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The C++ 20 object and 
memory model

(addressing not concurrency memory model)



C++ 20 abstract machine 

● (Unfair but not untrue) Basically requires 
that implementations emulate the 
observable behaviour of the original 
PDP-11/20 mainframe:
○ Memory is a single flat space with equal access 

latency, and all parts are [equally] reachable
○ Every live object has a single, unique address 

within that memory which can be referred to by a 
pointer to that type (or void*)
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C++ 20 abstract machine 
○ The totality of the live objects within that memory 

represent the program’s current, valid, state
○ Programs are a time-incremental stream of 

sequence points where objects are transformed 
from one valid state into another valid state 
through the application of operations upon those 
objects
■ Sequence points are barriers preventing 

reordering of operations IF those operations 
have observable side effects
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C++ 20 abstract machine 
○ Only the program may apply operations to objects

■ There is only one C++ program
■ Objects cannot be the program itself

○ Memory consists of bytes, therefore object storage 
is always [zero or] one or more arrays of bytes

○ Thus objects are not stored contiguously, though 
arrays of objects are indexable contiguously
■ Thus we get structure padding!
■ Thus implementation of some types of object is 

utterly dependent on the running C++ program 
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C++ 20 abstract machine 
○ Objects have (paraphrased) lifetime one of:

■ Program-lifetime duration
■ Thread-lifetime duration
■ Stack frame-lifetime duration

● Note: no stack is defined in C++, but stack 
unwinding is!

■ Expression-lifetime (temporary) duration
■ Programmer-managed (i.e. malloc)

○ Thus no object lifetime exceeds the program
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C++ 20 abstract machine 
○ Concurrency model assumes:

■ Data shared between program threads could 
always mutate (i.e. const is soft-const, can 
always be cast off)

■ There is only one C++ program at a time
○ Thus if given the same i/o, all valid C++ programs 

always have identical observable behaviour
○ BUT may have different valid states at sequence 

points between program start and end
■ I.e. road destination != road travelled
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Further reading

● CppCon 2017: Patrice Roy “Which Machine 
Am I Coding To?” 
https://www.youtube.com/watch?v=KoqY50HSuQg
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Virtual Memory
(simplified)



Virtual Memory - Overview
● The default memory abstraction mechanism on all the 

major desktop and mobile operating systems for over 
20 years
○ And a large chunk of high end embedded systems e.g. QNX

● Originates from the 1970s when low latency (10e-6) 
memory was expensive (~$4/byte), and high latency 
(10e-1) memory was much less so (~$0.001/byte)
○ The ability to just-in-time substitute high latency for low latency 

memory was key to building reliable systems

● Was controversial when first proposed (1970), it has 
‘won’ and is now fully standardised into POSIX.2017
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Virtual Memory - Pages

● The 64-bit address space is composed of 
varying size pages
○ On x64: 4Kb, 2Mb, 1Gb, (512Gb)

● The CPU’s MMU maps a physical page of 
RAM to an address, using kernel-maintained 
page tables to look up each mapping

● A page can be marked fault-never, 
fault-on-read, fault-on-write, fault-always.

12



Virtual Memory - Private pages

● Virtual Memory is lazy:
○ Unallocated address space is simply always-fault 

pages, fault handler kills the process
○ New memory allocations from the system simply 

map the single all-bits-zero system page repeatedly
○ First write faults, causing a real empty page to be 

allocated and mapped into the process
○ Actual RAM (data) consumption of a process is the 

total number of written-at-least-once pages
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Virtual Memory - Files

● Kernels read and write files from storage in 
whole (4Kb, occasionally 2Mb) pages

● The kernel page cache is those parts of files 
currently cached in RAM

● The kernel page cache can be mapped into 
processes (memory mapped files)

● Single, unified, page cache architecture has 
‘won’, all major kernels use it
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Virtual Memory - Files

● Same lazy fault-driven mechanism applies 
as for allocating new memory
○ At process start, none of an executable binary may 

actually be mapped into the process (pages all 
marked fault-on-read)

○ Each time a page is first read, only then is that 
page read from the storage device

○ Every filled page is marked fault-on-write. On the 
first write, the dirty bit is set for that page
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Virtual Memory - Files
○ Every X seconds, all dirty pages are written to 

storage, reset to fault-on-write and dirty bit 
cleared

○ read() and write() do memcpy() to the exact 
same kernel page cached pages as when a process 
does memcpy() to memory mapped files

○ Actual RAM (code) consumption of a process is the 
total number of read-at-least-once pages
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Virtual Memory - Swap file

● Private pages (fresh memory allocations), 
on first write and therefore actual 
allocation, usually have space reserved for 
them in the system swap file

● Then if physical RAM runs low, a 
not-recently used private page can be 
placed in swap, and the physical RAM page 
used more productively elsewhere
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Virtual Memory - Swap file

● One only ‘runs out of memory’ when all the 
space in the swap file is consumed
○ Long before that the system may slow to a crawl
○ Even on very fast storage (12Gb/sec), anything PCIe 

connected will be at least 20x worse latency than 
main memory (~500ns vs ~25ns)

○ And all the memory copying (2μs/page) and TLB 
shootdown (1μs)!

○ And spinning rust storage is more like 10,000x 
higher latency again! 18



Further reading

● ‘What every programmer should know about 
memory’ by Ulrich Drepper
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
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Elsewhere Memory



Elsewhere Memory - What is it?

● There is an increasing trend in computing of 
ever more dedicated-purpose CPUs
○ SSDs and shingled hard drives have two or three 

medium spec ARM CPUs each equal to a high end 
mobile phone a few years ago

○ Graphics CPUs long ago became very powerful
○ >= 10Gbps NICs tend to have non-trivial CPUs
○ Even a USB controller has significant memory 

bandwidth - think USB 3.0
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Q: What is becoming ever 
more important in these 

bundles of 
dedicated-purpose CPUs?



A: Getting state between 
these CPUs



How do we share memory 
across CPUs?



Elsewhere Memory - Accessing it

Main memory sharing mechanisms:
1. Copy-based (usually kernel-implemented)

○ Memory elsewhere is copied to local memory by 
software using PIO or DMA as needed

○ Optionally ‘oplock’ cached in the local CPU’s 
memory
■ With optional remote invalidation (i.e. remote 

knows who has/could have a copy of its 
memory, and says when it has been modified)
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Elsewhere Memory - Accessing it

Main memory sharing mechanisms:
2. Directly mapped (as-if memory)

○ Memory elsewhere appears as-if main memory to 
the CPU

○ Some memory is higher latency (‘further away’) 
than other memory

○ Fits well into NUMA software design strategies
○ BUT makes atomic operations particularly 

expensive - coarse grained synchronisation is best
26



Elsewhere Memory - Accessing it

Main memory sharing mechanisms:
3. Offload of whole chunks of kernel 

implementation to custom hardware (i/o)
○ Move graphics rasterisation into dedicated device 

(GPUs)
○ Move kernel page cache into dedicated device 

(Intel Optane SCM, 50ns vs 2000ns)
○ Move file system into dedicated device (Samsung 

KV-SSD edition of Z-SSD, 30μs vs 170μs)
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(Elsewhere Memory - Confounding)

● (The OS kernel may emulate Directly 
Mapped using PIO/DMA and a kernel cache, 
so user mode code sees Directly Mapped
○ E.g. Memory mapped files)

● (OR the OS kernel may hide Directly 
Mapped, so user mode code sees only 
copy-based
○ E.g. socket i/o on high end NICs)
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Problem to solved:

The C++ abstract machine needs to be taught:
1. That some memory is shareable
2. Shared memory can be modified outside the 

current C++ program by others
3. Some objects are shareable

○ Either trivially, or by user-defined customisation 
point

○ Must handle different memory locations in each C++ 
program sharing the object 29



Problem to solved:

Other problems not addressed for now:
1. Cache coherency
2. Synchronisation

○ SMP threading model is insufficient
3. Inter-process communication
4. Lots of other stuff …

(Baby steps first!) 30



Questions before the 
proposal papers?



WG21 P1631 Object 
attachment and 

detachment

https://wg21.link/P1631


Object attachment/detachment

● C++ objects are stored in zero, one or many 
arrays of bytes

● One can reinterpret cast an object into its 
byte array only for trivially copyable types

● It is undefined behaviour to do this for any 
other kind of C++ object
○ And no defined mechanism exists for reinterpreting 

such C++ objects as an array of bytes
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Object attachment/detachment

This means:
● Well defined code must therefore employ 

serialisation i.e. memory copying for 
non-trivially copyable types
○ I.e. translate objects into a trivially copyable 

representation
● Even then, how do you ‘release’ a set of 

bytes from the abstract machine?
34



Object detachment

P1631 proposes two new operations:
1. Detachment, which is the in-place 

conversion of C++ objects into a byte array 
representing the formerly live object
○ Read/write reordering barrier (compiler only)
○ Object lifetime ends
○ No memory copying
○ Objects without reference to other objects are by 

default trivially detachable
35



Detachment operations
// A "one-way" reinterpret cast operator without possibility

// of aliasing. Upon return, input array of T is now an array of byte.

// It is UB to "speak T" to the output byte array

span<byte> detach_cast(span<T>)

// Main customisation point (free function)

// For trivially detachable T's (i.e. not containing pointers nor

// references - including vptrs!), it has a default implementation

// equal to detach_cast()

template<class T> [constexpr|consteval]

span<byte> in_place_detach(span<T>) [noexcept|throws];
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Object attachment

2. Attachment, which is the in-place 
conversion of a previously detached object 
representation into a live object
○ Lifetime begins
○ Only reachable C++ programs may reattach object 

representations that they previously detached
○ Constexpr global static data init at process launch 

becomes redefined into detachment and 
attachment

37



Attachment operations
// A "one-way" reinterpret cast operator without possibility

// of aliasing. Upon return, input array of byte is now an array of T.

// It is UB to "speak byte" to the output T array

span<T> attach_cast(span<byte>)

// Main customisation point (free function)

// For trivially attachable T's (i.e. not containing pointers nor

// references - including vptrs!), it has a default implementation

// equal to attach_cast()

template<class T> [constexpr|consteval]

span<T> in_place_attach(span<byte>) [noexcept|throws];
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‘Reachable C++ programs’



Reachable C++ programs 1/3

Required to be one of the following:
1. The currently running C++ program only. In 

this definition, all modifications to storage 
instances are lost when the C++ program's 
execution ends

(this is the existing model in C++ 20)
40



Reachable C++ programs 2/3

2. Sequential executions of the unmodified 
current C++ program over time, where at 
least one modification to shared storage 
instances by one execution is made 
available to subsequent executions of the 
same C++ program, so long as each 
execution forms a total sequential ordering.
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Reachable C++ programs 3/3

3. Concurrent executions of many instances of 
the current, unmodified, C++ program, 
where modified shared storage instances 
can be passed between those concurrently 
executing instances, including across 
heterogeneous compute.
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But this still isn’t enough 
to implement abstract 
machine support for 
mapped memory … 



Potential std::detach to elsewhere
template<class T>

span<byte> std::detach_to_other_program(T &v) {

  // Step 1: Turn object into array of bytes

  span<byte> bytearray = in_place_detach(span<T>{&v, 1});

  // Step 2: Prevent dead store elimination

  atomic_signal_fence(memory_order_seq_cst);

  // Step 3: Tell abstract machine to treat this byte array as

  // indeterminate from now onwards

  for(byte &b : bytearray)

    b.~byte();  // assumes this does not modify memory!!!

  return bytearray;

} 44



Potential std::attach from elsewhere
template<class T>

span<T> std::attach_from_other_program(span<byte> bytearray) {

  // Step 1: Tell abstract machine the contents of this byte

  // array is not indeterminate, and contains valid objects

  memmove(bytearray.data(), bytearray.data(), bytearray.size());

  // Step 2: Turn byte array into live objects

  return in_place_attach<T>(bytearray);

}
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Observable side effects 1/2

1. Shared memory
○ Detach, IPC, other side attach

2. Memory mapped storage
○ Detach, program end, program begin, attach

3. Object relocation
○ Detach, memcpy, Attach

4. More powerful object moves
○ Many more types gain defaultable move 

constructors and move assignment
46



Observable side effects 2/2

5. New type category: ByteCopyable
○ Solves small-value C++ ABI inefficiency!
○ Superset of TriviallyCopyable

■ Can include types with non-trivial destructors
○ Enables CPU register storage for all (trivially? 

constexpr?) detachable and attachable types
■ (though this would be an ABI break)

○ C++ objects can pass from C++, through C code, 
back into C++, a major gain for the ecosystem

47



Missing parts

● How best to make types containing dynamic 
memory allocations ByteCopyable? E.g. 
std::vector, P0709 std::error, etc
○ Move constructor = relocate?
○ Split attach/detach into sub-operations e.g. 

reanimate/zombify?
○ Something else entirely? Perhaps merge aspects of 

WG21 P1144 Object relocation in terms of move 
plus destroy

48
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Links

● WG21 P1631 will be in the Cologne (July) 
mailing
○ NOT available yet (so the URL in these slides will 

404 until June 2019!)
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WG21 P???? Page-based 
object storage



Uniquely identifying object storage

● How does reachable C++ program A 
uniquely identify a detached object in 
shared memory to reachable C++ program 
B, so B can reattach it?
○ Must be as fast as possible!
○ Must work well over a network-connected HPC 

cluster! (i.e. high latency high bandwidth fabric)
○ Ideally must be amenable to pointer provenance 

validation
51



Uniquely identifying object storage

● Objects are stored in one or more memory 
pages

● Figuring out which memory pages store an 
object is fast (page table walk)

● Figuring out which storage duration 
(program, thread, automatic, stack), and 
thus its shareability, a page is associated 
with could be fast
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Page-based object storage

● It is probably unavoidable that the C++ 
abstract machine needs to be taught 
something about memory pages
○ Shared pages => OK for multiple reattach
○ Static init copy-on-write pages => OK for once-off 

reattach
○ Stack and thread-local pages => NEVER ok
○ Private anonymous pages => PROBABLY NOT ok?
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Page-based object storage
And then you might as well expose:
● span<T> to memory pages (i.e. query page tables)
● Query memory pages sizes, protections, copy-on-write, 

dirty bits etc
● Remap pages from address A to address B
● Throw away contents of pages
● Kick pages to swap file
● Allocate prefaulted, committed and non-committed 

pages
● …

54



Page-based object storage

● Most of this is stuff for the standard library 
e.g. WG21 P1031 Low level file i/o which 
already implements most of the above
○ Pages mapped in from a shared file are shared 

pages
○ Objects in the shared file can be uniquely 

identified across all reachable C++ programs with 
access to the shared file
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Page-based object storage

● So what is the bare minimum which the C++ 
abstract machine needs to be taught?

● I think the only parts are:
a. There are pages of memory of varying sizes
b. All objects are stored in pages
c. Pages can be one of (i) indeterminate, (ii) private, 

(iii) shared, (iv) copy-on-write, (v) clean (all bits 
zero)
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Page-based object storage

● And maybe now or later?
d. Whole arrays of pages can be attached and 

detached, should be treated as structures full of 
objects (assumes Reflection is up to the job)
■ Why? Actor based concurrency
■ Why? Gifting/splicing pages to zero copy i/o
■ Why? Dynamically loadable Modules
■ Why? Direct manipulation of process page tables 

by userspace - far more efficient malloc(), 
memcpy(), etc
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WG14 N2362 Moving to a 
provenance-aware 

memory model for C2x

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2362.pdf


Provenance-aware memory model

I will say nothing on this, lest I make a fool of 
myself on internet published video, except:
● I think this essentially brings C’s memory 

model to parity with C++ 20’s memory 
model
○ Devil is in the corner cases though

● No Rust-style memory hygiene enforcement 
here (sad panda)
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Thank you
And let the questions begin!


