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Who am I? Who are we?

Ported 
TensorFlow to 
open standards 

using SYCL

Releasing open-
source, open-

standards based 
AI acceleration 
tools: SYCL-

BLAS, SYCL-ML, 
VisionCpp

Build LLVM-
based compilers 
for accelerators

Implement 
OpenCL and 

SYCL for 
accelerator 
processors

VP of R&D of 
Codeplay
Chair of SYCL Heterogeneous Programming Language
C++ Directions Group
ISOCPP.org Director, VP 
http://isocpp.org/wiki/faq/wg21#michael-wong

Head of Delegation for C++ Standard for Canada
Chair of Programming Languages for Standards Council 
of Canada
Chair of WG21 SG19 Machine Learning
Chair of WG21 SG14 Games Dev/Low Latency/Financial 
Trading/Embedded
Editor: C++ SG5 Transactional Memory Technical 
Specification
Editor: C++ SG1 Concurrency Technical Specification 
MISRA C++ and AUTOSAR
wongmichael.com/about
We build GPU compilers for semiconductor 
companies
• Now working to make AI/Ml heteroegneous

acceleration safe for autonomous vehicle 

http://isocpp.org/wiki/faq/wg21
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Gordon Brown 

● Background in C++ programming models for heterogeneous systems
● Developer with Codeplay Software for 6 years
● Worked on ComputeCpp (SYCL) since it’s inception
● Contributor to the Khronos SYCL standard for 6 years
● Contributor to C++ executors and heterogeneity or 2 years
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Partners

Codeplay - Connecting AI to Silicon

Customers

C++ platform via the SYCL™ open standard, enabling 
vision & machine learning e.g. TensorFlow™

The heart of Codeplay's compute technology
enabling OpenCL™, SPIR™, HSA™ and Vulkan™

Products

Automotive (ISO 26262)
IoT, Smartphones & Tablets

High Performance Compute (HPC)
Medical & Industrial

Technologies: Vision Processing
Machine Learning

Artificial Intelligence
Big Data Compute

Addressable Markets

High-performance software solutions 
for custom heterogeneous systems
Enabling the toughest processor 
systems with tools and middleware 
based on open standards
Established 2002 in Scotland
~70 employees

Company
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3 Act Play

1. What’s still missing 
from C++?

2. What makes GPU 
work so fast?

3. What is Modern C++ 
that works on GPUs, 
CPUs, everything? 
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Act 1

1. What’s still missing 
from C++?
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What have we achieved so far for 
C++20?
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Use the Proper Abstraction with C++
Abstraction How is it supported

Cores C++11/14/17 threads, async

HW threads C++11/14/17 threads, async, hw_concurrency

Vectors Parallelism TS2->

Atomic, Fences, lockfree, futures, counters, 
transactions

C++11/14/17 atomics, Concurrency TS1-> 
Transactional Memory TS1

Parallel Loops Async, TBB:parallel_invoke,  C++17 parallel algorithms, 
for_each

Heterogeneous offload, fpga OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja

Distributed HPX, MPI, UPC++

Caches C++17 false sharing support

Numa

TLS

Exception handling in concurrent environment
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Task vs data parallelism

Task parallelism:
● Few large tasks with different operations / control flow
● Optimized for latency

Data parallelism:
● Many small tasks with same operations on multiple data
● Optimized for throughput

Data 
parallelism

Task 
parallelism
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Review of Latency, bandwidth, throughput
● Latency is the amount of time it takes to travel through the tube.
● Bandwidth is how wide the tube is.
● The amount of water flow will be your throughput
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Definition and examples
Latency is the time required to perform some action or to produce some result. Latency is measured in units of time -- hours, minutes, seconds, 
nanoseconds or clock periods.

Throughput is the number of such actions executed or results produced per unit of time. This is measured in units of whatever is being produced 
(cars, motorcycles, I/O samples, memory words, iterations) per unit of time. The term "memory bandwidth" is sometimes used to specify the 
throughput of memory systems.

bandwidth is the maximum rate of data transfer across a given path.

Example

An assembly line is manufacturing cars. It takes eight hours to manufacture a car and that the factory produces one hundred and twenty cars per 
day.

The latency is: 8 hours.

The throughput is: 120 cars / day or 5 cars / hour.
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• Distinguishes multi-processor computer architectures along 
the two independent dimensions

• Instruction and Data
• Each dimension can have one state: Single or Multiple

• SISD: Single Instruction, Single Data
• Serial (non-parallel) machine

• SIMD: Single Instruction, Multiple Data
• Processor arrays and vector machines

• MISD: Multiple Instruction, Single Data (weird)
• MIMD: Multiple Instruction, Multiple Data

• Most common parallel computer systems

Flynn’s Taxonomy
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CPU
● Small number of large 

processors
● More control structures and 

less processing units
○ Can do more complex logic
○ Requires more power

● Optimise for latency
○ Minimising the time taken 

for one particular task

GPU
● Large number of small 

processors
● Less control structures and 

more processing units
○ Can do less complex logic
○ Lower power consumption

● Optimised for throughput
○ Maximising the amount of 

work done per unit of time

What kind of processors should we build
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• Each core optimized for  a 
single thread

• Fast serial processing
• Must be good at 

everything
• Minimize latency of 1 

thread
– Lots of big on chip caches
– Sophisticated controls

Multicore CPU vs Manycore GPU

• Cores optimized for aggregate 
throughput, deemphasizing 
individual performance

• Scalable parallel processing
• Assumes workload is highly parallel
• Maximize throughput of all threads

– Lots of big ALUs
– Multithreading can hide 

latency, no big caches
– Simpler control, cost amortized 

over ALUs via SIMD 
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SIMD hard knocks
● SIMD architectures use data parallelism
● Improves tradeoff with area and power

○ Amortize control overhead over SIMD width
● Parallelism exposed to programmer & compiler
● Hard for a compiler to exploit SIMD
● Hard to deal with sparse data & branches

○ C and C++ Difficult to vectorize, Fortran better
● So

○ Either forget SIMD or hope for the autovectorizer
○ Use compiler intrinsics
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Memory
● Many core gpu is a device for turning a compute bound 

problem into a memory bound problem

● Lots of processors but only one socket
● Memory concerns dominate performance tuning
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Memory is SIMD too
● Virtually all processors have SIMD memory subsystems

● This has 2 effects
○ Sparse access wastes bandwidth

○ Unaligned access wastes bandwidth
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Data Structure Padding

● Multidimensional arrays are usually stored as monolithic 
vectors in memory

● Care should be taken to assure aligned memory accesses for 
the necessary access pattern
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Coalescing
● GPUs and CPUs both perform memory transactions at a larger 

granularity than the program requests (cache line)
● GPUs have a coalescer which examines memory requests 

dynamically and coalesces them
● To use bandwidth effectively, when threads load, they should 

○ Present a set of unit strided loads (dense accesses)
○ Keep sets of loads aligned to vector boundaries
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Power of Computing

• 1998, when C++ 98 was released
• Intel Pentium II: 0.45 GFLOPS
• No SIMD: SSE came in Pentium III
• No GPUs: GPU came out  a year later

• 2011: when C++11 was released
• Intel Core-i7: 80 GFLOPS
• AVX:  8 DP flops/HZ*4 cores *4.4 GHz= 140 GFlops
• GTX 670: 2500 GFLOPS

• Computers have gotten so much faster, how come software have 
not?

• Data structures and algorithms
• latency
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In 1998, a typical machine had the following flops

.45 GFLOPS, 1 core

Single threaded C++98/C99/Fortran dominated this picture
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In 2011, a typical machine had the following flops

80 GFLOPS 4 cores

To program the CPU, you might use C/C++11, OpenMP, TBB, Cilk, OpenCL
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In 2011, a typical machine had the following flops

80 GFLOPS 4 cores+140 GFLOPS AVX

To program the CPU, you might use C/C++11, OpenMP, TBB, Cilk, CUDA, OpenCL
To program the vector unit, you have to use Intrinsics, OpenCL, CUDA, or auto-
vectorization
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In 2011, a typical machine had the following flops

80 GFLOPS 4 cores+140 GFLOPS AVX+2500 GFLOPS GPU

To program the CPU, you might use C/C++11, OpenMP, TBB, Cilk, CUDA, OpenCL
To program the vector unit, you have to use Intrinsics, OpenCL, CUDA or auto-
vectorization
To program the GPU, you have to use CUDA, OpenCL, OpenGL, DirectX, Intrinsics, 
C++AMP
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In 2017, a typical machine had the following flops

140 GFLOPS + 560 GFLOPS AVX + 4600 GFLOPS GPU 

To program the CPU, you might use C/C++11/14/17, SYCL, OpenMP, TBB, Cilk, 
CUDA, OpenCL
To program the vector unit, you have to use SYCL, Intrinsics, OpenCL, CUDA or 
auto-vectorization, OpenMP
To program the GPU, you have to use SYCL, CUDA, OpenCL, OpenGL, DirectX, 
Intrinsics,  OpenMP
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“The free lunch is over”

“The end of Moore’s Law”

“The future is parallel and 
heterogeneous”

“GPUs are everywhere”
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Take a typical Intel chip
● Intel Core i7 7th Gen

○ 4x CPU cores
■ Each with hyperthreading
■ Each with 8-wide AVX 

instructions
○ GPU

■ With 1280 processing elements
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Serial C++ code alone only takes advantage 
of a very small amount of the available 
resources of the chip
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Serial C++ code alone only takes advantage 
of a very small amount of the available 
resources of the chip
Using vectorisation allows you to fully utilise 
the resources of a single hyperthread
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Use the Proper Abstraction with C++
Abstraction How is it supported

Cores C++11/14/17 threads, async

HW threads C++11/14/17 threads, async, hw_concurrency

Vectors Parallelism TS2->

Atomic, Fences, lockfree, futures, counters, 
transactions

C++11/14/17 atomics, Concurrency TS1-> 
Transactional Memory TS1

Parallel Loops Async, TBB:parallel_invoke,  C++17 parallel algorithms, 
for_each

Heterogeneous offload, fpga OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja

Distributed HPX, MPI, UPC++

Caches C++17 false sharing support

Numa

TLS

Exception handling in concurrent environment
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Serial C++ code alone only takes advantage 
of a very small amount of the available 
resources of the chip
Using vectorisation allows you to fully utilise 
the resources of a single hyperthread
Using multi-threading allows you to fully 
utilise all CPU cores
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Use the Proper Abstraction with C++
Abstraction How is it supported

Cores C++11/14/17 threads, async

HW threads C++11/14/17 threads, async, hw_concurrency

Vectors Parallelism TS2->

Atomic, Fences, lockfree, futures, counters, 
transactions

C++11/14/17 atomics, Concurrency TS1-> 
Transactional Memory TS1

Parallel Loops Async, TBB:parallel_invoke,  C++17 parallel algorithms, 
for_each

Heterogeneous offload, fpga OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja

Distributed HPX, MPI, UPC++

Caches C++17 false sharing support

Numa

TLS

Exception handling in concurrent environment
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Serial C++ code alone only takes advantage 
of a very small amount of the available 
resources of the chip
Using vectorisation allows you to fully utilise 
the resources of a single hyperthread
Using multi-threading allows you to fully 
utilise all CPU cores
Using heterogeneous dispatch allows you to 
fully utilise the entire chip
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GPGPU programming was 
once a niche technology

● Limited to specific 
domain

● Separate source 
solutions

● Verbose low-level APIs
● Very steep learning 

curve
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Coverage after C++11
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous (GPUs, 

accelerators, FPGA, 
embedded AI 
processors)

summary tasks that run 
independently and 
communicate via 
messages

operations on groups of 
things, exploit 
parallelism in data and 
algorithm structures

avoid races and 
synchronizing objects in 
shared memory

Dispatch/offload to 
other nodes (including 
distributed)

examples GUI,background 
printing, disk/net access

trees, quicksorts, 
compilation

locked data(99%), lock-
free libraries (wizards), 
atomics (experts)

Pipelines, reactive 
programming, offload,, 
target, dispatch

key metrics responsiveness throughput, many core 
scalability

race free, lock free Independent forward 
progress,, load-shared 

requirement isolation, messages low overhead composability Distributed, 
heterogeneous

today's abstractions C++11: thread,lambda 
function, TLS

C++11: Async, 
packaged tasks, 
promises, futures, 
atomics

C++11: locks, memory 
model, mutex, condition 
variable, atomics, static 
init/term

C++11: lambda
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Top500 contenders
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Internet of Things
• All forms of accelerators, DSP, GPU, APU, GPGPU
• Network heterogenous consumer devices

• Kitchen appliances, drones, signal processors, medical imaging, auto, 
telecom, automation, not just graphics engines 
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This is not the case 
anymore

● Almost everything has 
a GPU now

● Single source solutions
● Modern C++ 

programming models
● More accessible to the 

average C++ developer

C++AMP

SYCL

CUDA Agency

Kokkos

HPX

Raja
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SYCL / OpenCL / 
CUDA / HCC OpenMP / MPI C++ Thread Pool

Boost.Asio / 
Networking TS

C++ Executors: Unified interface for execution

defer define_task_block dispatch strand<>asynchronous operations

future::thenasyncinvoke postparallel algorithms
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Act 2

1. What’s still missing 
from C++?

2. What makes GPU 
work so fast?
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CPU
(“Host”)

CPU memory

GPU
(“Device”)

GPU memory

Host code

co-processor of

The way of CPU and GPU
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CPU
(“Host”)

CPU memory

GPU
(“Device”)

GPU memory

Host code

co-processor of

1. The CPU allocates 
memory on the GPU

1

The way of CPU and GPU
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CPU
(“Host”)

CPU memory

GPU
(“Device”)

GPU memory

Host code

co-processor of

1. The CPU allocates 
memory on the GPU

2. The CPU copies data 
from CPU to GPU

1
2

The way of CPU and GPU
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CPU
(“Host”)

CPU memory

GPU
(“Device”)

GPU memory

Host code

co-processor of

1. The CPU allocates 
memory on the GPU

2. The CPU copies data 
from CPU to GPU

3. The CPU launches 
kernel(s) on the GPU

1
2

3 Device 
code

(“Kernel”)
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CPU
(“Host”)

CPU memory

GPU
(“Device”)

GPU memory

Host code

co-processor of

1. The CPU allocates 
memory on the GPU

2. The CPU copies data 
from CPU to GPU

3. The CPU launches 
kernel(s) on the GPU

4. The CPU copies data to 
CPU from GPU

1
2

4

3 Device 
code

(“Kernel”)
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CPU
(“Host”)

CPU memory

The CPU
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CPU
(“Host”)

CPU memory

1. A CPU has a region of 
dedicated memory

1
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CPU
(“Host”)

CPU memory

1. A CPU has a region of 
dedicated memory

2. CPU memory is 
connected to the CPU 
via a bus

1

2
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CPU (“Host”)

CPU memory

1. A CPU has a region of 
dedicated memory

2. The CPU memory is 
connected to the CPU 
via a bus

3. A CPU has a number of 
cores

Core Core Core Core

1

3

2
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CPU (“Host”)

CPU memory

1. A CPU has a region of 
dedicated memory

2. The CPU memory is 
connected to the CPU 
via a bus

3. A CPU has a number of 
cores

4. A CPU has a number of 
caches of different 
levels

Core Core Core Core

Cache (multiple levels)

1

2

3

4
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CPU (“Host”)

CPU memory

1. A CPU has a region of 
dedicated memory

2. The CPU memory is 
connected to the CPU 
via a bus

3. A CPU has a number of 
cores

4. A CPU has a number of 
caches of different 
levels

5. Each CPU core has 
dedicated registers

Core Core Core Core

Cache (multiple levels)

Registers Registers Registers Registers

1

2

3

4

5
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CPU
(“Host”)

CPU memory

GPU
(“Device”)

GPU memory

Host code

co-processor of
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GPU
(“Device”)

GPU memory

The GPU
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GPU
(“Device”)

Global memory

1. A GPU has a region of 
dedicated global memory

1
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GPU
(“Device”)

Global memory

1. A GPU has a region of 
dedicated global memory

2. Global memory is connected 
via a bus

1

2
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GPU (“Device”)

Global memory

1. A GPU has a region of 
dedicated global memory

2. Global memory is connected 
via a bus

3. A GPU is divided into a 
number of compute units

Compute unit Compute unit

...

1

2

3
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GPU (“Device”)

Global memory

1. A GPU has a region of 
dedicated global memory

2. Global memory is connected 
via a bus

3. A GPU is divided into a 
number of compute units

4. Each compute unit has 
dedicated local memory

Compute unit Compute unit

...

Local memory Local memory

3

4

1

2
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GPU (“Device”)

Global memory

1. A GPU has a region of 
dedicated global memory

2. Global memory is connected 
via a bus

3. A GPU is divided into a 
number of compute units

4. Each compute unit has 
dedicated local memory

5. Each compute unit has a 
number of processing 
elements

Compute unit Compute unit

...

Local memory Local memory

PE PE PE PE PE PE

... ...

3

4

1

2

5
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GPU (“Device”)

Global memory

1. A GPU has a region of 
dedicated global memory

2. Global memory is connected 
via a bus

3. A GPU is divided into a 
number of compute units

4. Each compute unit has 
dedicated local memory

5. Each compute unit has a 
number of processing 
elements

6. Each processing element has 
dedicated private memory

Compute unit Compute unit

...

Local memory Local memory

PE PE PE

PM PM PM

PE PE PE

PM PM PM
... ...

3

4

1

2

5

6
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Processing 
Element

1. A processing element executes a 
single work-item

1
work-
item
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Processing 
Element

Private 
memory

1. A processing element executes a 
single work-item

2. Each work-item can access private 
memory, a dedicated memory region 
for each processing element1

work-
item

2
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Processing 
Element

Private 
memory

1. A processing element executes a 
single work-item

2. Each work-item can access private 
memory, a dedicated memory region 
for each processing element

3. A compute unit executes a work-
group, composed of multiple work-
items, one for each processing 
element in the compute unit

1

Compute unit

work-
item

work-group

2

3
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Processing 
Element

Private 
memory

1. A processing element executes a 
single work-item

2. Each work-item can access private 
memory, a dedicated memory region 
for each processing element

3. A compute unit executes a work-
group, composed of multiple work-
items, one for each processing 
element in the compute unit

4. Each work-item can access local 
memory, a dedicated memory region 
for each compute unit

1

Local 
memory

Compute unit

work-
item

work-group

2

3

4



© 2016 Codeplay Software Ltd.67

Processing 
Element

Private 
memory

1. A processing element executes a 
single work-item

2. Each work-item can access private 
memory, a dedicated memory region 
for each processing element

3. A compute unit executes a work-
group, composed of multiple work-
items, one for each processing 
element in the compute unit

4. Each work-item can access local 
memory, a dedicated memory region 
for each compute unit

5. A GPU executes multiple work-groups

1

Local 
memory

Compute unit

work-
item

work-group

2

3

4

5
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Processing 
Element

Private 
memory

1. A processing element executes a 
single work-item

2. Each work-item can access private 
memory, a dedicated memory region 
for each processing element

3. A compute unit executes a work-
group, composed of multiple work-
items, one for each processing 
element in the compute unit

4. Each work-item can access local 
memory, a dedicated memory region 
for each compute unit

5. A GPU executes multiple work-groups
6. Each work-item can access global 

memory, a single memory region 
available to all processing elements 
on the GPU

1

Local 
memory

Global memory

Compute unit

work-
item

work-group

2

3

4

6

5
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1. Multiple work-items will execute 
concurrently

1
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1. Multiple work-items will execute 
concurrently

2. They are not guaranteed to all 
execute uniformly

1

2
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1. Multiple work-items will execute 
concurrently

2. They are not guaranteed to all 
execute uniformly

3. Most GPUs do execute a number 
of work-items uniformly (lock-
step), but that number is 
unspecified 

1

32
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1. Multiple work-items will execute 
concurrently

2. They are not guaranteed to all 
execute uniformly

3. Most GPUs do execute a number 
of work-items uniformly (lock-
step), but that number is 
unspecified 

4. A work-item can share results 
with other work-items via local 
and global memory

1

32

4
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1. Multiple work-items will execute 
concurrently

2. They are not guaranteed to all 
execute uniformly

3. Most GPUs do execute a number 
of work-items uniformly (lock-
step), but that number is 
unspecified 

4. A work-item can share results 
with other work-items via local 
and global memory

5. However this means that it’s 
possible for a work-item to read 
a result that hasn’t yet been 
written to yet, you have a data 
race

1

32

4

5

data race
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1. This problem can be solved by 
a synchronisation primitive 
called a work-group barrier

1
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1. This problem can be solved by 
a synchronisation primitive 
called a work-group barrier

2. Work-items will block until all 
work-items in the work-group 
have reached that point

1

2
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1. This problem can be solved by 
a synchronisation primitive 
called a work-group barrier

2. Work-items will block until all 
work-items in the work-group 
have reached that point

1

2
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1. This problem can be solved by 
a synchronisation primitive 
called a work-group barrier

2. Work-items will block until all 
work-items in the work-group 
have reached that point

3. So now you can be sure that 
all of the results that you want 
to read from have been 
written to

1

2

3
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1. This problem can be solved by 
a synchronisation primitive 
called a work-group barrier

2. Work-items will block until all 
work-items in the work-group 
have reached that point

3. So now you can be sure that 
all of the results that you want 
to read from have been 
written to

4. However this does not apply 
across work-group 
boundaries, and you have a 
data rance again

1

2

3

work-group 1work-group 0 4

data race
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work-group 1work-group 0 1. This problem can be solved by a 
synchronisation primitive called 
a kernel barrier (launching 
separate kernels)

1
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work-group 1work-group 0 1. This problem can be solved by a 
synchronisation primitive called 
a kernel barrier (launching 
separate kernels)

2. Again you can be sure that all of 
the results that you want to read 
from have been written to1

2
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work-group 1work-group 0 1. This problem can be solved by a 
synchronisation primitive called 
a kernel barrier (launching 
separate kernels)

2. Again you can be sure that all of 
the results that you want to read 
from have been written to

3. However kernel barriers have a 
higher overhead as they require 
you to launch another kernel

1

2
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work-group 1work-group 0 1. This problem can be solved by a 
synchronisation primitive called 
a kernel barrier (launching 
separate kernels)

2. Again you can be sure that all of 
the results that you want to read 
from have been written to

3. However kernel barriers have a 
higher overhead as they require 
you to launch another kernel

4. And kernel barriers require 
results to be stored in global 
memory, local memory is not 
persistent across kernels

1

2
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Work-item

Work-
group

Private memory

Local memory

Global memoryKernel

Work-group barrier

Kernel barrier
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CUDA vs OpenCL terminology
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Sequential CPU code

void calc(int *in, int *out) {
for (int i = 0; i < 1024; i++) {

out[i] = in[i] * in[i];
}

}

calc(in, out);

SPMD GPU code

void calc(int *in, int *out, int id) {
out[id] = in[id] * in[id];

}

/* specify degree of parallelism */
parallel_for(calc, in, out, 1024);
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SIMD vs SPMD

SPMD: Multiple autonomous processors simultaneously executing the same 
program (but at independent points, rather than in the lockstep that SIMD 
imposes) on different data.
You can launch multiple threads, each using their respective SIMD lanes 

SPMD is a parallel execution model and assumes multiple cooperating 
processors executing a program. 

SPMDSIMD

https://en.wikipedia.org/wiki/Lockstep_(computing)
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● Kernels are launched in the 
form of an nd-range

● An nd-range can be 1, 2 or 3 
dimensions

● An nd-range describes a 
number of work-items divided 
into equally sized work-groups

● An nd-range is constructed 
from the total number of 
work-items (global range) and 
the number of work-items in a 
work-group (local range)

nd-range {{12, 12}, {4, 4}}
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● An nd-range is mapped to the 
underlying hardware
○ Work-groups are mapped 

to compute units
○ Work-items are mapped 

to processing units

nd-range {{12, 12}, {4, 4}}
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● The kernel is executed once 
per work-item in the nd-range

● Each work item knows it’s 
index within the nd-range

a. global range {12, 12}
b. local range {4, 4}
c. group range {3, 3}
d. global id {6, 5}
e. local id {2, 1}
f. group id {1, 1}

nd-range {{12, 12}, {4, 4}}
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Act 3

1. What’s still missing 
from C++?

2. What makes GPU 
work so fast?

3. What is Modern C++ 
that works on GPUs, 
CPUs, everything? 
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SYCL for OpenCL

Cross-platform, single-source, high-level, C++ programming layer
Built on top of OpenCL and based on standard C++11

Delivering a heterogeneous programming solution for C++
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Why use SYCL to program a GPU?
● Enables programming heterogeneous devices such as 

GPUs using standard C++
● Provides a high-level abstraction for development of 

complex parallel software applications
● Provides efficient data dependency analysis and task 

scheduling and synchronisation
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The SYCL ecosystem

Applications

SYCL for OpenCL

OpenCL

C++ template libraries

OpenCL-enabled devices
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__global__ vec_add(float *a, float *b, float *c) {
return c[i] = a[i] + b[i];

}

float *a, *b, *c;
vec_add<<<range>>>(a, b, c); 

vector<float> a, b, c;

#pragma parallel_for
for(int i = 0; i < a.size(); i++) {
c[i] = a[i] + b[i];

}

cgh.parallel_for<vec_add>(range, [=](cl::sycl::id<2> idx) {
c[idx] = a[idx] + c[idx];

}));

array_view<float> a, b, c;
extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx) restrict(amp) {
c[idx] = a[idx] + b[idx];

});
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SYCL separates the storage and access of data through the use 
of buffers and accessors

SYCL provides data dependency tracking based on accessors 
to optimise the scheduling of tasks
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Buffer

Accessor

Accessor

Buffers and accessors 
are type safe access 

across host and device

Accessors are used 
to describe access 

requirements

Buffers manage data 
across the host and 
one or more devices

CG A

CG B
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CG

Buffer global_buffer 
accessor

constant_buffer 
accessor

local accessor

Request access to a buffer in 
the global memory region

Request access to a buffer in 
the constant memory region

Allocate memory in the local 
memory region

host_buffer 
accessor

Request access to a buffer 
immediately on the host
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Buffer B

Buffer C

Buffer D

Buffer A

CG B

CG C

CG A
Read accessor

Write accessor

Read accessor

Write accessor

Read accessor

Write accessor

Read accessor
CG C

CG A CG B
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Implicit vs Explicit Data Movement

array_view<float> ptr;
extent<2> e(64, 64);
parallel_for_each(e, [=](index<2> idx) 
restrict(amp) {

ptr[idx] *= 2.0f;
});

Here we’re using OpenMP as an examplefloat *h_a = { … }, d_a;
cudaMalloc((void **)&d_a, size);
cudaMemcpy(d_a, h_a, size, 

cudaMemcpyHostToDevice);
vec_add<<<64, 64>>>(a, b, c);
cudaMemcpy(d_a, h_a, size, 

cudaMemcpyDeviceToHost);

Examples:
• OpenCL, CUDA, OpenMP

Implementation:
• Data is moved to the device via 

explicit copy APIs

Here we’re using C++ AMP as an example

Examples:
• SYCL, C++ AMP

Implementation:
• Data is moved to the device 

implicitly via cross host CPU / 
device data structures

Here we’re using CUDA as an example
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Benefits of data dependency task graphs
● Allows you to describe your problems in terms of 

relationships
○ Removes the need to en-queue explicit copies
○ Removes the need for complex event handling

● Allows the runtime to make data movement optimizations
○ Preemptively copy data to a device before kernels
○ Avoid unnecessarily copying data back to the host after execution on a 

device
○ Avoid copies of data that you don’t need
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Coverage after C++17
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous (GPUs, 

accelerators, FPGA, 
embedded AI 
processors)

summary tasks that run 
independently and 
communicate via 
messages

operations on groups of 
things, exploit 
parallelism in data and 
algorithm structures

avoid races and 
synchronizing objects in 
shared memory

Dispatch/offload to 
other nodes (including 
distributed)

today's abstractions C++11: thread,lambda 
function, TLS, async

C++14: generic lambda

C++11: Async, 
packaged tasks, 
promises, futures, 
atomics, 

C++ 17: ParallelSTL, 
control false sharing

C++11: locks, memory 
model, mutex, condition 
variable, atomics, static 
init/term, 

C++ 14: 
shared_lock/shared_tim
ed_mutex, OOTA, 
atomic_signal_fence, 

C++ 17: scoped _lock, 
shared_mutex, ordering 
of memory models, 
progress guarantees, 
TOE, execution policies

C++17: , progress 
guarantees, TOE, 
execution policies
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C++17 introduces a number of parallel algorithms and new execution 
policies which dictate how they can be parallelized

The new algorithms are unordered, allowing them to perform in parallel

Execution policies:
● sequenced_execution_policy (seq)
● parallel_execution_policy (par)
● parallel_unsequenced_execution_policy (par_unseq)
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result accumulate(first, last,
init,
[binary_op])

first acc = init
then for each it in [first, last) in order
acc = binary_op(acc, *it)

then return acc
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result accumulate(first, last,
init,
[binary_op])

first acc = init
then for each it in [first, last) in order
acc = binary_op(acc, *it)

then return acc

OP

OP

OP

OP

OP

OP

OP

init
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result accumulate(first, last,
init,
[binary_op])

first acc = init
then for each it in [first, last) in order
acc = binary_op(acc, *it)

then return acc

6 8 7 1 3 2 3

+

72

+

+

+

+

+

+

42
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result accumulate(first, last,
init,
[binary_op])

first acc = init
then for each it in [first, last) in order
acc = binary_op(acc, *it)

then return acc

6 8 7 1 3 2 3

+

72

+

+

+

+

+

+

42
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result reduce([execution_policy,]
first, last,
init,
[binary_op])

first acc = GSUM(binary_op, init,
*first, …,
*(last-1))

then return acc
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result reduce([execution_policy,]
first, last,
init,
[binary_op])

first acc = GSUM(binary_op, init,
*first, …,
*(last-1))

then return acc

OP

OP

OP

OP

OP

OP

OP

init
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result reduce([execution_policy,]
first, last,
init,
[binary_op])

first acc = GSUM(binary_op, init,
*first, …,
*(last-1))

then return acc

OP OP

OP

OP

OP

OP

init

OP
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result reduce([execution_policy,]
first, last,
init,
[binary_op])

first acc = GSUM(binary_op, init,
*first, …,
*(last-1))

then return acc

6 8 7 1 3 2 3

+ +

+

+

+

+

42

+
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result reduce([execution_policy,]
first, last,
init,
[binary_op])

first acc = GSUM(binary_op, init,
*first, …,
*(last-1))

then return acc

6 8 7 1 3 2 3

+

72

+

+

+

+

+

42

+
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Due to the requirements of GSUM reduce is allowed to be unordered

However this means that binary_op is required to be both commutative 
and associative
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Commutativity means changing the order of operations does not change 
the result

Integer operations
x + y == y + x
x * y == y * x
x - y != y - x
x / y != y / x

Floating-point operations
x + y == y + x
x * y == y * x
x - y != y - x
x / y != y / x
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Associativity means changing the grouping of operations does not change 
the result

Integer operations
(x + y) + z == x + (y + z)
(x * y) * z == x * (y * z)

(x - y) - z != x - (y - z)
(x / y) / z != x / (y / z)

Floating-point operations
(x + y) + z != x + (y + z)
(x * y) * z != x * (y * z)
(x - y) - z != x - (y - z)
(x / y) / z != x / (y / z)
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So how do we parallelise this on a GPU?
● We want to utilize the available hardware
● We want to keep dependencies to a minimum
● We want to make efficient use of local memory and work-

group synchronization
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template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {

}

Here we have the 
standard prototype 
for the reduce 
parallel algorithm, 
taking a SYCL 
execution policy

There is an 
assumption here 
that the iterators are 
contiguous
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template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);

}

SYCL separates 
memory storage and 
access using buffers 
and accessors

Buffers manage a 
region of memory 
across host and one 
or more devices

Accessors represent 
an instance of access 
to a particular buffer
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template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);

}

We create a buffer 
to manage the input 
data

We call 
set_final_data with 
nullptr in order to 
tell the runtime not 
to copy back to the 
original host address 
on destruction
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template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);

}

Buffers synchronise 
and copy their data 
back to the original 
pointer when they 
are destroyed

So in this case, on 
returning from the 
reduce function
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template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});

}

In SYCL devices are 
selected using a 
device selector

A device selector 
picks the best device 
based on a 
particular heuristic

device



© 2018 Codeplay Software Ltd.127

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});

}

We create a queue 
that we can 
enqueue work on 
taking a 
gpu_selector, which 
will return a GPU to 
execute work on



© 2018 Codeplay Software Ltd.128

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();

}

We deduce the data 
size of the input 
range and the 
maximum work-
group size

These are important 
for determining how 
work is distributed 
across work-groups
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template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {

dataSize /= maxWorkGroupSize;
} while (dataSize > 1);

}

We create a loop 
that will launch a 
SYCL kernel for each 
kernel invocation 
required for the 
reduction

After each iteration 
the data size is 
divided by the work-
group size
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template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {

});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

In SYCL all work is 
enqueued to a 
queue via command 
groups which 
represent the kernel 
function, an nd-
range and the data 
dependencies

We create a 
command group to 
enqueue a kernel
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template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));

});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

We determine the 
global range to be 
the data size

We determine the 
local range to be the 
max work group 
size, providing that’s 
smaller than the 
data size
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template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

We create an 
accessor for the 
input buffer

The access mode is 
read_write because 
we want to be able 
to write back a 
result
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template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;  
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

A local accessor 
allocates an amount 
of local memory per 
work-group

We create a local 
accessor of elements 
of value type with 
the size of the local 
range
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template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<          >(nd_range<1>(global, local), [=](nd_item<1> it) {

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

In SYCL there are 
several ways to 
launch kernel 
functions which 
express different 
forms of parallelism

In this case we are 
using parallel_for, 
which takes an 
nd_range and a 
function object
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template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

We provide a 
template parameter 
to parallel_for to 
name the kernel 
function

This is necessary for 
portability between 
C++ compilers
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template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

We copy each 
element from global 
memory to local 
memory of their 
respective work-
group
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template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

We insert a work-
group barrier to 
ensure all work-
items in each work-
group have copied 
before moving on
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template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[0] / 2; offset > 0; offset /= 2) {

}

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

We create a loop 
that will iterate over 
the work-items in 
the work-group and 
providing an offset 
to the midpoint
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template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[0] / 2; offset > 0; offset /= 2) {
if (it.get_local_id(0) < offset) {

}

}

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

We branch on the 
first half of the 
work-items per loop 
by only executing 
work-items before 
the offset
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template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[0] / 2; offset > 0; offset /= 2) {
if (it.get_local_id(0) < offset) {
scratch[it.get_local_id(0)] = binary_op(scratch[it.get_local_id(0)],

scratch[it.get_local_id(0) + offset]);
}

}

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

We call the 
binary_op with the 
elements in local 
memory of the 
current work-item 
and the respective 
work-item on the 
other side of the 
offset and assign the 
result to the 
element in local 
memory of the 
current work-item
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template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[0] / 2; offset > 0; offset /= 2) {
if (it.get_local_id(0) < offset) {
scratch[it.get_local_id(0)] = binary_op(scratch[it.get_local_id(0)],

scratch[it.get_local_id(0) + offset]);
}
it.barrier(access::fence_space::local_space);

}

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

We insert a barrier 
to ensure all work-
items in the current 
loop have 
performed their 
operation
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template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[0] / 2; offset > 0; offset /= 2) {
if (it.get_local_id(0) < offset) {
scratch[it.get_local_id(0)] = binary_op(scratch[it.get_local_id(0)],

scratch[it.get_local_id(0) + offset]);
}
it.barrier(access::fence_space::local_space);

}
if (it.get_local_id(0) == 0) { inputAcc[it.get_group(0)] = scratch[it.get_local_id(0)]; }

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

Once the loop has 
complete there will 
be a single value for 
each work-group in 
local memory for the 
first work-item

We copy this value 
into an element in 
global memory for 
the current work 
group
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template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[0] / 2; offset > 0; offset /= 2) {
if (it.get_local_id(0) < offset) {
scratch[it.get_local_id(0)] = binary_op(scratch[it.get_local_id(0)],

scratch[it.get_local_id(0) + offset]);
}
it.barrier(access::fence_space::local_space);

}
if (it.get_local_id(0) == 0) { inputAcc[it.get_group(0)] = scratch[it.get_local_id(0)]; }

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);
auto accH = bufI.template get_access<access::mode::read>();

}

A host accessor 
provides immediate 
access to data 
maintained by a 
buffer

We create a host 
accessor to retrieve 
the final result of 
the reduction
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template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local> scratch(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[0] / 2; offset > 0; offset /= 2) {
if (it.get_local_id(0) < offset) {
scratch[it.get_local_id(0)] = binary_op(scratch[it.get_local_id(0)],

scratch[it.get_local_id(0) + offset]);
}
it.barrier(access::fence_space::local_space);

}
if (it.get_local_id(0) == 0) { inputAcc[it.get_group(0)] = scratch[it.get_local_id(0)]; }

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);
auto accH = bufI.template get_access<access::mode::read>();
return binary_op(init, accH[0]);

}

Once the data size 
has been reduced to 
1 this means the 
reduction is 
complete and we 
can return the result

We call binary_op  
with init and the 
result of the 
reduction and then 
we return the result
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template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[0] / 2; offset > 0; offset /= 2) {
if (it.get_local_id(0) < offset) {
scratch[it.get_local_id(0)] = binary_op(scratch[it.get_local_id(0)],

scratch[it.get_local_id(0) + offset]);
}
it.barrier(access::fence_space::local_space);

}
if (it.get_local_id(0) == 0) { inputAcc[it.get_group(0)] = scratch[it.get_local_id(0)]; }

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);
auto accH = bufI.template get_access<access::mode::read>();
return binary_op(init, accH[0]);

}
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Conclusion

We looked at how to write a reduction for the GPU in C++ using SYCL

We looked at how the SYCL programming model allows us to do this

We looked at how this applies to the GPU architecture

We looked at why this is so important in modern C++
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Use the Proper Abstraction with C++
Abstraction How is it supported

Cores C++11/14/17 threads, async

HW threads C++11/14/17 threads, async

Vectors Parallelism TS2->C++20

Atomic, Fences, lockfree, futures, counters, 
transactions

C++11/14/17 atomics, Concurrency TS1->C++20,
Transactional Memory TS1

Parallel Loops Async, TBB:parallel_invoke,  C++17 parallel algorithms, 
for_each

Heterogeneous offload, fpga OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja
P0796 on affinity

Distributed HPX, MPI, UPC++
P0796 on affinity

Caches C++17 false sharing support

Numa Executors, Execution Context, Affinity, P0443-
>Executor TS 

TLS EALS, P0772

Exception handling in concurrent environment EH reduction properties
P0797



© 2018 Codeplay Software Ltd.150

Oh, and one more thing
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What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;
std::vector<float> nums(nElems);

std::fill_n(std::begin(v1), nElems, 1);

std::for_each(std::begin(v), std::end(v),
[=](float f) { f * f + f });

Traditional for each uses only one core, 
rest of the die is unutilized!

10000 
elems
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What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;
std::vector<float> nums(nElems);

std::fill_n(std::execution_policy::par,
std::begin(v1), nElems, 1);

std::for_each(std::execution_policy::par,
std::begin(v), std::end(v),
[=](float f) { f * f + f });

Workload is distributed across cores!
(mileage may vary, implementation-specific behaviour)

2500 
elems

2500 
elems

2500 
elems

2500 
elems
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What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;
std::vector<float> nums(nElems);

std::fill_n(std::execution_policy::par,
std::begin(v1), nElems, 1);

std::for_each(std::execution_policy::par,
std::begin(v), std::end(v),
[=](float f) { f * f + f });

Workload is distributed across cores!
(mileage may vary, implementation-specific behaviour)

2500 
elems

2500 
elems

2500 
elems

2500 
elems

What about this 
part?



© 2018 Codeplay Software Ltd.154

What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;
std::vector<float> nums(nElems);

std::fill_n(sycl_policy,
std::begin(v1), nElems, 1);

std::for_each(sycl_named_policy
<class KernelName>,

std::begin(v), std::end(v),
[=](float f) { f * f + f });

Workload is distributed on the GPU cores
(mileage may vary, implementation-specific behaviour)

10000 elems
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What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;
std::vector<float> nums(nElems);

std::fill_n(sycl_heter_policy(cpu, gpu, 0.5),
std::begin(v1), nElems, 1);

std::for_each(sycl_heter_policy<class kName>
(cpu, gpu, 0.5),
std::begin(v), std::end(v),
[=](float f) { f * f + f });

Workload is distributed on all cores!
(mileage may vary, implementation-specific behaviour)

5000 elems

1250 
elems

1250 
elems

1250 
elems

1250 
elems

Experimental!
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Demo Results - Running std::sort
(Running on Intel i7 6600 CPU & Intel HD  Graphics 520)

size 2^16 2^17 2^18 2^19

std::seq 0.27031s 0.620068s 0.669628s 1.48918s

std::par 0.259486s 0.478032s 0.444422s 1.83599s

std::unseq 0.24258s 0.413909s 0.456224s 1.01958s

sycl_execution_policy 0.273724s 0.269804s 0.277747s 0.399634s
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SYCL Ecosystem
● ComputeCpp -

https://codeplay.com/products/computesuite/computecpp● triSYCL - https://github.com/triSYCL/triSYCL● SYCL - http://sycl.tech● SYCL ParallelSTL - https://github.com/KhronosGroup/SyclParallelSTL● VisionCpp - https://github.com/codeplaysoftware/visioncpp● SYCL-BLAS - https://github.com/codeplaysoftware/sycl-blas● TensorFlow-SYCL - https://github.com/codeplaysoftware/tensorflow● Eigen http://eigen.tuxfamily.org

https://codeplay.com/products/computesuite/computecpp
https://github.com/triSYCL/triSYCL
http://sycl.tech/
https://github.com/KhronosGroup/SyclParallelSTL
https://github.com/codeplaysoftware/visioncpp
https://github.com/codeplaysoftware/sycl-blas
https://github.com/codeplaysoftware/tensorflow
http://eigen.tuxfamily.org/
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Eigen Linear Algebra Library
SYCL backend in mainline
Focused on Tensor support, providing 

support for machine learning/CNNs
Equivalent coverage to CUDA
Working on optimization for various 

hardware architectures (CPU, desktop and 
mobile GPUs)

https://bitbucket.org/eigen/eigen/

https://bitbucket.org/eigen/eigen/
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TensorFlow
SYCL backend support for all major CNN 

operations
Complete coverage for major image 

recognition networks
GoogLeNet, Inception-v2, Inception-v3, 

ResNet, ….
Ongoing work to reach 100% operator 

coverage and optimization for various 
hardware architectures (CPU, desktop and 
mobile GPUs)

https://github.com/tensorflow/tensorflow

TensorFlow, the TensorFlow logo and any related marks are 
trademarks of Google Inc.

https://github.com/tensorflow/tensorflow
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SYCL Ecosystem
• Single-source heterogeneous programming using STANDARD C++

- Use C++ templates and lambda functions for host & device code
- Layered over OpenCL

• Fast and powerful path for bring C++ apps and libraries to OpenCL
- C++ Kernel Fusion - better performance on complex software than hand-coding
- Halide, Eigen, Boost.Compute, SYCLBLAS, SYCL Eigen, SYCL TensorFlow, SYCL GTX
- Clang, triSYCL, ComputeCpp, VisionCpp, ComputeCpp SDK …

• More information at http://sycl.tech

C++ Kernel Language
Low Level Control

‘GPGPU’-style separation of 
device-side kernel source 

code and host code

Single-source C++
Programmer Familiarity

Approach also taken by 
C++ AMP and OpenMP

Developer Choice
The development of the two specifications are aligned so 
code can be easily shared between the two approaches

http://sycl.tech/
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Codeplay
Standards 

bodies
• HSA Foundation: Chair of 

software group, spec editor of 
runtime and debugging

• Khronos: chair & spec editor of 
SYCL. Contributors to OpenCL, 
Safety Critical, Vulkan

• ISO C++: Chair of Low Latency, 
Embedded WG; Editor of SG1 
Concurrency TS

• EEMBC: members

Research

• Members of EU research 
consortiums: PEPPHER, 
LPGPU, LPGPU2, CARP

• Sponsorship of PhDs and EngDs
for heterogeneous programming: 
HSA, FPGAs, ray-tracing

• Collaborations with academics
• Members of HiPEAC

Open 
source

• HSA LLDB Debugger
• SPIR-V tools
• RenderScript debugger in AOSP
• LLDB for Qualcomm Hexagon
• TensorFlow for OpenCL
• C++ 17 Parallel STL for SYCL
• VisionCpp: C++ performance-

portable programming model for 
vision

Presentati
ons

• Building an LLVM back-end
• Creating an SPMD Vectorizer for 

OpenCL with LLVM
• Challenges of Mixed-Width 

Vector Code Gen & Scheduling 
in LLVM

• C++ on Accelerators: Supporting 
Single-Source SYCL and HSA

• LLDB Tutorial: Adding debugger 
support for your target

Company

• Based in Edinburgh, Scotland
• 57 staff, mostly engineering
• License and customize 

technologies for semiconductor 
companies

• ComputeAorta and 
ComputeCpp: implementations 
of OpenCL, Vulkan and SYCL

• 15+ years of experience in 
heterogeneous systems tools

Codeplay build the software platforms that deliver massive performance
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What our ComputeCpp users say about us

“We at Google have been working 
closely with Luke and his Codeplay 
colleagues on this project for almost 

12 months now. Codeplay's 
contribution to this effort has been 

tremendous, so we felt that we should 
let them take the lead when it comes 

down to communicating updates 
related to OpenCL. …  we are 

planning to merge the work that has 
been done so far… we want to put 

together a comprehensive test 
infrastructure”

Benoit Steiner – Google 
TensorFlow engineer

“We work with royalty-free SYCL 
because it is hardware vendor 
agnostic, single-source C++ 

programming model without platform 
specific keywords. This will allow us to 

easily work with any heterogeneous 
processor solutions using OpenCL to 
develop our complex algorithms and 

ensure future compatibility”

ONERA

“My team and I are working with 
Codeplay's ComputeCpp for almost a 

year now and they have resolved 
every issue in a timely manner, while 

demonstrating that this technology can 
work with the most complex C++ 

template code. I am happy to say that 
the combination of Codeplay's SYCL 
implementation with our HPX runtime 

system has turned out to be a very 
capable basis for Building a 

Heterogeneous Computing Model for 
the C++ Standard using high-level 

abstractions.”

Hartmut Kaiser - HPX

It was a great pleasure this week for 
us, that Codeplay released the 

ComputeCpp project for the wider 
audience. We've been waiting for this 
moment and keeping our colleagues 

and students in constant rally and 
excitement. We'd like to build on this 

opportunity to increase the awareness 
of this technology by providing sample 

codes and talks to potential users. 
We're going to give a lecture series on 

modern scientific programming 
providing field specific examples.“

WIGNER Research Centre
for Physics
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Further information
• OpenCL https://www.khronos.org/opencl/
• OpenVX

https://www.khronos.org/openvx/
• HSA http://www.hsafoundation.com/
• SYCL http://sycl.tech
• OpenCV http://opencv.org/
• Halide http://halide-lang.org/
• VisionCpp https://github.com/codeplaysoftware/visioncpp

https://www.khronos.org/opencl/
https://www.khronos.org/openvx/
http://www.hsafoundation.com/
http://sycl.tech/
http://opencv.org/
http://halide-lang.org/
https://github.com/codeplaysoftware/visioncpp
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Community Edition
Available now for free!

Visit:
computecpp.codeplay.com
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• Open source SYCL projects:
• ComputeCpp SDK - Collection of sample code and integration tools
• SYCL ParallelSTL – SYCL based implementation of the parallel algorithms
• VisionCpp – Compile-time embedded DSL for image processing
• Eigen C++ Template Library – Compile-time library for machine learning

All of this and more at: http://sycl.tech

http://sycl.tech/


/codeplaysoft@codeplaysoft codeplay.com

Thank you for listening


	Slide Number 1
	Who am I? Who are we?
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Codeplay - Connecting AI to Silicon
	3 Act Play
	Act 1
	What have we achieved so far for C++20?
	Use the Proper Abstraction with C++
	Task vs data parallelism
	Review of Latency, bandwidth, throughput
	Definition and examples
	Slide Number 14
	Flynn’s Taxonomy
	What kind of processors should we build
	Multicore CPU vs Manycore GPU
	SIMD hard knocks
	Memory
	Memory is SIMD too
	Data Structure Padding
	Coalescing
	Power of Computing
	In 1998, a typical machine had the following flops
	In 2011, a typical machine had the following flops
	In 2011, a typical machine had the following flops
	In 2011, a typical machine had the following flops
	In 2017, a typical machine had the following flops
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Use the Proper Abstraction with C++
	Slide Number 34
	Use the Proper Abstraction with C++
	Slide Number 36
	Slide Number 37
	Coverage after C++11
	Top500 contenders
	Internet of Things
	Slide Number 41
	Slide Number 42
	Act 2
	The way of CPU and GPU
	The way of CPU and GPU
	The way of CPU and GPU
	Slide Number 47
	Slide Number 48
	The CPU
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	The GPU
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	CUDA vs OpenCL terminology
	Slide Number 85
	SIMD vs SPMD
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Act 3
	SYCL for OpenCL
	Slide Number 92
	The SYCL ecosystem
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Implicit vs Explicit Data Movement
	Slide Number 100
	Coverage after C++17
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Conclusion
	Use the Proper Abstraction with C++
	Slide Number 150
	Slide Number 151
	Slide Number 152
	Slide Number 153
	Slide Number 154
	Slide Number 155
	Slide Number 156
	Slide Number 157
	Slide Number 158
	Eigen Linear Algebra Library
	TensorFlow
	SYCL Ecosystem
	Codeplay
	What our ComputeCpp users say about us
	Further information
	Slide Number 165
	Slide Number 166
	Thank you for listening

