® codeplay’

A Modern C++ Programming Model
for GPUs using Khronos SYCL

Michael Wong, Gordon Brown

ACCU 2018

VP of R&D of

Codeplay ,

Who

3 | WJ The Future of Paralislion anc > h ion - Google A [= = L2
&« S C & -] play.com 1 n @ =
Chair of SYCL Heterogeneous Programming Language :
. . C codeplay” A @ =
C++ Directions Group
ISOCPP.org Director, VP #fionics and CiNgglay Collaborate

http://isocpp.org/wiki/fag/wg21#michael-wong on OpgffL™ and SYCL™ for ADNG Solutions

Head of Delegation for C++ Standard for Canada

Chair of Programming Languages for Standards Council

of Canada

Chair of WG21 SG19 Machine Learning

Chair of WG21 SG14 Games Dev/Low Latency/Financial

Trading/Embedded

Editor: C++ SG5 Transactional Memory Technical

Specification

Editor: C++ SG1 Concurrency Technical Specification

MISRA C++ and AUTOSAR

wongmichael.com/about

We build GPU compilers for semiconductor

companies

* Now working to make Al/MI heteroegneous
acceleration safe for autonomous vehicle

accelerator
processors

® codeplay’ © 2018 Codeplay Software Ltd.

http://isocpp.org/wiki/faq/wg21

Gordon Brown

Background in C++ programming models for heterogeneous systems
Developer with Codeplay Software for 6 years

Worked on ComputeCpp (SYCL) since it’s inception

Contributor to the Khronos SYCL standard for 6 years

Contributor to C++ executors and heterogeneity or 2 years

® codeplay’ © 2017 Codeplay Software Ltd.

Numerous people internal and external to the
original C++/Khronos group, in industry and
academia, have made contributions, influenced
ideas, written part of this presentations, and offered
feedbacks to form part of this talk.

Specifically, Paul Mckenney, Joe Hummel, Bjarne
Stroustru, Botond Ballo for some of the slides.

| even lifted this acknowledgement and disclaimer
from some of them.

Acknowledgement
Disclaimer

But | claim all credit for errors, and stupid mistakes.
These are mine, all mine!

® codeplay’ © 2018 Codeplay Software Ltd.

Legal Disclaimer

THIS WORK REPRESENTS THE OTHER COMPANY, PRODUCT, AND
VIEW OF THE AUTHOR AND DOES SERVICE NAMES MAY BE
NOT NECESSARILY REPRESENT TRADEMARKS OR SERVICE MARKS
THE VIEW OF CODEPLAY. OF OTHERS.

® codeplay’ © 2018 Codeplay Software Ltd.

Codeplay - Connecting Al to Silicon

Products Addressable Markets

Automotive (I1SO 26262)

loT, Smartphones & Tablets

High Performance Compute (HPC)
Medical & Industrial

Technologies: Vision Processing
Machine Learning

Artificial Intelligence

Big Data Compute

C ComputeCpp
C++ platform via the SYCL™ open standard, enabling ¢4
vision & machine learning e.g. TensorFlow™ :

& ComputeAorta
The heart of Codeplay's compute technology
enabling OpenCL™, SPIR™, HSA™ and Vulkan™

Company Customers
High-performance software solutions N RENESAS
for custom heterogeneous systems — =

Enabling the toughest processor QJ Imagination
systems with tools and middleware QUALCOMV\ Y
based on open standards Movidius ¥4
Established 2002 in Scotland = Partners
~70 employees Qn_t_e’: AMD

® codeplay’ © 2018 Codeplay Software Ltd.

3 Act Play

1. What’s still missing
from C++?

2. What makes GPU
work so fast?

3. Whatis Modern C++
that works on GPUs,
CPUs, everything?

® codeplay’ © 2018 Codeplay Software Ltd.

T System Agent wiDisplay, Memary Control,
A Ct 1 : /0 Control F -
e I IF
mnfﬂll MIH e : t e
Illlll'llllillflllllf“l'ﬂl‘"'H'I’I“I“’-

1. What's still missing Jg:ug
from C++7?

=
2
-]
5
-
S
a
[=]
Iy
[n]
rp-
.

u
gmet
il IEHL’E

IM!I!IIHHIIIEﬂIIIfHI.IIIIII- HEI---‘-
R o b ¥

: Graphlcs Core + b
g New Media Capab:htles i

® codeplay’ © 2018 Codeplay Software Ltd.

What have we achieved so far for
C++207?

S s oo urt ettt o

Concepts C++20 (adopted, including convenience syntax)
Contracts C++20 (adopted)

Ranges C++20 (adopted)

Coroutines C++20

Modules C++20

Reflection TS in C++20 timeframe, IS in C++23

Executors Lite in @meframe, Full in C++23

Networking EXEC!.JtOFS, and . C++23
possibly Coroutines

future.then, async2 Executors

® codeplay’ © 2018 Codeplay Software Ltd.

Use the Proper Abstraction with C++

Cores C++11/14/17 threads, async

HW threads C++11/14/17 threads, async, hw_concurrency

Vectors Parallelism TS2->

Atomic, Fences, lockfree, futures, counters, C++11/14/17 atomics, Concurrency TS1->

transactions Transactional Memory TS1

Parallel Loops Async, TBB:parallel_invoke, C++17 parallel algorithms,
for_each

Heterogeneous offload, fpga OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja

Distributed HPX, MPI, UPC++

Caches C++17 false sharing support

Numa

TLS

Exception handling in concurrent environment

® codeplay’ pdeplay Software Ltd.

Task vs data parallelism

Task Data
parallelism parallelism

Task parallelism:

e Few large tasks with different operations / control flow
e Optimized for latency

Data parallelism:

e Many small tasks with same operations on multiple data
e Optimized for throughput

® codeplay’ © 2017 Codeplay Software Ltd.

Review of Latency, bandwidth, throughput

e Latency is the amount of time it takes to travel through the tube.
e Bandwidth is how wide the tube is.
e The amount of water flow will be your throughput

| ——
\x

® codeplay’ © 2017 Codeplay Software Ltd.

Definition and examples

Latency is the time required to perform some action or to produce some result. Latency is measured in units of time -- hours, minutes, seconds,
nanoseconds or clock periods.

Throughput is the number of such actions executed or results produced per unit of time. This is measured in units of whatever is being produced
(cars, motorcycles, /0 samples, memory words, iterations) per unit of time. The term "memory bandwidth" is sometimes used to specify the
throughput of memory systems.

bandwidth is the maximum rate of data transfer across a given path.
Example

An assembly line is manufacturing cars. It takes eight hours to manufacture a car and that the factory produces one hundred and twenty cars per
day.

The latency is: 8 hours.

The throughput is: 120 cars / day or 5 cars / hour.

® codeplay’ © 2017 Codeplay Software Ltd.

® codeplay’

LET'S PUT IT
THIS Wy, WHEH
T GOT [N LIKE, T

PIPK'T HAVE

I BEARR'

Flynn’s Taxonomy

Distinguishes multi-processor computer architectures along

the two independent dimensions
Instruction and Data
Each dimension can have one state: Single or Multiple

SISD: Single Instruction, Single Data
Serial (non-parallel) machine

SIMD: Single Instruction, Multiple Data
Processor arrays and vector machines

MISD: Multiple Instruction, Single Data (weird)
MIMD: Multiple Instruction, Multiple Data

® codeplay’ 15 © 2017 Codeplay Software Ltd.

What kind of processors should we build

CPU GPU
e Small number of large ® Large number of small
processors processors
® More control structures and ® Less control structures and
less processing units more processing units
o Can do more complex logic o Can do less complex logic
o Requires more power o Lower power consumption
e Optimise for latency e Optimised for throughput
o Minimising the time taken o Maximising the amount of
for one particular task work done per unit of time

® codeplay’ © 2017 Codeplay Software Ltd.

Multicore CPU vs Manycore GPU

Cores optimized for aggregate

e Each core optimized for a
throughput, deemphasizing

Smgle thread . individual performance
e Fast serial processing Scalable parallel processing

e Must be good at * Assumes workload is highly parallel
e Maximize throughput of all threads

ev.er.ythlng — Lots of big ALUs
e Minimize latency of 1 — Multithreading can hide
thread latency, no big caches

— Simpler control, cost amortized

— Lots of big on chip caches over ALUs via SIMD

— Sophisticated controls

® codeplay’ © 2017 Codeplay Software Ltd.

SIMD hard knocks

® SIMD architectures use data parallelism
® |mproves tradeoff with area and power
o Amortize control overhead over SIMD width
e Parallelism exposed to programmer & compiler
e Hard for a compiler to exploit SIMD
e Hard to deal with sparse data & branches
o Cand C++ Difficult to vectorize, Fortran better
® So

o Either forget SIMD or hope for the autovectorizer
o Use compiler intrinsics

® codeplay’ © 2017 Codeplay Software Ltd.

Memory
e Many core gpu is a device for turning a compute bound

problem into a memory bound problem

Control ALL ALL
ALL ALL
Cache
DRAM DRAM
CPU GPU

e Lots of processors but only one socket
e Memory concerns dominate performance tuning

© 2017 Codeplay Software Ltd.

® codeplay’ 19

Memory is SIMD too

e Virtually all processors have SIMD memory subsystems
04l 2 3 4|5[6|7

cache line width

e This has 2 effects

o Sparse access wastes bandwidth

2 words used, 8 words loaded:

O 4 7
_ | 1, effective bandwidth

o Unaligned access wastes bandwidth

4 words used, 8 words loaded:

1123)4 14 effective bandwidth

® codeplay’ © 2017 Codeplay Software Ltd.

Data Structure Padding

ﬁ - B | 5
(row major)

o Multidlmensmnal arrays are usually stored as monolithic

vectors in memory
e Care should be taken to assure aligned memory accesses for

the necessary access pattern

bdeplay Software Ltd.

Coalescing

e GPUs and CPUs both perform memory transactions at a larger
granularity than the program requests (cache line)

e GPUs have a coalescer which examines memory requests
dynamically and coalesces them

e To use bandwidth effectively, when threads load, they should

o Present a set of unit strided loads (dense accesses)
o Keep sets of loads aligned to vector boundaries

© 2017 Codeplay Software Ltd.

® codeplay’

Power of Computing

* 1998, when C++ 98 was released
* Intel Pentium II: 0.45 GFLOPS
* No SIMD: SSE came in Pentium Il
* No GPUs: GPU came out a year later

¢2011: when C++11 was released
* Intel Core-i7: 80 GFLOPS
e AVX: 8 DP flops/HZ*4 cores *4.4 GHz= 140 GFlops
*GTX 670: 2500 GFLOPS

e Computers have gotten so much faster, how come software have
not?
* Data structures and algorithms

® codeplay’ © 2017 Codeplay Software Ltd.

In 1998, a typical machine had the following flops

.45 GFLOPS, 1 core

Single threaded C++98/C99/Fortran dominated this picture

® codeplay’ © 2017 Codeplay Software Ltd.

In 2011, a typical machine had the following flops

80 GFLOPS 4 cores

Td program the CPU, you might use C/C++11, OpenMP, TBB, Cilk, OpenCL

® codeplay’ © 2017 Codeplay Software Ltd.

In 2011, a typical machine had the following flops

80 GFLOPS 4 cores+140 GFLOPS AVX

To program the CPU, you might use C/C++11, OpenMP, TBB, Cilk, CUDA, OpenCL

To program the vector unit, you have to use Intrinsics, OpenCL, CUDA, or auto-
vectorization

® codeplay’ © 2017 Codeplay Software Ltd.

In 2011, a typical machine had the following flops

80 GFLOPS 4 cores+140 GFLOPS AVX+2500 GFLOPS GPU

To program the CPU, you might use C/C++11, OpénMP, TBB, Cilk, CUDA, OpenCL

To program the vector unit, you have to use Intrinsics, OpenCL, CUDA or auto-
vectorization

To program the GPU, you have to use CUDA, OpenCL, OpenGL, DirectX, Intrinsics,
C++AMP

® codeplay’ © 2017 Codeplay Software Ltd.

In 2017, a typical machine had the following flops

140 GFLOPS + 560 GFLOPS AVX + 4600 GFLOPS GPU

To program the CPU, you might use C/C++11/14/17, SYCL, OpenMP, TBB, Cilk,
CUDA, OpenCL

To program the vector unit, you have to use SYCL, Intrinsics, OpenCL, CUDA or
auto-vectorization, OpenMP

To program the GPU, you have to use SYCL, CUDA, OpenCL, OpenGL, DirectX,
Intrinsics, OpenMP

® codeplay’

© 2017 Codeplay Software Ltd.

“The end of Moore’s Law”

“The free lunch is over”

10000 e AMD
® Cypress
DEC
® Fujitsu
® Hitachi

® HP
® IBM

1000

“The future is parallel and
heterogeneous”

Intel
® Motorola
® MIPS
® SGI

Ciock Frequency (MHz)

1 e HAL
NexGen

12V

IIG P U S a re eve ryW h e re” 1970 1980 1990 2000 2010 2020

® codeplay’ © 2018 Codeplay Software Ltd.

Ta ke d typ|Ca| Intel Chlp ; -r Syb.ternAﬁemv-;:'rglgl:::ﬂh:emuﬁ'Cuntrnl, - _
® |Intel Corei7 7th Gen Cgint et 54 H

o 4x CPU cores ey S W
m Each with hyperthreading I
m Each with 8-wide AVX

instructions

o GPU

m With 1280 processing elements

-
5
B
£ & 8
(ol
g m
¥

© 2018 Codeplay Software Ltd.

® codeplay’

Serial C++ code alone only takes advantage mp—————

of a very small amount of the available - oD "’“"““ il
resources of the chip il i :

11 O AR
mllﬁlﬂﬂlillll.lillilllll !

=
]
g
]
-
=
o
[«]
]
e
(o)
I'p
C

. Graphics Core + -
= MNew Media Capabilities i

® codeplay’ © 2018 Codeplay Software Ltd.

Serial C++ code alone only takes advantage | s T S R
of a very small amount of the available b |
resources of the chip

Using vectorisation allows you to fully utilise
the resources of a single hyperthrea

e "-" + 1ENNkay 7
[P T
O 0 0 0 TR st e

.r : imiiii-
- il A e

-
5
B
i
o
m
¥

® codeplay’ © 2018 Codeplay Software Ltd.

Use the Proper Abstraction with C++

Cores C++11/14/17 threads, async

HW threads C++11/14/17 threads, async, hw_concurrency

Vectors Parallelism TS2->

Atomic, Fences, lockfree, futures, counters, C++11/14/17 atomics, Concurrency TS1->

transactions Transactional Memory TS1

Parallel Loops Async, TBB:parallel_invoke, C++17 parallel algorithms,
for_each

Heterogeneous offload, fpga OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja

Distributed HPX, MPI, UPC++

Caches C++17 false sharing support

Numa

TLS

Exception handling in concurrent environment

® codeplay’ pdeplay Software Ltd.

Serial C++ code alone only takes advantage | s
of a very small amount of the available | s '

resources Of th S h ! p Illllﬂﬁgﬁglm%luié;mh-m-

1O Control

Using vectorisation allows you to fully utilise
the resources of a single hyperthrea H

Using multi-threading allows you to fully |i|||;||uu|||||uu|||m."ﬁ :
utilise all CPU cores e =_

8 =savuau) Ofi pur

Graphics Core + o
NewMedmCapab:lltles g

® codeplay’ © 2018 Codeplay Software Ltd.

Use the Proper Abstraction with C++

Cores C++11444717 threads, asyrnc

HW threads C++11/14/17 threads, async, hw/ concurrency

Vectors Parallelism TSZ->

Atomic, Fences, lockfree, futures, counters, C++11/14/17 atomics, Concurrency TS1->

transactions Transactional Memory TS1

Parallel Loops Async, TBB:parallel_invoke, C++17 parallel algorithms,
for_each

Heterogeneous offload, fpga OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja

Distributed HPX, MPI, UPC++

Caches C++17 false sharing support

Numa

TLS

Exception handling in concurrent environment

® codeplay’ pdeplay Software Ltd.

Serial C++ code alone only takes advantage s Mmgm,,lgiay ,?F_,mmm
of a very small amount of the available - e

Lo LI

mnﬂlll- IIIIIHIH - ;
résources Of t h ec h I p (i]Ililm"ﬂﬂmnﬂllﬂl IIIH= EEIM“_.-_-

Using vectorisation allows you to fully utilise

Using heterogeneous dispatch allows youto & mmﬂm | m”.“‘
fully utilise the entire chip _ |

the resources of a single hyperthrea ""”” 2 uu.”’
Using multi-threading allows you to fully e L e
utilise all CPU cores i g i

l|IIIl.II

'!'1I1IIIHI!IIII|!1‘-IIIH[I1!IHJTIIIIIE e [

3.4 Graphics Core + e W
e is: New Media Capabilities |5 &
' - AN . IR

® codeplay’ © 2018 Codeplay Software Ltd.

GPGPU programming was
once a niche technology

® Limited to specific
domain

® Separate source
solutions

® \erbose low-level APIs

® \ery steep learning
curve

© 2018 Codeplay Software Ltd.

® codeplay’

® codeplay’

Coverage after C++11

Asynchronus Agents

Concurrent collections

Mutable shared state

Heterogeneous (GPUs,
accelerators, FPGA,

embedded Al
processors)
summary tasks that run operations on groups of | avoid races and Dispatch/offload to
independently and things, exploit synchronizing objects in | other nodes (including
communicate via parallelism in data and shared memory distributed)
messages algorithm structures
examples GUI,background trees, quicksorts, locked data(99%), lock- | Pipelines, reactive
printing, disk/net access | compilation free libraries (wizards), programming, offload,,
atomics (experts) target, dispatch
key metrics responsiveness throughput, many core race free, lock free Independent forward

scalability

progress,, load-shared

requirement

isolation, messages

low overhead

composability

Distributed,
heterogeneous

today's abstractions

C++11: thread,lambda
function, TLS

C++11: Async,
packaged tasks,
promises, futures,
atomics

C++11: locks, memory
model, mutex, condition
variable, atomics, static
init/term

C++11: lambda

© 2018 Codeplay Software Ltd.

Top500 contenders

| SEE——;

® codeplay’ © 2018 Codeplay Software Ltd.

Internet of Things

e All forms of accelerators, DSP, GPU, APU, GPGPU

* Network heterogenous consumer devices

» Kitchen appliances, drones, signal processors, medical imaging, auto,
telecom, automation, not just graphics engines

® codeplay’ © 2018 Codeplay Software Ltd.

This is not the case
anymore

® Almost everything has
a GPU now
® Single source solutions

C++AMP e Modern C++

SYCL programming models
CUDA Agency ® More accessible to the
Kokkos average C++ developer
HPX

Raja

® codeplay’

© 2018 Codeplay Software Ltd.

invoke async parallel algorithms future::then post

defer define_task_block dispatch asynchronous operations strand<>

® codeplay’ © 2017 Codeplay Software Ltd.

Act 2

1. What’s still missing
from C++?

2. What makes GPU
work so fast?

® codeplay’ © 2017 Codeplay Software Ltd.

The way of CPU and GPU

Host code
7
CPU co-processor of GPU
(“Host”) N (“Device”)
| D
CPU memory < | GPU memory

® codeplay’ © 2016 Codeplay Software Ltd.

The Way Of CPU and GPU 1. The CPU allocates

memory on the GPU

Host code
7
CPU co-processor of GPU
(“Host”) N (“Device”)
|_I >ﬂ
CPU memory < | GPU memory

® codeplay’ © 2016 Codeplay Software Ltd.

The way of CPU and GPU

Host code

4

CPU

co-processor of

GPU

({{Hostll)

[|

CPU memory

® codeplay’

(“Device”)

N

GPU memory

1.

The CPU allocates
memory on the GPU
The CPU copies data
from CPU to GPU

© 2016 Codeplay Software Ltd.

1. The CPU allocates
memory on the GPU

2. The CPU copies data
from CPU to GPU

Device
code
(“Kernel”)

Host code \\\\\\‘

4

CPU
({{Host”)

&

co-processor of

GPU

CPU memory

[|

® codeplay’

(“Device”)

N

GPU memory

The CPU launches
kernel(s) on the GPU

© 2016 Codeplay Software Ltd.

Host code

4

CPU
({{Host”)

Device
code

co-processor of

(“Kernel”)

W

GPU

CPU memory

[|

® codeplay’

(“Device”)

N

GPU memory

The CPU allocates
memory on the GPU
The CPU copies data
from CPU to GPU

The CPU launches
kernel(s) on the GPU
The CPU copies data to
CPU from GPU

© 2016 Codeplay Software Ltd.

CPU
(“Host”)

CPU memory

® codeplay’

The CPU

© 2016 Codeplay Software Ltd.

CPU
(“Host”)

CPU memory

® codeplay’

1. A CPU has a region of
dedicated memory

© 2016 Codeplay Software Ltd.

CPU
(“Host”)

‘)

CPU memory

® codeplay’

1. A CPU has a region of
dedicated memory

2. CPU memory is

connected to the CPU
via a bus

© 2016 Codeplay Software Ltd.

CPU (“Host”)

3 Core

Core

Core

Core

CPU memory

® codeplay’

1. A CPU has a region of
dedicated memory

2. The CPU memory is

connected to the CPU
via a bus

3. A CPU has a number of

cores

© 2016 Codeplay Software Ltd.

1. A CPU has a region of
dedicated memory

CPU (“Host”)

3 Core Core Core Core

2. The CPU memory is
connected to the CPU

| | via a bus
, 3. A CPU has a number of
Cache (multiple levels)
cores
> 4. A CPU has a number of

caches of different

levels
CPU memory

® codeplay’ © 2016 Codeplay Software Ltd.

1. A CPU has a region of

CPU (“Host”) .
3 Core Core Core Core dedicated memory
2. The CPU memory is
:) : : connected to the CPU
5 Registers Registers Registers Registers _
| | | | via a bus
, 3. A CPU has a number of
Cache (multiple levels)
cores
2 4. A CPU has a number of

caches of different

levels
5. Each CPU core has
dedicated registers

CPU memory

® codeplay’ © 2016 Codeplay Software Ltd.

Host code

4

CPU
({{Host”)

co-processor of

CPU memory

® codeplay’

A

GPU
(“Device”)

GPU memory

© 2016 Codeplay Software Ltd.

GPU
(“Device”)

GPU memory

® codeplay’

The GPU

© 2016 Codeplay Software Ltd.

GPU
(“Device”)

Global memory

® codeplay’

1.

A GPU has a region of
dedicated global memory

© 2016 Codeplay Software Ltd.

GPU
(“Device”)

Global memory

® codeplay’

A GPU has a region of
dedicated global memory

Global memory is connected

via a bus

© 2016 Codeplay Software Ltd.

GPU (“Device”)

3 Compute unit

Compute unit

Global memory

® codeplay’

A GPU has a region of
dedicated global memory
Global memory is connected
via a bus

A GPU is divided into a
number of compute units

© 2016 Codeplay Software Ltd.

1. A GPU has aregion of

GPU IID e ” .
(“Device”) dedicated global memory

3 Compute unit Compute unit 2. Global memory is connected

via a bus
3. AGPUisdividedinto a
number of compute units

4. Each compute unit has
4 Local memory Local memory

dedicated local memory

Global memory

® codeplay’ © 2016 Codeplay Software Ltd.

1. A GPU has a region of

GPU (“Device” i
(“Device”) dedicated global memory

3 Compute unit Compute unit 2. Global memory is connected

5PE | PE | PE PE | PE | PE via a bus
3. AGPUisdividedintoa

number of compute units

4. Each compute unit has
4 Local memory Local memory dedicated local memory
5. Each compute unit has a
’ number of processing
. elements

Global memory

® codeplay’ © 2016 Codeplay Software Ltd.

1. A GPU has a region of

GPU (“Device” i
(“Device”) dedicated global memory

3 Compute unit Compute unit 2. Global memory is connected

5PE | PE | PE PE | PE | PE via a bus
3. AGPUisdividedintoa

PM PM PM PM PM PM number of compute units

4. Each compute unit has
4 Local memory Local memory

dedicated local memory

5. Each compute unit has a

number of processing

. elements

Global memory 6. Each processing element has

dedicated private memory

® codeplay’ © 2016 Codeplay Software Ltd.

1. A processing element executes a
Processing

single work-item
Element

work-
item

® codeplay’ © 2016 Codeplay Software Ltd.

Processing
Element

A

work-
item

Private
memory

® codeplay’

A processing element executes a
single work-item

Each work-item can access private
memory, a dedicated memory region
for each processing element

© 2016 Codeplay Software Ltd.

Processing
Element

A

work-
item

Private
memory

Compute unit

|

)

3

work-group

® codeplay’

A processing element executes a
single work-item

Each work-item can access private
memory, a dedicated memory region
for each processing element

A compute unit executes a work-
group, composed of multiple work-
items, one for each processing
element in the compute unit

© 2016 Codeplay Software Ltd.

1. A processing element executes a

Processing 2 Compute unit 4 single work-item
Element
2. Each work-item can access private
< Al | Local memory, a dedicated memory region

memory memory .
. for each processing element
_— 3 work-group 3. A compute unit executes a work-
item

group, composed of multiple work-
items, one for each processing
element in the compute unit

4. Each work-item can access local
memory, a dedicated memory region
for each compute unit

® codeplay’ © 2016 Codeplay Software Ltd.

Processing
Element

A

work-
item

Private

»
memory

Compute unit

|

)

3

work-group

A 4

Local
memory

® codeplay’

A processing element executes a
single work-item

Each work-item can access private
memory, a dedicated memory region
for each processing element

A compute unit executes a work-
group, composed of multiple work-
items, one for each processing
element in the compute unit

Each work-item can access local
memory, a dedicated memory region
for each compute unit

A GPU executes multiple work-groups

© 2016 Codeplay Software Ltd.

1. A processing element executes a

Processing 2 Compute unit 4 single work-item
Element
2. Each work-item can access private
—» R < > Local memory, a dedicated memory region

memory memory .
. for each processing element
_— 3 work-group 3. A compute unit executes a work-
o group, composed of multiple work-

5 items, one for each processing

element in the compute unit

R R [E] o ech woritem can access o

memory, a dedicated memory region

AR RIS s wem ovotes e werkcroues

I 6. Each work-item can access global

memory, a single memory region

available to all processing elements
Global memory on the GPU

® codeplay’ © 2016 Codeplay Software Ltd.

1. Multiple work-items will execute
concurrently

® codeplay’ © 2018 Codeplay Software Ltd.

1. Multiple work-items will execute

concurrently
! 2. They are not guaranteed to all
execute uniformly

© 2018 Codeplay Software Ltd.

® codeplay’

1. Multiple work-items will execute
concurrently
! 2. They are not guaranteed to all
execute uniformly
3. Most GPUs do execute a number
of work-items uniformly (lock-

step), but that number is

unspecified

® codeplay’ © 2018 Codeplay Software Ltd.

1. Multiple work-items will execute
concurrently
! 2. They are not guaranteed to all
execute uniformly
3. Most GPUs do execute a number
of work-items uniformly (lock-
step), but that number is

. l l l l l l l l unspecified
4. A work-item can share results

with other work-items via local

and global memory

NN N N N NN

® codeplay’ © 2018 Codeplay Software Ltd.

1. Multiple work-items will execute
concurrently
! 2. They are not guaranteed to all
execute uniformly
3. Most GPUs do execute a number
of work-items uniformly (lock-
step), but that number is

. l l l l l l l l unspecified
4. A work-item can share results

with other work-items via local

data race

NN N RN

and global memory

However this means that it’s

&

possible for a work-item to read
a result that hasn’t yet been
written to yet, you have a data
race

® codeplay’ © 2018 Codeplay Software Ltd.

1. This problem can be solved by

a synchronisation primitive
% % % % % called a work-group barrier

NN N N N NN

® codeplay’ © 2018 Codeplay Software Ltd.

1. This problem can be solved by

a synchronisation primitive
% % % % % called a work-group barrier

2. Work-items will block until all

work-items in the work-group
. have reached that point

NN N N N N

® codeplay’

© 2018 Codeplay Software Ltd.

1. This problem can be solved by

a synchronisation primitive
% % % % % called a work-group barrier

2. Work-items will block until all

work-items in the work-group
. have reached that point

NN N N N NN

® codeplay’

© 2018 Codeplay Software Ltd.

1. This problem can be solved by
a synchronisation primitive
called a work-group barrier

2. Work-items will block until all
work-items in the work-group
have reached that point

--------------------------------- 3. So now you can be sure that

l l l l i l l l l all of the results that you want

to read from have been

written to

NN N RN NN

® codeplay’ © 2018 Codeplay Software Ltd.

AT A ST 1. This problem can be solved by
a synchronisation primitive
called a work-group barrier

2. Work-items will block until all
work-items in the work-group
. have reached that point
---------------------------------- 3. So now you can be sure that

l l l l i l l i l | all of the results that you want

to read from have been

data race .
written to

\\\ {A\\\ 4. However this does not apply

across work-group

boundaries, and you have a
data rance again

® codeplay’ © 2018 Codeplay Software Ltd.

Y LD AT 1. This problem can be solved by a
synchronisation primitive called
a kernel barrier (launching
separate kernels)

D

® codeplay’

© 2018 Codeplay Software Ltd.

Y LD AT 1. This problem can be solved by a
synchronisation primitive called
a kernel barrier (launching
separate kernels)

2. Again you can be sure that all of
the results that you want to read

1 from have been written to

NN N RN

® codeplay’ © 2018 Codeplay Software Ltd.

Y LD AT 1. This problem can be solved by a
synchronisation primitive called
a kernel barrier (launching
separate kernels)

2. Again you can be sure that all of
the results that you want to read

1 from have been written to

l l l l l l l l 3. However kernel barriers have a

higher overhead as they require

you to launch another kernel

NN N RN

® codeplay’ © 2018 Codeplay Software Ltd.

Y LD AT 1. This problem can be solved by a
synchronisation primitive called
a kernel barrier (launching
separate kernels)

i

Again you can be sure that all of
the results that you want to read
from have been written to

However kernel barriers have a

—
—
—
—
—
—
—
—
w

higher overhead as they require
you to launch another kernel

4. And kernel barriers require

\\\\\\\ results to be stored in global

memory, local memory is not

persistent across kernels

® codeplay’ © 2018 Codeplay Software Ltd.

Work-item % Private memory

Work- =, =5 = Work-group barrier Local memory
group

Global memory

TOREEE BEEE BEE

Kernel barrier

® codeplay’ © 2018 Codeplay Software Ltd.

CUDA vs OpenCL terminology

CUDA OpenCL

thread work-item

warp wavefront

thread block work-group

grid computation domain
global memory global memory
shared memory local memory

local memory private memory
streaming multiprocessor (SM) compute unit

scalar core processing element

® codeplay’ © 2018 Codeplay Software Ltd.

Sequential CPU code SPMD GPU code

void calc(int *in, int *out) { void calc(int *in, int *out, int id) {
for (int i = @; i < 1024; i++) { out[id] = in[id] * in[id];
out[i] = in[i] * in[i];
}
} }
calc(in, out); parallel for(calc, in, out, 1024);

® codeplay’ © 2016 Codeplay Software Ltd.

SIMD vs SPMD

SIMD SPMD

P [
< »

SPMD: Multiple autonomous processors simultaneously executing the same
program (but at independent points, rather than in the lockstep that SIMD
imposes) on different data.

You can launch multiple threads, each using their respective SIMD lanes

SPMD is a parallel execution model and assumes multiple cooperating
processors executing a program.

® codeplay’ © 2016 Codeplay Software Ltd.

https://en.wikipedia.org/wiki/Lockstep_(computing)

® Kernels are launched in the

nd-range {{12, 12}, {4, 4}} form of an nd-range

\ 4

<
<

® Annd-rangecanbel,2or3

dimensions

® An nd-range describes a

number of work-items divided

into equally sized work-groups

® An nd-range is constructed

from the total number of

work-items (global range) and

the number of work-items in a

work-group (local range)

® codeplay’ © 2018 Codeplay Software Ltd.

® An nd-range is mapped to the

nd-range {{12, 12}, {4, 4}} underlying hardware

<
<

\ 4

o Work-groups are mapped

to compute units

o Work-items are mapped

to processing units

® codeplay’ © 2018 Codeplay Software Ltd.

® The kernel is executed once

nd-range {{12, 12}, {4, 4}} per work-item in the nd-range

<
<

\ 4

® FEach work item knows it’s

index within the nd-range
global range {12, 12}
local range {4, 4}
group range {3, 3}
global id {6, 5}

local id {2, 1}

group id {1, 1}

S o o 0 T W

® codeplay’ © 2018 Codeplay Software Ltd.

Act 3

1. What’s still missing
from C++?

2. What makes GPU
work so fast?

3. Whatis Modern C++
that works on GPUs,
CPUs, everything?

® codeplay’ © 2018 Codeplay Software Ltd.

SYCL for OpenCL

S BRI
LSYCL | ¢ ~
_/’ OpenCL

Cross-platform, single-source, high-level, C++ programming layer
Built on top of OpenCL and based on standard C++11
Delivering a heterogeneous programming solution for C++

® codeplay’ © 2018 Codeplay Software Ltd.

Why use SYCL to program a GPU?

® Enables programming heterogeneous devices such as
GPUs using standard C++

® Provides a high-level abstraction for development of
complex parallel software applications

® Provides efficient data dependency analysis and task
scheduling and synchronisation

® codeplay’ © 2018 Codeplay Software Ltd.

The SYCL ecosystem

[

Applications

C++ template libraries

SYCL for OpenCL

OpenCL

OpenCL-enabled devices

v

® codeplay’ 93

© 2018 Codeplay Software Ltd.

—g-leobad— vec add(float *a, float *b, float *c) { |

return c[i1] = a[i1] + b[i]; vector<float> a, b, c;
ks
Horagra—paratltel—fei=
float *a, *b, *c; for(int i = 0- § < a sizel)- i++)

vec_add==<range=>>(g array_view<float> a, b, c;
extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> 1dx) wesErietCam) {
c[1dx] = a[1dx] + b[i1dx];
s

cgh.parallel _for<vec _add>(range, [=](cl::sycl::id<2> i1dx) {
c[idx] = a[i1dx] + c[1dx];
»):

® codeplay’ © 2018 Codeplay Software Ltd.

SYCL separates the storage and access of data through the use
of buffers and accessors

SYCL provides data dependency tracking based on accessors
to optimise the scheduling of tasks

® codeplay’ © 2018 Codeplay Software Ltd.

il

Accessor J

Y

CGA

A

Buffer

il

Accessor J

Y

CGB

A

® codeplay’ © 2018 Codeplay Software Ltd.

host_buffer Request access to a buffer
accessor immediately on the host

global_buffer Request access to a buffer in
accessor the global memory region

Buffer

ConStant—bUffer Request access to a buffer in
accessor the constant memory region

Allocate memory in the local
memory region

local accessor

® codeplay’ © 2018 Codeplay Software Ltd.

Read accessor

Buffer A

Write accessor

0

Buffer B

[Buffer C J

[Buffer D

Read accessor

Write accessor

Read accessor

Read accessor

/

Write accessor

® codeplay’ © 2018 Codeplay Software Ltd.

Implicit vs Explicit Data Movement

Examples: Examples:
O SYCL, C++ AMP O OpenCL, CUDA, OpenMP
Implementation: Implementation:
® Data is moved to the device C Data is moved to the device via
implicitly via cross host CPU / explicit copy APIs

device data structures

® codeplay’ © 2018 Codeplay Software Ltd.

Benefits of data dependency task graphs
e Allows you to describe your problems in terms of

relationships
o Removes the need to en-queue explicit copies
o Removes the need for complex event handling

® Allows the runtime to make data movement optimizations

o Preemptively copy data to a device before kernels
o Avoid unnecessarily copying data back to the host after execution on a

device
o Avoid copies of data that you don’t need

© 2018 Codeplay Software Ltd.

® codeplay’

® codeplay’

Coverage after C++17

Asynchronus Agents

Concurrent collections

Mutable shared state

Heterogeneous (GPUs,
accelerators, FPGA,
embedded Al
processors)

summary

tasks that run
independently and
communicate via
messages

operations on groups of
things, exploit
parallelism in data and
algorithm structures

avoid races and
synchronizing objects in
shared memory

Dispatch/offload to
other nodes (including
distributed)

today's abstractions

C++11: thread,lambda
function, TLS, async

C++14: generic lambda

C++11: Async,
packaged tasks,
promises, futures,
atomics,

C++ 17: ParallelSTL,
control false sharing

C++11: locks, memory
model, mutex, condition
variable, atomics, static
init/term,

C++ 14:
shared_lock/shared_tim
ed_mutex, OOTA,
atomic_signal_fence,

C++ 17: scoped _lock,
shared_mutex, ordering
of memory models,
progress guarantees,
TOE, execution policies

C++17: , progress
guarantees, TOE,
execution policies

© 2018 Codeplay Software Ltd.

C++17 introduces a number of parallel algorithms and new execution
policies which dictate how they can be parallelized

The new algorithms are unordered, allowing them to perform in parallel

Execution policies:

e sequenced_execution_policy (seq)
e parallel execution_policy (par) .
e parallel unsequenced execution policy (par_unseq)

® codeplay’ © 2018 Codeplay Software Ltd.

® codeplay’

result accumulate(first, last,
init,
[binary op])

acc = init
itin [first, last)
acc = binary op(acc, *it)
acc

© 2018 Codeplay Software Ltd.

result accumulate(first, last,
init,
[binary op])

acc = init
itin [first, last)
acc = binary op(acc, *it)
acc

® codeplay’

init

© 2018 Codeplay Software Ltd.

result accumulate(first, last,
init,
[binary op])

acc = init
itin [first, last)
acc = binary op(acc, *it)
acc

® codeplay’

42

72

© 2018 Codeplay Software Ltd.

result accumulate(first, last,
init,
[binary op])

acc = init
itin [first, last) inorder
acc = binary op(acc, *it)
acc

® codeplay’

42

72

© 2018 Codeplay Software Ltd.

® codeplay’

result reduce([execution policy,]
first, last,
init,
[binary op])

first acc = GSUM(binary_op, init,
*first, ..
*(1ast-1)5

then return acc

© 2018 Codeplay Software Ltd.

result reduce([execution_policy,]
first, last,
init,
[binary_op])

acc = GSUM(binary op, init,
*first, ..
*(last—l)j

acc

® codeplay’

init

© 2018 Codeplay Software Ltd.

result reduce([execution_policy,]
first, last,
init,
[binary_op])

acc = GSUM(binary op, init,
*first, ..
*(last—l)j

acc

® codeplay’

init

© 2018 Codeplay Software Ltd.

result reduce([execution_policy,]
first, last,
init,
[binary_op])

acc = GSUM(binary op, init,
*first, ..
*(last—l)j

acc

® codeplay’

42

© 2018 Codeplay Software Ltd.

result reduce([execution_policy,]
first, last,
init,
[binary_op])

acc = GSUM(binary op, init,
*first, ..
*(last—l)j

acc

® codeplay’

42

72

© 2018 Codeplay Software Ltd.

42 6 8 7 1 3 2 3 42 6 8 7 1 3 2 3

® codeplay’ © 2018 Codeplay Software Ltd.

42 6 8 7 1 3 2 3 42 6 8 7 1 3 2 3

® codeplay’ © 2018 Codeplay Software Ltd.

42 6 8 7 1 3 2 3 42 6 8 7 1 3 2 3

® codeplay’ © 2018 Codeplay Software Ltd.

42 6 8 7 1 3 2 3 42 6 8 7 1 3 2 3

® codeplay’ © 2018 Codeplay Software Ltd.

Due to the requirements of GSUM reduce is allowed to be unordered

However this means that binary_op is required to be both commutative
and associative

® codeplay’ © 2018 Codeplay Software Ltd.

Commutativity means changing the order of operations does not change
the result

Integer operations Floating-point operations

X-yl=y-x X-yl=y-x
x/yl=y/x x/yl=y/x

® codeplay’ © 2018 Codeplay Software Ltd.

Associativity means changing the grouping of operations does not change
the result

Integer operations Floating-point operations
(x+y)+z!l=x+(y+2)
(x*y)*zl=x*(y*z)
(X-y)-z!l=x-(y-2) (x-y)-zl=x-(y-2)
(x/y)/z'=x/(y/2) (x/y)/z'=x/(y/2)

® codeplay’ © 2018 Codeplay Software Ltd.

So how do we parallelise this on a GPU?

e \We want to utilize the available hardware

e We want to keep dependencies to a minimum

e \We want to make efficient use of local memory and work-
group synchronization

® codeplay’ © 2018 Codeplay Software Ltd.

AL TTTEEL L VL L L LA

R R B —
i i i
Vv
)

A

A\

v v

i
Vv
\ -

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy t policy, It first, It last, T init, BinOp binary_op) {

Here we have the
standard prototype
for the reduce
parallel algorithm,
taking a SYCL
execution policy

There is an
assumption here
that the iterators are
contiguous

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy t policy, It first, It last, T init, BinOp binary_op) {

using value_t = typename std::iterator_traits<It>::value_type; SYCL Sepa rateS
buffer<value_t, 1> bufI(first, last);
bufL.set,_final, data(nullptr); memory storage and

access using buffers
and accessors

Buffers manage a
region of memory
across host and one
or more devices

Accessors represent
an instance of access
to a particular buffer

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy t policy, It first, It last, T init, BinOp binary_op) {

using value_t = typename std::iterator_traits<It>::value_type; We Create a buffer

buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);

to manage the input
data

We call
set_final_data with
nullptr in order to
tell the runtime not
to copy back to the
original host address
on destruction

® codeplay’ © 2018 Codeplay Software Ltd.

-template <class It, class T, class BinOp>
T reduce(sycl_execution_policy t policy, It first, It last, T init, BinOp binary_op) { .
using value_t = typename std::iterator_traits<It>::value_type; Buffers SynCh ronise
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr); and COpy thEIr data
back to the original
pointer when they
are destroyed
So in this case, on
returning from the
reduce function
L}

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp>

T reduce(sycl_execution_policy t policy, It first, It last, T init, BinOp binary_op) { .
using value_t = typename std::iterator_traits<It>::value_type; In SYCL deVICGS are
buffer<value_t, 1> bufI(first, last); .
bufI.set_final_data(nullptr); SeleCted USIng d
queve algpu_selectort}); device selector

A device selector
picks the best device
based on a
particular heuristic

%

device

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy t policy, It first, It last, T init, BinOp binary_op) {

using value_t = typename std::iterator_traits<It>::value_type; We Create a queue
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr); that we can

queue q(gpu_selector{});

enqueue work on
taking a
gpu_selector, which
will return a GPU to
execute work on

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy t policy, It first, It last, T init, BinOp binary_op) {

using value_t = typename std::iterator_ traits<It>::value_type; We deduce the data
buffer<value_t, 1> bufI(first, last);

bufI.set_final_data(nullptr); . 0

queue q(gpu_selector{}); Size Of the |nput

size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info: :device: :max_work_group_size>(); ra nge and the

maximum work-
group size

These are important
for determining how
work is distributed
across work-groups

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy t policy, It first, It last, T init, BinOp binary_op) {

using value_t = typename std::iterator_traits<It>::value_type; We Create a Ioop
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr); that W||| |aunCh a

ajuste q(gpu_§e1ector{});' .
Zt:i_;aizziiéizu:;:::d;S;::iZSiz:B;::;).r,hcoqmco :device: :max_work_group_size>(); SYCL ke rnel for eaCh
do
{ kernel invocation
required for the

reduction

After each iteration

the data size is

divided by the work-
datasize /= maxorkGroupsize; group size

} while (dataSize > 1);

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy t policy, It first, It last, T init, BinOp binary_op) {

using value_t = typename std::iterator_traits<It>::value_type; In SYCL a” Wor‘k |S
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr); enqueued to a

queue q(gpu_selector{});

size_t dataSize = std::distance(first, last); 5
auto maxWorkGroupSize = q.get_device().get_info<info::device: :max_work_group_size>(); queue Via cOmma nd
do {

q.submit([&] (handler& cgh) { groups Wthh

represent the kernel
function, an nd-
range and the data

dependencies
We create a
})s
dataSize /= maxWorkGroupSize; comma nd group tO

} while (dataSize > 1);

enqueue a kernel

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy t policy, It first, It last, T init, BinOp binary_op) {

using value_t = typename std::iterator_traits<It>::value_type; We determn’]e the
buffer<value_t, 1> bufI(first, last);

bufI.set_final_data(nullptr);

queue q(gpu_selector{}); gIObaI range to be

size_t dataSize = std::distance(first, last); .
auto maxWorkGroupSize = q.get_device().get_info<info::device: :max_work_group_size>(); the data S|ze
do {
g.submit([&] (handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));

We determine the
local range to be the
max work group
size, providing that’s
smaller than the

data size
s

dataSize /= maxWorkGroupSize;
} while (dataSize > 1);

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy t policy, It first, It last, T init, BinOp binary_op) {

using value_t = typename std::iterator_traits<It>::value_type; We Create an
buffer<value_t, 1> bufI(first, last);

bufI.set_final_data(nullptr);

oo oz celector(): accessor for the
size_t dataSize = std::distance(first, last); .

auto maxWorkGroupSize = q.get_device().get_info<info::device: :max_work_group_size>(); IF\F)LJt k)LJffEEF

do {

g.submit([&] (handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);

The access mode is
read_write because
we want to be able
to write back a
result

1
}s
dataSize /= maxWorkGroupSize;
} while (dataSize > 1);

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type; A Iocal accessor
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device: :max_work_group_size>(); Of |Oca| memory per
do {
g.submit([&] (handler& cgh) { Work_group
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);

allocates an amount

We create a local
accessor of elements
of value type with
the size of the local

1; range
}s
dataSize /= maxWorkGroupSize;
} while (dataSize > 1);

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy t policy, It first, It last, T init, BinOp binary_op) {

using value_t = typename std::iterator_traits<It>::value_type; In SYCL ther‘e are
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{}); Several Ways tO
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device: :max_work_group_size>(); |aunCh ke r'n6|
do {
q.submit([&](handler& cgh) { funct|ons Wthh
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize)); 0
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh); express dlfferent

accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);

cgh.parallel_for< >(nd_range<1>(global, local), [=](nd_item<1> it) { fOFmS Of pa ra||E|I5m

In this case we are
using parallel_for,

1s which takes an
s
dataSize /= maxWorkGroupSize; nd_ra nge and a

} while (dataSize > 1);

function object

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy t<KernelName> policy, It first, It last, T init, BinOp binary_op) {

using value_t = typename std::iterator_traits<It>::value_type; \/\/63 F)I’()\/i(jEE d
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector(}); template parameter
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device: :max_work_group_size>(); tO pa r'a||e|_f0r tO
do {
q.submit([&](handler& cgh) { name the kernel
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize)); a
function

auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {

This is necessary for
portability between
C++ compilers

1)s
1)

dataSize /= maxWorkGroupSize;
} while (dataSize > 1);

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_ t<KernelName> policy, It first, It last, T init, BinOp binary_op) {

using value_t = typename std::iterator_traits<It>::value_type; We Copy eaCh
buffer<value_t, 1> bufI(first, last);

bufI.set_final_data(nullptr);
oo oz celector(): element from global
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device: :max_work_group_size>(); memory tO |0ca|
do {
q.submit([&](handler& cgh) { memory Of the”'
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize)); Q
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh); respeCtlve Work
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) { group

scratch[it.get_local_id(@)] = inputAcc[it.get_global_id(9)];

1
}s
dataSize /= maxWorkGroupSize;
} while (dataSize > 1);

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp, class KernelName>

T reduce(sycl_execution_policy_ t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type; We |nsert a Work-
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);

group barrier to

auto maxWorkGroupSize = q.get_device().get_info<info::device: :max_work_group_size>(); ensure a” WO rk‘
do {
q.submit([&](handler& cgh) { |tems N eaCh Work_

auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize)); 0
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh); group have Copled
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh); .
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) { before mOV|ng on

scratch[it.get_local_id(@)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);

1
}s
dataSize /= maxWorkGroupSize;
} while (dataSize > 1);

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_ t<KernelName> policy, It first, It last, T init, BinOp binary_op) {

using value_t = typename std::iterator_traits<It>::value_type; We Create a Ioop
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr); that W||| |terate over

queue q(gpu_selector{});

size_t dataSize = std::distance(first, last); . .
auto maxWorkGroupSize = q.get_device().get_info<info::device: :max_work_group_size>(); the WOFk-ItemS N
do {

g.submit([&] (handler& cgh) { the work-group and

auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize)); o {8
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh); prOVIdIng an Offset
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh); . .
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) { tO the m|dp0|nt
scratch[it.get_local_id(@)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[@] / 2; offset > @; offset /= 2) {

}

1)
1)

dataSize /= maxWorkGroupSize;
} while (dataSize > 1);

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_ t<KernelName> policy, It first, It last, T init, BinOp binary_op) {

using value_t = typename std::iterator_traits<It>::value_type; We bra nCh on the

buffer<value_t, 1> bufI(first, last);

bufI.set_final_data(nullptr); fIrSt half Of the

queue q(gpu_selector{});

size_t dataSize = std::distance(first, last); .
auto maxWorkGroupSize = q.get_device().get_info<info::device: :max_work_group_size>(); WO rk-ltemS per |00p
do {
q.submit([&](handler& cgh) { by Only execut|ng
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize)); 0
work-items before

auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) { the Offset
scratch[it.get_local_id(@)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[@] / 2; offset > @; offset /= 2) {
if (it.get_local_id(@) < offset) {

}

1)
)

dataSize /= maxWorkGroupSize;
} while (dataSize > 1);

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp, class KernelName>

T reduce(sycl_execution_policy_ t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type; We Ca” the
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last); .
auto maxWorkGroupSize = q.get_device().get_info<info::device: :max_work_group_size>(); E|ementS N |Oca|
do {

q.submit([&](handler& cgh) { memory Of the

auto global = dataSize;

binary_op with the

auto local = range<1>(std::min(dataSize, maxWorkGroupSize)); Q
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh); Current Work-ltem
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh); .
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) { and the respect|ve
scratch[it.get_local_id(@)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space); WO rk_ltem on the

for (size_t offset = local[@] / 2; offset > @; offset /= 2) {

if (it.get_local_id(@) < offset) { .
’ scrl‘atii[itc.J;:t_iocal_idc(Je)ie= binary_op(scratch[it.get_local_id(0)], Other Slde Of the
scratch[it.get_local_id(@) + offset]); .
} offset and assign the
) result to the
o element in local
dataSize /= maxWorkGroupSize;
} while (datasize > 1); memory of the

current work-item

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_ t<KernelName> policy, It first, It last, T init, BinOp binary_op) {

using value_t = typename std::iterator_traits<It>::value_type; We |nsert a ba r‘ner‘

buffer<value_t, 1> bufI(first, last);

bufI.set_final_data(nullptr); _
oo oz celector(): to ensure all work
size_t dataSize = std::distance(first, last); . .
auto maxWorkGroupSize = q.get_device().get_info<info::device: :max_work_group_size>(); ItemS N the Ccu rrent
do {
g.submit([&] (handler& cgh) { |()()F) f]Ei\/EE

auto global = dataSize;

auto local = range<1>(std::min(dataSize, maxWorkGroupSize)); 0

auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh); performed thelr

accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh); .

cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) { Operatlon

scratch[it.get_local_id(@)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[@] / 2; offset > @; offset /= 2) {

if (it.get_local_id(@) < offset) {

scratch[it.get_local_id(@)] = binary_op(scratch[it.get_local_id(9)],
scratch[it.get_local_id(@) + offset]);
¥
it.barrier(access::fence_space::local_space);

}

3
3
dataSize /= maxWorkGroupSize;
} while (dataSize > 1);

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_ t<KernelName> policy, It first, It last, T init, BinOp binary_op) {

using value_t = typename std::iterator_traits<It>::value_type; Once the |Oop has
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr); Q
oo oz celector(): complete there will
size_t dataSize = std::distance(first, last); .
auto maxWorkGroupSize = q.get_device().get_info<info::device: :max_work_group_size>(); be d S|ng|e Value fOF
do {

g.submit([&] (handler& cgh) { eaCh Work_group N

auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh); . .
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) { f|rst Work-ltem

scratch[it.get_local_id(@)] = inputAcc[it.get_global_id(0)];

it.barrier(access::fence_space::local_space);

for (size_t offset = local[@] / 2; offset > @; offset /= 2) {

if (it.get_local_id(@) < offset) {
scratch[it.get_local_id(@)] = binary_op(scratch[it.get_local_id(9)],

local memory for the

) scratch[it.get_local_id(@) + offset]); We Copy th|s Value
it.barrier(access::fence_space::local_space); 2 Q
, into an element in
if (it.get_local_id(@) == ©) { inputAcc[it.get_group(@)] = scratch[it.get_local_id(®)]; }
1; global memory for
3
dataSize /= maxWorkGroupSize; the cu rrent Work

} while (dataSize > 1);

group

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_ t<KernelName> policy, It first, It last, T init, BinOp binary_op) {

using value_t = typename std::iterator_traits<It>::value_type; A host accessor
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr); prOVIdeS |mmed|ate

queue q(gpu_selector{});

size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device: :max_work_group_size>(); aCcess tO data
do {
q.submit([&](handler& cgh) { ma|nta|ned by a
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize)); b
uffer

auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);

accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);

cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(@)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);

for (size_t offset = local[@] / 2; offset > @; offset /= 2) {
if (it.get local_id(@) < offset) { We create a host
scratch[it.get_local_id(@)] = binary_op(scratch[it.get_local_id(9)], .
scratch[it.get _local_id(@) + offset]); accessor to retrieve
}
it.barrier(access::fence_space::local_space); the flnal reSU|t O.I:

¥
if (it.get_local_id(®) == @) { inputAcc[it.get_group(@)] = scratch[it.get_local_id(®)]; }

1) the reduction
s

dataSize /= maxWorkGroupSize;
} while (dataSize > 1);
auto accH = bufI.template get_access<access::mode::read>();

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_ t<KernelName> policy, It first, It last, T init, BinOp binary_op) {

using value_t = typename std::iterator_traits<It>::value_type; Once the data S|Ze
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
oo oz celector(): has been reduced to
size_t dataSize = std::distance(first, last); .
auto maxWorkGroupSize = q.get_device().get_info<info::device: :max_work_group_size>(); 1 thIS means the
do {
q.submit([&](handler& cgh) { reduct|on IS

auto global = dataSize;

auto local = range<1>(std::min(dataSize, maxWorkGroupSize));

auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh); Complete and we

accessor<value_t, 1, access::mode::read_write, access::target::local> scratch(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) { can return the reSU|t
scratch[it.get_local_id(@)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[@] / 2; offset > @; offset /= 2) {
if (it.get_local_id(@) < offset) {
scratch[it.get_local_id(@)] = binary_op(scratch[it.get_local_id(9)],

} scratch[it.get_local_id(®@) + offset]); We Ca” b|nary_op
, it.barrier(access::fence_space::local_space); Wlth |n|t and the
if (it.get_local_id(®) == @) { inputAcc[it.get_group(@)] = scratch[it.get_local_id(®)]; }
" result of the
3
dataSize /= maxWorkGroupSize; reductlon and then
} while (dataSize > 1);
auto accH = bufI.template get_access<access::mode::read>(); we return the reSU|t

return binary_op(init, accH[9]);

}

® codeplay’ © 2018 Codeplay Software Ltd.

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_ t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device: :max_work_group_size>();
do {
g.submit([&] (handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(@)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[@] / 2; offset > @; offset /= 2) {
if (it.get_local_id(@) < offset) {
scratch[it.get_local_id(@)] = binary_op(scratch[it.get_local_id(9)],
scratch[it.get_local_id(@) + offset]);

}
it.barrier(access::fence_space::local_space);
¥
if (it.get_local_id(®) == @) { inputAcc[it.get_group(@)] = scratch[it.get_local_id(®)]; }
3

3

dataSize /= maxWorkGroupSize;
} while (dataSize > 1);
auto accH = bufI.template get_access<access::mode::read>();
return binary_op(init, accH[®@]);

}

® codeplay’ © 2018 Codeplay Software Ltd.

Ignite your applications
with XL Compilers
fe G, & Fortran

ot

Edison
Design
Z Group

Visual C++

SYCL source code

rd macros required)

*,
"..!ex perimental!)

Any CPU Any CPU

= NVIDIA GPUs

OpenCL 1.2

- pretty much anything
3}

"4 (with OpenMP)

OpenCL + SPIR-df Jll ROCm |

OpenCL + SPIR-V

- Intel CPUS/GPUS ko
i snnl i - AMDGPUS {with OpenMP) - pocl :%F::.i':mm -AMDGPUs - NVIDIA GPUs
- other SPIR-
(depending on
devices? driver stack) = Xilinx FPGAs
- ARM Mali

- Renesas R-Car

® codeplay’ © 2018 Codeplay Software Ltd.

SYCL source code

(effort announced by Intel on 2019/01/11)

-

(non-standard macros required)

.
nt®
|---l:---lll""

e
.

hipSYCL

'*,.{experimenta}!}

*
PTX devices

- NVIDIA GPU
OpenCL + SPIR(-V) .

'¢£experimentall)
L 3

",. Any CPU

%s., (with OpenMP)
OpenCL + SPIR-df

OpenCL 1.2

- pretty much anything
_ N

OpenCL + SPIR-V

- Intel CPUs/GPUs
- Intel CPUs/GPUs

- AMD GPUSs (with OpenMP) - pocl (%F;l:'s, NVIDIA -AMD GPUs - NVIDIA GPUs
- other SPIR-V (daperiding on s)
devices? driver stack) - Xilinx FPGAs
- ARM Mali

- Renesas R-Car

® codeplay’ © 2018 Codeplay Software Ltd.

Conclusion

We looked at how to write a reduction for the GPU in C++ using SYCL
We looked at how the SYCL programming model allows us to do this
We looked at how this applies to the GPU architecture

We looked at why this is so important in modern C++

® codeplay’ © 2018 Codeplay Software Ltd.

Use the Proper Abstraction with C++

Cores C++11/14/17 threads, async

HW threads C++11/14/17 threads, async

Vectors Parallelism TS2->C++20

Atomic, Fences, lockfree, futures, counters, C++11/14/17 atomics, Concurrency TS1->C++20,

transactions Transactional Memory TS1

Parallel Loops Async, TBB:parallel_invoke, C++17 parallel algorithms,
for_each

Heterogeneous offload, fpga OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja
P0796 on affinity

Distributed HPX, MPI, UPC++
P0796 on affinity

Caches C++17 false sharing support

Numa Executors, Execution Context, Affinity, P0443-
>Executor TS

TLS EALS, P0772

Exception handling in concurrent environment EH reduction properties
PO797

® codeplay’ pdeplay Software Ltd.

® codeplay’ © 2018 Codeplay Software Ltd.

What can | do with a Parallel For Each?

System Agent wDisplay, Memaory Control,
1O Control =

a R Py U e
I R O RN
- e © i e e g T 'y - = .
i size_t nElems = 1000u;

std::vector<float> nums(nElems);

AoupE] Ol pue Aoy

|| TR std::fill_n(std::begin(v1l), nElems, 1);

std::for_each(std::begin(v), std::end(v),
N [=]1(float f) { f*f+ f});
Traditional for each uses only one core,

New Media Capailties |8 & & rest of the die is unutilized!

Intel Core i7 7th generation

® codeplay’ © 2018 Codeplay Software Ltd.

System Agent w/Display, Memory Control
I/O Control

size_t nElems = 1000u;
std::vector<float> nums(nElems);

std::fill_n(std::execution_policy::par,
std::begin(vl), nElems, 1);

std::for_each(std::execution_policy::par,
std::begin(v), std::end(v),
[=]1(floatf) { f*f+f3});

Workload is distributed across cores!

Intel Core i7 7th generation (mileage may vary, implementation-specific behaviour)

® codeplay’ © 2018 Codeplay Software Ltd.

size_t nElems = 1000u;
std::vector<float> nums(nElems);

std::fill_n(std::execution_policy::par,
std::begin(vl), nElems, 1);

std::for_each(std::execution_policy::par,

 p— Om What about this std::begin(v), std::end(v),
5. New Media Capabititiesﬂ ; -a': part? [:] (ﬂoat f) { f*f+f }),

Workload is distributed across cores!

Intel Core i7 7th generation (mileage may vary, implementation-specific behaviour)

® codeplay’ © 2018 Codeplay Software Ltd.

What can | do with a Parallel For Each?

System Agent wDisplay, Memaory Control,
1O Control

SYCL

size_t nElems = 1000u;
std::vector<float> nums(nElems);

i _ std::fill_n(sycl_policy,
= i 5 std::begin(vl), nElems, 1);

std::for_each(sycl _named_policy
; <class KernelName=>,
B0 Elerms) it std::begin(v), std::end(v),
‘s [=](float f) { £ £+ f)
Workload is distributed on the GPU cores

Intel Core i7 7th generation (mileage may vary, implementation-specific behaviour)

® codeplay’ © 2018 Codeplay Software Ltd.

What can | do with a Parallel For Each?

SYCL

size_t nElems = 1000u;
std::vector<float> nums(nElems);

std::fill_n(sycl heter_policy(cpu, gpu, 0.5),

s A=A ' std::begin(vl), nElems, 1);

|51 T N e RN

EIERRR BT

std::for_each(sycl heter_ policy<class kName=>
(cpu, gpu, 0.5),
std::begin(v), std::end(v),

o N £ EIEEED LT G G0
SRR, SN Workload is distributed on all cores!

=

uiﬂiﬁ:ua: i

Experi mental! (mileage may vary, implementation-specific behaviour)

® codeplay’ 155 © 2018 Codeplay Software Ltd.

cppcon | 2017

Current “Desktop” technology

SIS Hpren b sorwa Han b

Paralbal STL fa
CPU and GFU
Thie Future of

Helerogensous/

Distributed C++

etk Ceee IT Féh ganersiton [coves & B2 bl

i

Cpplon.org

® codeplay’ © 2018 Codeplay Software Ltd.

Demo Results - Running std::sort

(Running on Intel i7 6600 CPU & Intel HD Graphics 520)

size 2716 2n17 2”18 2719
std::seq 0.27031s 0.620068s 0.669628s 1.48918s
std::par 0.2594865s 0.478032s 0.444422s 1.83599s

std::unseq 0.24258s 0.413909s 0.456224s 1.01958s
sycl_execution_policy 0.273724s 0.269804s 0.277747s 0.399634s

® codeplay’

© 2018 Codeplay Software Ltd.

SYCL Ecosystem

® ComputeCpp -
https://codeplay.com/products/computesuite/computecpp

triSYCL - https://github.com/triSYCL/triSYCL

SYCL - http://sycl.tech

SYCL ParallelSTL - https://github.com/KhronosGroup/SyclParallelSTL
VisionCpp - https://github.com/codeplaysoftware/visioncpp
SYCL-BLAS - https://github.com/codeplaysoftware/sycl-blas
TensorFlow-SYCL - https://github.com/codeplaysoftware/tensorflow
Eigen http://eigen.tuxfamily.org

® codeplay’ © 2018 Codeplay Software Ltd.

https://codeplay.com/products/computesuite/computecpp
https://github.com/triSYCL/triSYCL
http://sycl.tech/
https://github.com/KhronosGroup/SyclParallelSTL
https://github.com/codeplaysoftware/visioncpp
https://github.com/codeplaysoftware/sycl-blas
https://github.com/codeplaysoftware/tensorflow
http://eigen.tuxfamily.org/

® codeplay’

Eigen Linear Algebra Library

SYCL backend in mainline

Focused on Tensor support, providing
support for machine learning/CNNs

Equivalent coverage to CUDA

Working on optimization for various
hardware architectures (CPU, desktop and
mobile GPUs)

https://bitbucket.org/eigen/eigen/

© 2018 Codeplay Software Ltd.

https://bitbucket.org/eigen/eigen/

® codeplay’

TensorFlow

SYCL backend support for all major CNN
operations

Complete coverage for major image
recognition networks

GoogLeNet, Inception-v2, Inception-v3,
ResNet,

Ongoing work to reach 100% operator
coverage and optimization for various
hardware architectures (CPU, desktop and
mobile GPUs)

https://github.com/tensorflow/tensorflow

TensorFlow, the TensorFlow logo and any related marks are

trademarks of Google Inc.

© 2018 Codeplay Software Ltd.

https://github.com/tensorflow/tensorflow

SYCL Ecosystem

e Single-source heterogeneous programming using STANDARD C++
- Use C++ templates and lambda functions for host & device code

- Layered over OpenCL

e Fast and powerful path for bring C++ apps and libraries to OpenCL
- C++ Kernel Fusion - better performance on complex software than hand-coding
- Halide, Eigen, Boost.Compute, SYCLBLAS, SYCL Eigen, SYCL TensorFlow, SYCL GTX
- Clang, triSYCL, ComputeCpp, VisionCpp, ComputeCpp SDK ...

e More information at http://sycl.tech

Developer Choice
The development of the two specifications are aligned so ‘

code can be easily shared between the two approaches

C++ Kel’l’]e| Language Single_source C++ @CL‘ Other technologies
Low Level Control - . T e |

‘GPGPU’-style separation of Programmer Familiarity = 2 T S S
. N Approach also taken by A OpencCL Devices Py Custom Processor
device-side kernel source £ /A E—— |
d d host cod C++ AMP and OpenMP : &= x\ ——)
code and host code Opencl i v Y T B
GPU DSP

® codeplay’ © 2018 Codeplay Software Ltd.

http://sycl.tech/

HSA Foundation: Chair of
software group, spec editor of
runtime and debugging
Khronos: chair & spec editor of
SYCL. Contributors to OpenCL,
Safety Critical, Vulkan
ISO C++: Chair of Low Latency,
Embedded WG; Editor of SG1
Concurrency TS
EEMBC: members

Vectort for 586

First showing of
VectorC{VU}

Dalivarad VectorC(VU)
10 the Mational Centes
fior Supercomputing

VectorClEE) released

Codeplay

* Members of EU research
consortiums: PEPPHER,
LPGPU, LPGPU2, CARP

* Sponsorship of PhDs and EngDs

for heterogeneous programming:

HSA, FPGAS, ray-tracing

Collaborations with academics

Members of HIPEAC

HSA LLDB Debugger

SPIR-V tools

RenderScript debugger in AOSP
LLDB for Qualcomm Hexagon
TensorFlow for OpenCL

C++ 17 Parallel STL for SYCL
VisionCpp: C++ performance-
portable programming model for
vision

Sieve Ce+ Programming
System released

wia chooses Codeplay

for PhysX

Codeplay joins the
Khronos Gioup

OfflaadCt. technolagy
developed

Codaplay joins the
PEPPHER project

Mew RED Division

Becomes specification
wditor of the SYCL
wtandard

Building an LLVM back-end
Creating an SPMD Vectorizer for
OpenCL with LLVM

Challenges of Mixed-Width
Vector Code Gen & Scheduling
in LLVM

C++ on Accelerators: Supporting
Single-Source SYCL and HSA
LLDB Tutorial: Adding debugger
support for your target

LLOW Machine Interface
Driver roloans

Codeplay joins the GARP
project

Codeplay shows
technology 1o

Chair of HSA System

Runtime working group

Development of tools
the Vulkan

on OpenCL using SPIR

AP1

Company

Based in Edinburgh, Scotland
57 staff, mostly engineering
License and customize
technologies for semiconductor
companies

ComputeAorta and
ComputeCpp: implementations
of OpenCL, Vulkan and SYCL
15+ years of experience in
heterogeneous systems tools

Open Source HSA
Debugger release

Rolosnos partial
OpenCL support (via
SYCL) for Eigen Tensors
1o power Tonsod low

ComputeAorta 1.0
release

ComputeCpp Community
Edition beta release

Codeplay build the software platforms that deliver massive performance

© 2018 Codeplay Software Ltd.

® codeplay’

What our ComputeCpp users say about us

Benoit Steiner — Google

TensorFlow engineer

i

“We at Google have been working
closely with Luke and his Codeplay
colleagues on this project for almost

12 months now. Codeplay's
contribution to this effort has been
tremendous, so we felt that we should
let them take the lead when it comes
down to communicating updates
related to OpenCL. ... we are
planning to merge the work that has
been done so far... we want to put
together a comprehensive test
infrastructure”

® codeplay’

OMNERA

“We work with royalty-free SYCL
because it is hardware vendor
agnostic, single-source C++
programming model without platform
specific keywords. This will allow us to
easily work with any heterogeneous
processor solutions using OpenCL to
develop our complex algorithms and
ensure future compatibility”

“My team and | are working with
Codeplay's ComputeCpp for almost a
year now and they have resolved
every issue in a timely manner, while
demonstrating that this technology can
work with the most complex C++
template code. | am happy to say that
the combination of Codeplay's SYCL
implementation with our HPX runtime
system has turned out to be a very
capable basis for Building a
Heterogeneous Computing Model for
the C++ Standard using high-level
abstractions.”

It was a great pleasure this week for
us, that Codeplay released the
ComputeCpp project for the wider
audience. We've been waiting for this
moment and keeping our colleagues
and students in constant rally and
excitement. We'd like to build on this
opportunity to increase the awareness
of this technology by providing sample
codes and talks to potential users.
We're going to give a lecture series on
modern scientific programming
providing field specific examples.*

© 2018 Codeplay Software Ltd.

Further information

OpenCL https://www.khronos.org/opencl/
OpenVX
https://www.khronos.org/openvx/
® HSA http://www.hsafoundation.com/
® SYCL http://sycl.tech
® QOpenCV http://opencv.org/
® Halide http://halide-lang.org/
® VisionCpp https://github.com/codeplaysoftware/visioncpp

® codeplay’ © 2018 Codeplay Software Ltd.

https://www.khronos.org/opencl/
https://www.khronos.org/openvx/
http://www.hsafoundation.com/
http://sycl.tech/
http://opencv.org/
http://halide-lang.org/
https://github.com/codeplaysoftware/visioncpp

C CoputeCpp

Community Edition
Available now for free!

Visit:
computecpp.codeplay.com

® codeplay’ © 2018 Codeplay Software Ltd.

C ComputeCpp

* Open source SYCL projects:
e ComputeCpp SDK - Collection of sample code and integration tools
e SYCL ParallelSTL — SYCL based implementation of the parallel algorithms
* VisionCpp — Compile-time embedded DSL for image processing
e Eigen C++ Template Library — Compile-time library for machine learning

All of this and more at: http://sycl.tech

® codeplay’ © 2018 Codeplay Software Ltd.

http://sycl.tech/

@® codeplay’

Thank you for listening

@codeplaysoft /codeplaysoft codeplay.com

	Slide Number 1
	Who am I? Who are we?
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Codeplay - Connecting AI to Silicon
	3 Act Play
	Act 1
	What have we achieved so far for C++20?
	Use the Proper Abstraction with C++
	Task vs data parallelism
	Review of Latency, bandwidth, throughput
	Definition and examples
	Slide Number 14
	Flynn’s Taxonomy
	What kind of processors should we build
	Multicore CPU vs Manycore GPU
	SIMD hard knocks
	Memory
	Memory is SIMD too
	Data Structure Padding
	Coalescing
	Power of Computing
	In 1998, a typical machine had the following flops
	In 2011, a typical machine had the following flops
	In 2011, a typical machine had the following flops
	In 2011, a typical machine had the following flops
	In 2017, a typical machine had the following flops
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Use the Proper Abstraction with C++
	Slide Number 34
	Use the Proper Abstraction with C++
	Slide Number 36
	Slide Number 37
	Coverage after C++11
	Top500 contenders
	Internet of Things
	Slide Number 41
	Slide Number 42
	Act 2
	The way of CPU and GPU
	The way of CPU and GPU
	The way of CPU and GPU
	Slide Number 47
	Slide Number 48
	The CPU
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	The GPU
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	CUDA vs OpenCL terminology
	Slide Number 85
	SIMD vs SPMD
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Act 3
	SYCL for OpenCL
	Slide Number 92
	The SYCL ecosystem
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Implicit vs Explicit Data Movement
	Slide Number 100
	Coverage after C++17
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Conclusion
	Use the Proper Abstraction with C++
	Slide Number 150
	Slide Number 151
	Slide Number 152
	Slide Number 153
	Slide Number 154
	Slide Number 155
	Slide Number 156
	Slide Number 157
	Slide Number 158
	Eigen Linear Algebra Library
	TensorFlow
	SYCL Ecosystem
	Codeplay
	What our ComputeCpp users say about us
	Further information
	Slide Number 165
	Slide Number 166
	Thank you for listening

