareability, a page is associated
with could be fast

52

Page-based object storage

● It is probably unavoidable that the C++
abstract machine needs to be taught
something about memory pages
○ Shared pages => OK for multiple reattach
○ Static init copy-on-write pages => OK for once-off

reattach
○ Stack and thread-local pages => NEVER ok
○ Private anonymous pages => PROBABLY NOT ok?

53

Page-based object storage
And then you might as well expose:
● span<T> to memory pages (i.e. query page tables)
● Query memory pages sizes, protections, copy-on-write,

dirty bits etc
● Remap pages from address A to address B
● Throw away contents of pages
● Kick pages to swap file
● Allocate prefaulted, committed and non-committed

pages
● …

54

Page-based object storage

● Most of this is stuff for the standard library
e.g. WG21 P1031 Low level file i/o which
already implements most of the above
○ Pages mapped in from a shared file are shared

pages
○ Objects in the shared file can be uniquely

identified across all reachable C++ programs with
access to the shared file

55

https://wg21.link/P1031

Page-based object storage

● So what is the bare minimum which the C++
abstract machine needs to be taught?

● I think the only parts are:
a. There are pages of memory of varying sizes
b. All objects are stored in pages
c. Pages can be one of (i) indeterminate, (ii) private,

(iii) shared, (iv) copy-on-write, (v) clean (all bits
zero)

56

Page-based object storage

● And maybe now or later?
d. Whole arrays of pages can be attached and

detached, should be treated as structures full of
objects (assumes Reflection is up to the job)
■ Why? Actor based concurrency
■ Why? Gifting/splicing pages to zero copy i/o
■ Why? Dynamically loadable Modules
■ Why? Direct manipulation of process page tables

by userspace - far more efficient malloc(),
memcpy(), etc

57

WG14 N2362 Moving to a
provenance-aware

memory model for C2x

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2362.pdf

Provenance-aware memory model

I will say nothing on this, lest I make a fool of
myself on internet published video, except:
● I think this essentially brings C’s memory

model to parity with C++ 20’s memory
model
○ Devil is in the corner cases though

● No Rust-style memory hygiene enforcement
here (sad panda)

59

Thank you
And let the questions begin!

