
A Modern C++ Programming Model
for GPUs using Khronos SYCL

Michael Wong, Gordon Brown

ACCU 2018

© 2018 Codeplay Software Ltd.2

Who am I? Who are we?

Ported
TensorFlow to
open standards

using SYCL

Releasing open-
source, open-

standards based
AI acceleration
tools: SYCL-

BLAS, SYCL-ML,
VisionCpp

Build LLVM-
based compilers
for accelerators

Implement
OpenCL and

SYCL for
accelerator
processors

VP of R&D of
Codeplay
Chair of SYCL Heterogeneous Programming Language
C++ Directions Group
ISOCPP.org Director, VP
http://isocpp.org/wiki/faq/wg21#michael-wong

Head of Delegation for C++ Standard for Canada
Chair of Programming Languages for Standards Council
of Canada
Chair of WG21 SG19 Machine Learning
Chair of WG21 SG14 Games Dev/Low Latency/Financial
Trading/Embedded
Editor: C++ SG5 Transactional Memory Technical
Specification
Editor: C++ SG1 Concurrency Technical Specification
MISRA C++ and AUTOSAR
wongmichael.com/about
We build GPU compilers for semiconductor
companies
• Now working to make AI/Ml heteroegneous

acceleration safe for autonomous vehicle

http://isocpp.org/wiki/faq/wg21

© 2017 Codeplay Software Ltd.3

Gordon Brown

● Background in C++ programming models for heterogeneous systems
● Developer with Codeplay Software for 6 years
● Worked on ComputeCpp (SYCL) since it’s inception
● Contributor to the Khronos SYCL standard for 6 years
● Contributor to C++ executors and heterogeneity or 2 years

© 2018 Codeplay Software Ltd.4

Acknowledgement
Disclaimer

Numerous people internal and external to the
original C++/Khronos group, in industry and
academia, have made contributions, influenced
ideas, written part of this presentations, and offered
feedbacks to form part of this talk.
Specifically, Paul Mckenney, Joe Hummel, Bjarne
Stroustru, Botond Ballo for some of the slides.

I even lifted this acknowledgement and disclaimer
from some of them.

But I claim all credit for errors, and stupid mistakes.
These are mine, all mine!

© 2018 Codeplay Software Ltd.5

Legal Disclaimer

THIS WORK REPRESENTS THE
VIEW OF THE AUTHOR AND DOES
NOT NECESSARILY REPRESENT

THE VIEW OF CODEPLAY.

OTHER COMPANY, PRODUCT, AND
SERVICE NAMES MAY BE

TRADEMARKS OR SERVICE MARKS
OF OTHERS.

© 2018 Codeplay Software Ltd.6

Partners

Codeplay - Connecting AI to Silicon

Customers

C++ platform via the SYCL™ open standard, enabling
vision & machine learning e.g. TensorFlow™

The heart of Codeplay's compute technology
enabling OpenCL™, SPIR™, HSA™ and Vulkan™

Products

Automotive (ISO 26262)
IoT, Smartphones & Tablets

High Performance Compute (HPC)
Medical & Industrial

Technologies: Vision Processing
Machine Learning

Artificial Intelligence
Big Data Compute

Addressable Markets

High-performance software solutions
for custom heterogeneous systems
Enabling the toughest processor
systems with tools and middleware
based on open standards
Established 2002 in Scotland
~70 employees

Company

© 2018 Codeplay Software Ltd.7

3 Act Play

1. What’s still missing
from C++?

2. What makes GPU
work so fast?

3. What is Modern C++
that works on GPUs,
CPUs, everything?

© 2018 Codeplay Software Ltd.8

Act 1

1. What’s still missing
from C++?

© 2018 Codeplay Software Ltd.9

What have we achieved so far for
C++20?

© 2018 Codeplay Software Ltd.10

Use the Proper Abstraction with C++
Abstraction How is it supported

Cores C++11/14/17 threads, async

HW threads C++11/14/17 threads, async, hw_concurrency

Vectors Parallelism TS2->

Atomic, Fences, lockfree, futures, counters,
transactions

C++11/14/17 atomics, Concurrency TS1->
Transactional Memory TS1

Parallel Loops Async, TBB:parallel_invoke, C++17 parallel algorithms,
for_each

Heterogeneous offload, fpga OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja

Distributed HPX, MPI, UPC++

Caches C++17 false sharing support

Numa

TLS

Exception handling in concurrent environment

© 2017 Codeplay Software Ltd.11

Task vs data parallelism

Task parallelism:
● Few large tasks with different operations / control flow
● Optimized for latency

Data parallelism:
● Many small tasks with same operations on multiple data
● Optimized for throughput

Data
parallelism

Task
parallelism

© 2017 Codeplay Software Ltd.12

Review of Latency, bandwidth, throughput
● Latency is the amount of time it takes to travel through the tube.
● Bandwidth is how wide the tube is.
● The amount of water flow will be your throughput

© 2017 Codeplay Software Ltd.13

Definition and examples
Latency is the time required to perform some action or to produce some result. Latency is measured in units of time -- hours, minutes, seconds,
nanoseconds or clock periods.

Throughput is the number of such actions executed or results produced per unit of time. This is measured in units of whatever is being produced
(cars, motorcycles, I/O samples, memory words, iterations) per unit of time. The term "memory bandwidth" is sometimes used to specify the
throughput of memory systems.

bandwidth is the maximum rate of data transfer across a given path.

Example

An assembly line is manufacturing cars. It takes eight hours to manufacture a car and that the factory produces one hundred and twenty cars per
day.

The latency is: 8 hours.

The throughput is: 120 cars / day or 5 cars / hour.

© 2017 Codeplay Software Ltd.14

© 2017 Codeplay Software Ltd.15

• Distinguishes multi-processor computer architectures along
the two independent dimensions

• Instruction and Data
• Each dimension can have one state: Single or Multiple

• SISD: Single Instruction, Single Data
• Serial (non-parallel) machine

• SIMD: Single Instruction, Multiple Data
• Processor arrays and vector machines

• MISD: Multiple Instruction, Single Data (weird)
• MIMD: Multiple Instruction, Multiple Data

• Most common parallel computer systems

Flynn’s Taxonomy

© 2017 Codeplay Software Ltd.16

CPU
● Small number of large

processors
● More control structures and

less processing units
○ Can do more complex logic
○ Requires more power

● Optimise for latency
○ Minimising the time taken

for one particular task

GPU
● Large number of small

processors
● Less control structures and

more processing units
○ Can do less complex logic
○ Lower power consumption

● Optimised for throughput
○ Maximising the amount of

work done per unit of time

What kind of processors should we build

© 2017 Codeplay Software Ltd.17

• Each core optimized for a
single thread

• Fast serial processing
• Must be good at

everything
• Minimize latency of 1

thread
– Lots of big on chip caches
– Sophisticated controls

Multicore CPU vs Manycore GPU

• Cores optimized for aggregate
throughput, deemphasizing
individual performance

• Scalable parallel processing
• Assumes workload is highly parallel
• Maximize throughput of all threads

– Lots of big ALUs
– Multithreading can hide

latency, no big caches
– Simpler control, cost amortized

over ALUs via SIMD

© 2017 Codeplay Software Ltd.18

SIMD hard knocks
● SIMD architectures use data parallelism
● Improves tradeoff with area and power

○ Amortize control overhead over SIMD width
● Parallelism exposed to programmer & compiler
● Hard for a compiler to exploit SIMD
● Hard to deal with sparse data & branches

○ C and C++ Difficult to vectorize, Fortran better
● So

○ Either forget SIMD or hope for the autovectorizer
○ Use compiler intrinsics

© 2017 Codeplay Software Ltd.19

Memory
● Many core gpu is a device for turning a compute bound

problem into a memory bound problem

● Lots of processors but only one socket
● Memory concerns dominate performance tuning

© 2017 Codeplay Software Ltd.20

Memory is SIMD too
● Virtually all processors have SIMD memory subsystems

● This has 2 effects
○ Sparse access wastes bandwidth

○ Unaligned access wastes bandwidth

© 2017 Codeplay Software Ltd.21

Data Structure Padding

● Multidimensional arrays are usually stored as monolithic
vectors in memory

● Care should be taken to assure aligned memory accesses for
the necessary access pattern

© 2017 Codeplay Software Ltd.22

Coalescing
● GPUs and CPUs both perform memory transactions at a larger

granularity than the program requests (cache line)
● GPUs have a coalescer which examines memory requests

dynamically and coalesces them
● To use bandwidth effectively, when threads load, they should

○ Present a set of unit strided loads (dense accesses)
○ Keep sets of loads aligned to vector boundaries

© 2017 Codeplay Software Ltd.23

Power of Computing

• 1998, when C++ 98 was released
• Intel Pentium II: 0.45 GFLOPS
• No SIMD: SSE came in Pentium III
• No GPUs: GPU came out a year later

• 2011: when C++11 was released
• Intel Core-i7: 80 GFLOPS
• AVX: 8 DP flops/HZ*4 cores *4.4 GHz= 140 GFlops
• GTX 670: 2500 GFLOPS

• Computers have gotten so much faster, how come software have
not?

• Data structures and algorithms
• latency

© 2017 Codeplay Software Ltd.24

In 1998, a typical machine had the following flops

.45 GFLOPS, 1 core

Single threaded C++98/C99/Fortran dominated this picture

© 2017 Codeplay Software Ltd.25

In 2011, a typical machine had the following flops

80 GFLOPS 4 cores

To program the CPU, you might use C/C++11, OpenMP, TBB, Cilk, OpenCL

© 2017 Codeplay Software Ltd.26

In 2011, a typical machine had the following flops

80 GFLOPS 4 cores+140 GFLOPS AVX

To program the CPU, you might use C/C++11, OpenMP, TBB, Cilk, CUDA, OpenCL
To program the vector unit, you have to use Intrinsics, OpenCL, CUDA, or auto-
vectorization

© 2017 Codeplay Software Ltd.27

In 2011, a typical machine had the following flops

80 GFLOPS 4 cores+140 GFLOPS AVX+2500 GFLOPS GPU

To program the CPU, you might use C/C++11, OpenMP, TBB, Cilk, CUDA, OpenCL
To program the vector unit, you have to use Intrinsics, OpenCL, CUDA or auto-
vectorization
To program the GPU, you have to use CUDA, OpenCL, OpenGL, DirectX, Intrinsics,
C++AMP

© 2017 Codeplay Software Ltd.28

In 2017, a typical machine had the following flops

140 GFLOPS + 560 GFLOPS AVX + 4600 GFLOPS GPU

To program the CPU, you might use C/C++11/14/17, SYCL, OpenMP, TBB, Cilk,
CUDA, OpenCL
To program the vector unit, you have to use SYCL, Intrinsics, OpenCL, CUDA or
auto-vectorization, OpenMP
To program the GPU, you have to use SYCL, CUDA, OpenCL, OpenGL, DirectX,
Intrinsics, OpenMP

© 2018 Codeplay Software Ltd.29

“The free lunch is over”

“The end of Moore’s Law”

“The future is parallel and
heterogeneous”

“GPUs are everywhere”

© 2018 Codeplay Software Ltd.30

Take a typical Intel chip
● Intel Core i7 7th Gen

○ 4x CPU cores
■ Each with hyperthreading
■ Each with 8-wide AVX

instructions
○ GPU

■ With 1280 processing elements

© 2018 Codeplay Software Ltd.31

Serial C++ code alone only takes advantage
of a very small amount of the available
resources of the chip

© 2018 Codeplay Software Ltd.32

Serial C++ code alone only takes advantage
of a very small amount of the available
resources of the chip
Using vectorisation allows you to fully utilise
the resources of a single hyperthread

© 2018 Codeplay Software Ltd.33

Use the Proper Abstraction with C++
Abstraction How is it supported

Cores C++11/14/17 threads, async

HW threads C++11/14/17 threads, async, hw_concurrency

Vectors Parallelism TS2->

Atomic, Fences, lockfree, futures, counters,
transactions

C++11/14/17 atomics, Concurrency TS1->
Transactional Memory TS1

Parallel Loops Async, TBB:parallel_invoke, C++17 parallel algorithms,
for_each

Heterogeneous offload, fpga OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja

Distributed HPX, MPI, UPC++

Caches C++17 false sharing support

Numa

TLS

Exception handling in concurrent environment

© 2018 Codeplay Software Ltd.34

Serial C++ code alone only takes advantage
of a very small amount of the available
resources of the chip
Using vectorisation allows you to fully utilise
the resources of a single hyperthread
Using multi-threading allows you to fully
utilise all CPU cores

© 2018 Codeplay Software Ltd.35

Use the Proper Abstraction with C++
Abstraction How is it supported

Cores C++11/14/17 threads, async

HW threads C++11/14/17 threads, async, hw_concurrency

Vectors Parallelism TS2->

Atomic, Fences, lockfree, futures, counters,
transactions

C++11/14/17 atomics, Concurrency TS1->
Transactional Memory TS1

Parallel Loops Async, TBB:parallel_invoke, C++17 parallel algorithms,
for_each

Heterogeneous offload, fpga OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja

Distributed HPX, MPI, UPC++

Caches C++17 false sharing support

Numa

TLS

Exception handling in concurrent environment

© 2018 Codeplay Software Ltd.36

Serial C++ code alone only takes advantage
of a very small amount of the available
resources of the chip
Using vectorisation allows you to fully utilise
the resources of a single hyperthread
Using multi-threading allows you to fully
utilise all CPU cores
Using heterogeneous dispatch allows you to
fully utilise the entire chip

© 2018 Codeplay Software Ltd.37

GPGPU programming was
once a niche technology

● Limited to specific
domain

● Separate source
solutions

● Verbose low-level APIs
● Very steep learning

curve

© 2018 Codeplay Software Ltd.38

Coverage after C++11
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous (GPUs,

accelerators, FPGA,
embedded AI
processors)

summary tasks that run
independently and
communicate via
messages

operations on groups of
things, exploit
parallelism in data and
algorithm structures

avoid races and
synchronizing objects in
shared memory

Dispatch/offload to
other nodes (including
distributed)

examples GUI,background
printing, disk/net access

trees, quicksorts,
compilation

locked data(99%), lock-
free libraries (wizards),
atomics (experts)

Pipelines, reactive
programming, offload,,
target, dispatch

key metrics responsiveness throughput, many core
scalability

race free, lock free Independent forward
progress,, load-shared

requirement isolation, messages low overhead composability Distributed,
heterogeneous

today's abstractions C++11: thread,lambda
function, TLS

C++11: Async,
packaged tasks,
promises, futures,
atomics

C++11: locks, memory
model, mutex, condition
variable, atomics, static
init/term

C++11: lambda

© 2018 Codeplay Software Ltd.39

Top500 contenders

© 2018 Codeplay Software Ltd.40

Internet of Things
• All forms of accelerators, DSP, GPU, APU, GPGPU
• Network heterogenous consumer devices

• Kitchen appliances, drones, signal processors, medical imaging, auto,
telecom, automation, not just graphics engines

© 2018 Codeplay Software Ltd.41

This is not the case
anymore

● Almost everything has
a GPU now

● Single source solutions
● Modern C++

programming models
● More accessible to the

average C++ developer

C++AMP

SYCL

CUDA Agency

Kokkos

HPX

Raja

© 2017 Codeplay Software Ltd.42

SYCL / OpenCL /
CUDA / HCC OpenMP / MPI C++ Thread Pool

Boost.Asio /
Networking TS

C++ Executors: Unified interface for execution

defer define_task_block dispatch strand<>asynchronous operations

future::thenasyncinvoke postparallel algorithms

© 2017 Codeplay Software Ltd.43

Act 2

1. What’s still missing
from C++?

2. What makes GPU
work so fast?

© 2016 Codeplay Software Ltd.44

CPU
(“Host”)

CPU memory

GPU
(“Device”)

GPU memory

Host code

co-processor of

The way of CPU and GPU

© 2016 Codeplay Software Ltd.45

CPU
(“Host”)

CPU memory

GPU
(“Device”)

GPU memory

Host code

co-processor of

1. The CPU allocates
memory on the GPU

1

The way of CPU and GPU

© 2016 Codeplay Software Ltd.46

CPU
(“Host”)

CPU memory

GPU
(“Device”)

GPU memory

Host code

co-processor of

1. The CPU allocates
memory on the GPU

2. The CPU copies data
from CPU to GPU

1
2

The way of CPU and GPU

© 2016 Codeplay Software Ltd.47

CPU
(“Host”)

CPU memory

GPU
(“Device”)

GPU memory

Host code

co-processor of

1. The CPU allocates
memory on the GPU

2. The CPU copies data
from CPU to GPU

3. The CPU launches
kernel(s) on the GPU

1
2

3 Device
code

(“Kernel”)

© 2016 Codeplay Software Ltd.48

CPU
(“Host”)

CPU memory

GPU
(“Device”)

GPU memory

Host code

co-processor of

1. The CPU allocates
memory on the GPU

2. The CPU copies data
from CPU to GPU

3. The CPU launches
kernel(s) on the GPU

4. The CPU copies data to
CPU from GPU

1
2

4

3 Device
code

(“Kernel”)

© 2016 Codeplay Software Ltd.49

CPU
(“Host”)

CPU memory

The CPU

© 2016 Codeplay Software Ltd.50

CPU
(“Host”)

CPU memory

1. A CPU has a region of
dedicated memory

1

© 2016 Codeplay Software Ltd.51

CPU
(“Host”)

CPU memory

1. A CPU has a region of
dedicated memory

2. CPU memory is
connected to the CPU
via a bus

1

2

© 2016 Codeplay Software Ltd.52

CPU (“Host”)

CPU memory

1. A CPU has a region of
dedicated memory

2. The CPU memory is
connected to the CPU
via a bus

3. A CPU has a number of
cores

Core Core Core Core

1

3

2

© 2016 Codeplay Software Ltd.53

CPU (“Host”)

CPU memory

1. A CPU has a region of
dedicated memory

2. The CPU memory is
connected to the CPU
via a bus

3. A CPU has a number of
cores

4. A CPU has a number of
caches of different
levels

Core Core Core Core

Cache (multiple levels)

1

2

3

4

© 2016 Codeplay Software Ltd.54

CPU (“Host”)

CPU memory

1. A CPU has a region of
dedicated memory

2. The CPU memory is
connected to the CPU
via a bus

3. A CPU has a number of
cores

4. A CPU has a number of
caches of different
levels

5. Each CPU core has
dedicated registers

Core Core Core Core

Cache (multiple levels)

Registers Registers Registers Registers

1

2

3

4

5

© 2016 Codeplay Software Ltd.55

CPU
(“Host”)

CPU memory

GPU
(“Device”)

GPU memory

Host code

co-processor of

© 2016 Codeplay Software Ltd.56

GPU
(“Device”)

GPU memory

The GPU

© 2016 Codeplay Software Ltd.57

GPU
(“Device”)

Global memory

1. A GPU has a region of
dedicated global memory

1

© 2016 Codeplay Software Ltd.58

GPU
(“Device”)

Global memory

1. A GPU has a region of
dedicated global memory

2. Global memory is connected
via a bus

1

2

© 2016 Codeplay Software Ltd.59

GPU (“Device”)

Global memory

1. A GPU has a region of
dedicated global memory

2. Global memory is connected
via a bus

3. A GPU is divided into a
number of compute units

Compute unit Compute unit

...

1

2

3

© 2016 Codeplay Software Ltd.60

GPU (“Device”)

Global memory

1. A GPU has a region of
dedicated global memory

2. Global memory is connected
via a bus

3. A GPU is divided into a
number of compute units

4. Each compute unit has
dedicated local memory

Compute unit Compute unit

...

Local memory Local memory

3

4

1

2

© 2016 Codeplay Software Ltd.61

GPU (“Device”)

Global memory

1. A GPU has a region of
dedicated global memory

2. Global memory is connected
via a bus

3. A GPU is divided into a
number of compute units

4. Each compute unit has
dedicated local memory

5. Each compute unit has a
number of processing
elements

Compute unit Compute unit

...

Local memory Local memory

PE PE PE PE PE PE

... ...

3

4

1

2

5

© 2016 Codeplay Software Ltd.62

GPU (“Device”)

Global memory

1. A GPU has a region of
dedicated global memory

2. Global memory is connected
via a bus

3. A GPU is divided into a
number of compute units

4. Each compute unit has
dedicated local memory

5. Each compute unit has a
number of processing
elements

6. Each processing element has
dedicated private memory

Compute unit Compute unit

...

Local memory Local memory

PE PE PE

PM PM PM

PE PE PE

PM PM PM
... ...

3

4

1

2

5

6

© 2016 Codeplay Software Ltd.63

Processing
Element

1. A processing element executes a
single work-item

1
work-
item

© 2016 Codeplay Software Ltd.64

Processing
Element

Private
memory

1. A processing element executes a
single work-item

2. Each work-item can access private
memory, a dedicated memory region
for each processing element1

work-
item

2

© 2016 Codeplay Software Ltd.65

Processing
Element

Private
memory

1. A processing element executes a
single work-item

2. Each work-item can access private
memory, a dedicated memory region
for each processing element

3. A compute unit executes a work-
group, composed of multiple work-
items, one for each processing
element in the compute unit

1

Compute unit

work-
item

work-group

2

3

© 2016 Codeplay Software Ltd.66

Processing
Element

Private
memory

1. A processing element executes a
single work-item

2. Each work-item can access private
memory, a dedicated memory region
for each processing element

3. A compute unit executes a work-
group, composed of multiple work-
items, one for each processing
element in the compute unit

4. Each work-item can access local
memory, a dedicated memory region
for each compute unit

1

Local
memory

Compute unit

work-
item

work-group

2

3

4

© 2016 Codeplay Software Ltd.67

Processing
Element

Private
memory

1. A processing element executes a
single work-item

2. Each work-item can access private
memory, a dedicated memory region
for each processing element

3. A compute unit executes a work-
group, composed of multiple work-
items, one for each processing
element in the compute unit

4. Each work-item can access local
memory, a dedicated memory region
for each compute unit

5. A GPU executes multiple work-groups

1

Local
memory

Compute unit

work-
item

work-group

2

3

4

5

© 2016 Codeplay Software Ltd.68

Processing
Element

Private
memory

1. A processing element executes a
single work-item

2. Each work-item can access private
memory, a dedicated memory region
for each processing element

3. A compute unit executes a work-
group, composed of multiple work-
items, one for each processing
element in the compute unit

4. Each work-item can access local
memory, a dedicated memory region
for each compute unit

5. A GPU executes multiple work-groups
6. Each work-item can access global

memory, a single memory region
available to all processing elements
on the GPU

1

Local
memory

Global memory

Compute unit

work-
item

work-group

2

3

4

6

5

© 2018 Codeplay Software Ltd.69

1. Multiple work-items will execute
concurrently

1

© 2018 Codeplay Software Ltd.70

1. Multiple work-items will execute
concurrently

2. They are not guaranteed to all
execute uniformly

1

2

© 2018 Codeplay Software Ltd.71

1. Multiple work-items will execute
concurrently

2. They are not guaranteed to all
execute uniformly

3. Most GPUs do execute a number
of work-items uniformly (lock-
step), but that number is
unspecified

1

32

© 2018 Codeplay Software Ltd.72

1. Multiple work-items will execute
concurrently

2. They are not guaranteed to all
execute uniformly

3. Most GPUs do execute a number
of work-items uniformly (lock-
step), but that number is
unspecified

4. A work-item can share results
with other work-items via local
and global memory

1

32

4

© 2018 Codeplay Software Ltd.73

1. Multiple work-items will execute
concurrently

2. They are not guaranteed to all
execute uniformly

3. Most GPUs do execute a number
of work-items uniformly (lock-
step), but that number is
unspecified

4. A work-item can share results
with other work-items via local
and global memory

5. However this means that it’s
possible for a work-item to read
a result that hasn’t yet been
written to yet, you have a data
race

1

32

4

5

data race

© 2018 Codeplay Software Ltd.74

1. This problem can be solved by
a synchronisation primitive
called a work-group barrier

1

© 2018 Codeplay Software Ltd.75

1. This problem can be solved by
a synchronisation primitive
called a work-group barrier

2. Work-items will block until all
work-items in the work-group
have reached that point

1

2

© 2018 Codeplay Software Ltd.76

1. This problem can be solved by
a synchronisation primitive
called a work-group barrier

2. Work-items will block until all
work-items in the work-group
have reached that point

1

2

© 2018 Codeplay Software Ltd.77

1. This problem can be solved by
a synchronisation primitive
called a work-group barrier

2. Work-items will block until all
work-items in the work-group
have reached that point

3. So now you can be sure that
all of the results that you want
to read from have been
written to

1

2

3

© 2018 Codeplay Software Ltd.78

1. This problem can be solved by
a synchronisation primitive
called a work-group barrier

2. Work-items will block until all
work-items in the work-group
have reached that point

3. So now you can be sure that
all of the results that you want
to read from have been
written to

4. However this does not apply
across work-group
boundaries, and you have a
data rance again

1

2

3

work-group 1work-group 0 4

data race

© 2018 Codeplay Software Ltd.79

work-group 1work-group 0 1. This problem can be solved by a
synchronisation primitive called
a kernel barrier (launching
separate kernels)

1

© 2018 Codeplay Software Ltd.80

work-group 1work-group 0 1. This problem can be solved by a
synchronisation primitive called
a kernel barrier (launching
separate kernels)

2. Again you can be sure that all of
the results that you want to read
from have been written to1

2

© 2018 Codeplay Software Ltd.81

work-group 1work-group 0 1. This problem can be solved by a
synchronisation primitive called
a kernel barrier (launching
separate kernels)

2. Again you can be sure that all of
the results that you want to read
from have been written to

3. However kernel barriers have a
higher overhead as they require
you to launch another kernel

1

2

© 2018 Codeplay Software Ltd.82

work-group 1work-group 0 1. This problem can be solved by a
synchronisation primitive called
a kernel barrier (launching
separate kernels)

2. Again you can be sure that all of
the results that you want to read
from have been written to

3. However kernel barriers have a
higher overhead as they require
you to launch another kernel

4. And kernel barriers require
results to be stored in global
memory, local memory is not
persistent across kernels

1

2

© 2018 Codeplay Software Ltd.83

Work-item

Work-
group

Private memory

Local memory

Global memoryKernel

Work-group barrier

Kernel barrier

© 2018 Codeplay Software Ltd.84

CUDA vs OpenCL terminology

© 2016 Codeplay Software Ltd.85

Sequential CPU code

void calc(int *in, int *out) {
for (int i = 0; i < 1024; i++) {

out[i] = in[i] * in[i];
}

}

calc(in, out);

SPMD GPU code

void calc(int *in, int *out, int id) {
out[id] = in[id] * in[id];

}

/* specify degree of parallelism */
parallel_for(calc, in, out, 1024);

© 2016 Codeplay Software Ltd.86

SIMD vs SPMD

SPMD: Multiple autonomous processors simultaneously executing the same
program (but at independent points, rather than in the lockstep that SIMD
imposes) on different data.
You can launch multiple threads, each using their respective SIMD lanes

SPMD is a parallel execution model and assumes multiple cooperating
processors executing a program.

SPMDSIMD

https://en.wikipedia.org/wiki/Lockstep_(computing)

© 2018 Codeplay Software Ltd.87

● Kernels are launched in the
form of an nd-range

● An nd-range can be 1, 2 or 3
dimensions

● An nd-range describes a
number of work-items divided
into equally sized work-groups

● An nd-range is constructed
from the total number of
work-items (global range) and
the number of work-items in a
work-group (local range)

nd-range {{12, 12}, {4, 4}}

© 2018 Codeplay Software Ltd.88

● An nd-range is mapped to the
underlying hardware
○ Work-groups are mapped

to compute units
○ Work-items are mapped

to processing units

nd-range {{12, 12}, {4, 4}}

© 2018 Codeplay Software Ltd.89

● The kernel is executed once
per work-item in the nd-range

● Each work item knows it’s
index within the nd-range

a. global range {12, 12}
b. local range {4, 4}
c. group range {3, 3}
d. global id {6, 5}
e. local id {2, 1}
f. group id {1, 1}

nd-range {{12, 12}, {4, 4}}

© 2018 Codeplay Software Ltd.90

Act 3

1. What’s still missing
from C++?

2. What makes GPU
work so fast?

3. What is Modern C++
that works on GPUs,
CPUs, everything?

© 2018 Codeplay Software Ltd.91

SYCL for OpenCL

Cross-platform, single-source, high-level, C++ programming layer
Built on top of OpenCL and based on standard C++11

Delivering a heterogeneous programming solution for C++

© 2018 Codeplay Software Ltd.92

Why use SYCL to program a GPU?
● Enables programming heterogeneous devices such as

GPUs using standard C++
● Provides a high-level abstraction for development of

complex parallel software applications
● Provides efficient data dependency analysis and task

scheduling and synchronisation

© 2018 Codeplay Software Ltd.93

The SYCL ecosystem

Applications

SYCL for OpenCL

OpenCL

C++ template libraries

OpenCL-enabled devices

© 2018 Codeplay Software Ltd.94

__global__ vec_add(float *a, float *b, float *c) {
return c[i] = a[i] + b[i];

}

float *a, *b, *c;
vec_add<<<range>>>(a, b, c);

vector<float> a, b, c;

#pragma parallel_for
for(int i = 0; i < a.size(); i++) {
c[i] = a[i] + b[i];

}

cgh.parallel_for<vec_add>(range, [=](cl::sycl::id<2> idx) {
c[idx] = a[idx] + c[idx];

}));

array_view<float> a, b, c;
extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx) restrict(amp) {
c[idx] = a[idx] + b[idx];

});

© 2018 Codeplay Software Ltd.95

SYCL separates the storage and access of data through the use
of buffers and accessors

SYCL provides data dependency tracking based on accessors
to optimise the scheduling of tasks

© 2018 Codeplay Software Ltd.96

Buffer

Accessor

Accessor

Buffers and accessors
are type safe access

across host and device

Accessors are used
to describe access

requirements

Buffers manage data
across the host and
one or more devices

CG A

CG B

© 2018 Codeplay Software Ltd.97

CG

Buffer global_buffer
accessor

constant_buffer
accessor

local accessor

Request access to a buffer in
the global memory region

Request access to a buffer in
the constant memory region

Allocate memory in the local
memory region

host_buffer
accessor

Request access to a buffer
immediately on the host

© 2018 Codeplay Software Ltd.98

Buffer B

Buffer C

Buffer D

Buffer A

CG B

CG C

CG A
Read accessor

Write accessor

Read accessor

Write accessor

Read accessor

Write accessor

Read accessor
CG C

CG A CG B

© 2018 Codeplay Software Ltd.99

Implicit vs Explicit Data Movement

array_view<float> ptr;
extent<2> e(64, 64);
parallel_for_each(e, [=](index<2> idx)
restrict(amp) {

ptr[idx] *= 2.0f;
});

Here we’re using OpenMP as an examplefloat *h_a = { … }, d_a;
cudaMalloc((void **)&d_a, size);
cudaMemcpy(d_a, h_a, size,

cudaMemcpyHostToDevice);
vec_add<<<64, 64>>>(a, b, c);
cudaMemcpy(d_a, h_a, size,

cudaMemcpyDeviceToHost);

Examples:
• OpenCL, CUDA, OpenMP

Implementation:
• Data is moved to the device via

explicit copy APIs

Here we’re using C++ AMP as an example

Examples:
• SYCL, C++ AMP

Implementation:
• Data is moved to the device

implicitly via cross host CPU /
device data structures

Here we’re using CUDA as an example

© 2018 Codeplay Software Ltd.100

Benefits of data dependency task graphs
● Allows you to describe your problems in terms of

relationships
○ Removes the need to en-queue explicit copies
○ Removes the need for complex event handling

● Allows the runtime to make data movement optimizations
○ Preemptively copy data to a device before kernels
○ Avoid unnecessarily copying data back to the host after execution on a

device
○ Avoid copies of data that you don’t need

© 2018 Codeplay Software Ltd.101

Coverage after C++17
Asynchronus Agents Concurrent collections Mutable shared state Heterogeneous (GPUs,

accelerators, FPGA,
embedded AI
processors)

summary tasks that run
independently and
communicate via
messages

operations on groups of
things, exploit
parallelism in data and
algorithm structures

avoid races and
synchronizing objects in
shared memory

Dispatch/offload to
other nodes (including
distributed)

today's abstractions C++11: thread,lambda
function, TLS, async

C++14: generic lambda

C++11: Async,
packaged tasks,
promises, futures,
atomics,

C++ 17: ParallelSTL,
control false sharing

C++11: locks, memory
model, mutex, condition
variable, atomics, static
init/term,

C++ 14:
shared_lock/shared_tim
ed_mutex, OOTA,
atomic_signal_fence,

C++ 17: scoped _lock,
shared_mutex, ordering
of memory models,
progress guarantees,
TOE, execution policies

C++17: , progress
guarantees, TOE,
execution policies

© 2018 Codeplay Software Ltd.102

C++17 introduces a number of parallel algorithms and new execution
policies which dictate how they can be parallelized

The new algorithms are unordered, allowing them to perform in parallel

Execution policies:
● sequenced_execution_policy (seq)
● parallel_execution_policy (par)
● parallel_unsequenced_execution_policy (par_unseq)

© 2018 Codeplay Software Ltd.103

result accumulate(first, last,
init,
[binary_op])

first acc = init
then for each it in [first, last) in order
acc = binary_op(acc, *it)

then return acc

© 2018 Codeplay Software Ltd.104

result accumulate(first, last,
init,
[binary_op])

first acc = init
then for each it in [first, last) in order
acc = binary_op(acc, *it)

then return acc

OP

OP

OP

OP

OP

OP

OP

init

© 2018 Codeplay Software Ltd.105

result accumulate(first, last,
init,
[binary_op])

first acc = init
then for each it in [first, last) in order
acc = binary_op(acc, *it)

then return acc

6 8 7 1 3 2 3

+

72

+

+

+

+

+

+

42

© 2018 Codeplay Software Ltd.106

result accumulate(first, last,
init,
[binary_op])

first acc = init
then for each it in [first, last) in order
acc = binary_op(acc, *it)

then return acc

6 8 7 1 3 2 3

+

72

+

+

+

+

+

+

42

© 2018 Codeplay Software Ltd.107

result reduce([execution_policy,]
first, last,
init,
[binary_op])

first acc = GSUM(binary_op, init,
*first, …,
*(last-1))

then return acc

© 2018 Codeplay Software Ltd.109

result reduce([execution_policy,]
first, last,
init,
[binary_op])

first acc = GSUM(binary_op, init,
*first, …,
*(last-1))

then return acc

OP

OP

OP

OP

OP

OP

OP

init

© 2018 Codeplay Software Ltd.110

result reduce([execution_policy,]
first, last,
init,
[binary_op])

first acc = GSUM(binary_op, init,
*first, …,
*(last-1))

then return acc

OP OP

OP

OP

OP

OP

init

OP

© 2018 Codeplay Software Ltd.111

result reduce([execution_policy,]
first, last,
init,
[binary_op])

first acc = GSUM(binary_op, init,
*first, …,
*(last-1))

then return acc

6 8 7 1 3 2 3

+ +

+

+

+

+

42

+

© 2018 Codeplay Software Ltd.112

result reduce([execution_policy,]
first, last,
init,
[binary_op])

first acc = GSUM(binary_op, init,
*first, …,
*(last-1))

then return acc

6 8 7 1 3 2 3

+

72

+

+

+

+

+

42

+

© 2018 Codeplay Software Ltd.113

6 8 7 1 3 2 3

+

72

+

+

+

+

+

42

+

6 8 7 1 3 2 3

+

72

+

+

+

+

+

+

42

© 2018 Codeplay Software Ltd.114

6 8 7 1 3 2 3

- -

-

-

-

-

42

-

6 8 7 1 3 2 3

-

-

-

-

-

-

-

42

© 2018 Codeplay Software Ltd.115

6 8 7 1 3 2 3

- -

-

-

-

-

42

-

6 8 7 1 3 2 3

-

12

-

-

-

-

-

-

42

© 2018 Codeplay Software Ltd.116

6 8 7 1 3 2 3

-

36

-

-

-

-

-

42

-

6 8 7 1 3 2 3

-

12

-

-

-

-

-

-

42

© 2018 Codeplay Software Ltd.117

Due to the requirements of GSUM reduce is allowed to be unordered

However this means that binary_op is required to be both commutative
and associative

© 2018 Codeplay Software Ltd.118

Commutativity means changing the order of operations does not change
the result

Integer operations
x + y == y + x
x * y == y * x
x - y != y - x
x / y != y / x

Floating-point operations
x + y == y + x
x * y == y * x
x - y != y - x
x / y != y / x

© 2018 Codeplay Software Ltd.119

Associativity means changing the grouping of operations does not change
the result

Integer operations
(x + y) + z == x + (y + z)
(x * y) * z == x * (y * z)

(x - y) - z != x - (y - z)
(x / y) / z != x / (y / z)

Floating-point operations
(x + y) + z != x + (y + z)
(x * y) * z != x * (y * z)
(x - y) - z != x - (y - z)
(x / y) / z != x / (y / z)

© 2018 Codeplay Software Ltd.120

So how do we parallelise this on a GPU?
● We want to utilize the available hardware
● We want to keep dependencies to a minimum
● We want to make efficient use of local memory and work-

group synchronization

© 2018 Codeplay Software Ltd.121

© 2018 Codeplay Software Ltd.122

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {

}

Here we have the
standard prototype
for the reduce
parallel algorithm,
taking a SYCL
execution policy

There is an
assumption here
that the iterators are
contiguous

© 2018 Codeplay Software Ltd.123

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);

}

SYCL separates
memory storage and
access using buffers
and accessors

Buffers manage a
region of memory
across host and one
or more devices

Accessors represent
an instance of access
to a particular buffer

© 2018 Codeplay Software Ltd.124

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);

}

We create a buffer
to manage the input
data

We call
set_final_data with
nullptr in order to
tell the runtime not
to copy back to the
original host address
on destruction

© 2018 Codeplay Software Ltd.125

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);

}

Buffers synchronise
and copy their data
back to the original
pointer when they
are destroyed

So in this case, on
returning from the
reduce function

© 2018 Codeplay Software Ltd.126

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});

}

In SYCL devices are
selected using a
device selector

A device selector
picks the best device
based on a
particular heuristic

device

© 2018 Codeplay Software Ltd.127

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});

}

We create a queue
that we can
enqueue work on
taking a
gpu_selector, which
will return a GPU to
execute work on

© 2018 Codeplay Software Ltd.128

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();

}

We deduce the data
size of the input
range and the
maximum work-
group size

These are important
for determining how
work is distributed
across work-groups

© 2018 Codeplay Software Ltd.129

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {

dataSize /= maxWorkGroupSize;
} while (dataSize > 1);

}

We create a loop
that will launch a
SYCL kernel for each
kernel invocation
required for the
reduction

After each iteration
the data size is
divided by the work-
group size

© 2018 Codeplay Software Ltd.130

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {

});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

In SYCL all work is
enqueued to a
queue via command
groups which
represent the kernel
function, an nd-
range and the data
dependencies

We create a
command group to
enqueue a kernel

© 2018 Codeplay Software Ltd.131

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));

});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

We determine the
global range to be
the data size

We determine the
local range to be the
max work group
size, providing that’s
smaller than the
data size

© 2018 Codeplay Software Ltd.132

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

We create an
accessor for the
input buffer

The access mode is
read_write because
we want to be able
to write back a
result

© 2018 Codeplay Software Ltd.133

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

A local accessor
allocates an amount
of local memory per
work-group

We create a local
accessor of elements
of value type with
the size of the local
range

© 2018 Codeplay Software Ltd.134

template <class It, class T, class BinOp>
T reduce(sycl_execution_policy_t policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for< >(nd_range<1>(global, local), [=](nd_item<1> it) {

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

In SYCL there are
several ways to
launch kernel
functions which
express different
forms of parallelism

In this case we are
using parallel_for,
which takes an
nd_range and a
function object

© 2018 Codeplay Software Ltd.135

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

We provide a
template parameter
to parallel_for to
name the kernel
function

This is necessary for
portability between
C++ compilers

© 2018 Codeplay Software Ltd.136

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

We copy each
element from global
memory to local
memory of their
respective work-
group

© 2018 Codeplay Software Ltd.137

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

We insert a work-
group barrier to
ensure all work-
items in each work-
group have copied
before moving on

© 2018 Codeplay Software Ltd.138

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[0] / 2; offset > 0; offset /= 2) {

}

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

We create a loop
that will iterate over
the work-items in
the work-group and
providing an offset
to the midpoint

© 2018 Codeplay Software Ltd.139

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[0] / 2; offset > 0; offset /= 2) {
if (it.get_local_id(0) < offset) {

}

}

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

We branch on the
first half of the
work-items per loop
by only executing
work-items before
the offset

© 2018 Codeplay Software Ltd.140

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[0] / 2; offset > 0; offset /= 2) {
if (it.get_local_id(0) < offset) {
scratch[it.get_local_id(0)] = binary_op(scratch[it.get_local_id(0)],

scratch[it.get_local_id(0) + offset]);
}

}

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

We call the
binary_op with the
elements in local
memory of the
current work-item
and the respective
work-item on the
other side of the
offset and assign the
result to the
element in local
memory of the
current work-item

© 2018 Codeplay Software Ltd.141

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[0] / 2; offset > 0; offset /= 2) {
if (it.get_local_id(0) < offset) {
scratch[it.get_local_id(0)] = binary_op(scratch[it.get_local_id(0)],

scratch[it.get_local_id(0) + offset]);
}
it.barrier(access::fence_space::local_space);

}

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

We insert a barrier
to ensure all work-
items in the current
loop have
performed their
operation

© 2018 Codeplay Software Ltd.142

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[0] / 2; offset > 0; offset /= 2) {
if (it.get_local_id(0) < offset) {
scratch[it.get_local_id(0)] = binary_op(scratch[it.get_local_id(0)],

scratch[it.get_local_id(0) + offset]);
}
it.barrier(access::fence_space::local_space);

}
if (it.get_local_id(0) == 0) { inputAcc[it.get_group(0)] = scratch[it.get_local_id(0)]; }

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);

}

Once the loop has
complete there will
be a single value for
each work-group in
local memory for the
first work-item

We copy this value
into an element in
global memory for
the current work
group

© 2018 Codeplay Software Ltd.143

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[0] / 2; offset > 0; offset /= 2) {
if (it.get_local_id(0) < offset) {
scratch[it.get_local_id(0)] = binary_op(scratch[it.get_local_id(0)],

scratch[it.get_local_id(0) + offset]);
}
it.barrier(access::fence_space::local_space);

}
if (it.get_local_id(0) == 0) { inputAcc[it.get_group(0)] = scratch[it.get_local_id(0)]; }

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);
auto accH = bufI.template get_access<access::mode::read>();

}

A host accessor
provides immediate
access to data
maintained by a
buffer

We create a host
accessor to retrieve
the final result of
the reduction

© 2018 Codeplay Software Ltd.144

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local> scratch(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[0] / 2; offset > 0; offset /= 2) {
if (it.get_local_id(0) < offset) {
scratch[it.get_local_id(0)] = binary_op(scratch[it.get_local_id(0)],

scratch[it.get_local_id(0) + offset]);
}
it.barrier(access::fence_space::local_space);

}
if (it.get_local_id(0) == 0) { inputAcc[it.get_group(0)] = scratch[it.get_local_id(0)]; }

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);
auto accH = bufI.template get_access<access::mode::read>();
return binary_op(init, accH[0]);

}

Once the data size
has been reduced to
1 this means the
reduction is
complete and we
can return the result

We call binary_op
with init and the
result of the
reduction and then
we return the result

© 2018 Codeplay Software Ltd.145

template <class It, class T, class BinOp, class KernelName>
T reduce(sycl_execution_policy_t<KernelName> policy, It first, It last, T init, BinOp binary_op) {
using value_t = typename std::iterator_traits<It>::value_type;
buffer<value_t, 1> bufI(first, last);
bufI.set_final_data(nullptr);
queue q(gpu_selector{});
size_t dataSize = std::distance(first, last);
auto maxWorkGroupSize = q.get_device().get_info<info::device::max_work_group_size>();
do {
q.submit([&](handler& cgh) {
auto global = dataSize;
auto local = range<1>(std::min(dataSize, maxWorkGroupSize));
auto inputAcc = bufI.template get_access<access::mode::read_write>(cgh);
accessor<value_t, 1, access::mode::read_write, access::target::local>(local, cgh);
cgh.parallel_for<KernelName>(nd_range<1>(global, local), [=](nd_item<1> it) {
scratch[it.get_local_id(0)] = inputAcc[it.get_global_id(0)];
it.barrier(access::fence_space::local_space);
for (size_t offset = local[0] / 2; offset > 0; offset /= 2) {
if (it.get_local_id(0) < offset) {
scratch[it.get_local_id(0)] = binary_op(scratch[it.get_local_id(0)],

scratch[it.get_local_id(0) + offset]);
}
it.barrier(access::fence_space::local_space);

}
if (it.get_local_id(0) == 0) { inputAcc[it.get_group(0)] = scratch[it.get_local_id(0)]; }

});
});
dataSize /= maxWorkGroupSize;

} while (dataSize > 1);
auto accH = bufI.template get_access<access::mode::read>();
return binary_op(init, accH[0]);

}

© 2018 Codeplay Software Ltd.146

© 2018 Codeplay Software Ltd.147

© 2018 Codeplay Software Ltd.148

Conclusion

We looked at how to write a reduction for the GPU in C++ using SYCL

We looked at how the SYCL programming model allows us to do this

We looked at how this applies to the GPU architecture

We looked at why this is so important in modern C++

© 2018 Codeplay Software Ltd.149

Use the Proper Abstraction with C++
Abstraction How is it supported

Cores C++11/14/17 threads, async

HW threads C++11/14/17 threads, async

Vectors Parallelism TS2->C++20

Atomic, Fences, lockfree, futures, counters,
transactions

C++11/14/17 atomics, Concurrency TS1->C++20,
Transactional Memory TS1

Parallel Loops Async, TBB:parallel_invoke, C++17 parallel algorithms,
for_each

Heterogeneous offload, fpga OpenCL, SYCL, HSA, OpenMP/ACC, Kokkos, Raja
P0796 on affinity

Distributed HPX, MPI, UPC++
P0796 on affinity

Caches C++17 false sharing support

Numa Executors, Execution Context, Affinity, P0443-
>Executor TS

TLS EALS, P0772

Exception handling in concurrent environment EH reduction properties
P0797

© 2018 Codeplay Software Ltd.150

Oh, and one more thing

© 2018 Codeplay Software Ltd.151

What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;
std::vector<float> nums(nElems);

std::fill_n(std::begin(v1), nElems, 1);

std::for_each(std::begin(v), std::end(v),
[=](float f) { f * f + f });

Traditional for each uses only one core,
rest of the die is unutilized!

10000
elems

© 2018 Codeplay Software Ltd.152

What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;
std::vector<float> nums(nElems);

std::fill_n(std::execution_policy::par,
std::begin(v1), nElems, 1);

std::for_each(std::execution_policy::par,
std::begin(v), std::end(v),
[=](float f) { f * f + f });

Workload is distributed across cores!
(mileage may vary, implementation-specific behaviour)

2500
elems

2500
elems

2500
elems

2500
elems

© 2018 Codeplay Software Ltd.153

What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;
std::vector<float> nums(nElems);

std::fill_n(std::execution_policy::par,
std::begin(v1), nElems, 1);

std::for_each(std::execution_policy::par,
std::begin(v), std::end(v),
[=](float f) { f * f + f });

Workload is distributed across cores!
(mileage may vary, implementation-specific behaviour)

2500
elems

2500
elems

2500
elems

2500
elems

What about this
part?

© 2018 Codeplay Software Ltd.154

What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;
std::vector<float> nums(nElems);

std::fill_n(sycl_policy,
std::begin(v1), nElems, 1);

std::for_each(sycl_named_policy
<class KernelName>,

std::begin(v), std::end(v),
[=](float f) { f * f + f });

Workload is distributed on the GPU cores
(mileage may vary, implementation-specific behaviour)

10000 elems

© 2018 Codeplay Software Ltd.155

What can I do with a Parallel For Each?

Intel Core i7 7th generation

size_t nElems = 1000u;
std::vector<float> nums(nElems);

std::fill_n(sycl_heter_policy(cpu, gpu, 0.5),
std::begin(v1), nElems, 1);

std::for_each(sycl_heter_policy<class kName>
(cpu, gpu, 0.5),
std::begin(v), std::end(v),
[=](float f) { f * f + f });

Workload is distributed on all cores!
(mileage may vary, implementation-specific behaviour)

5000 elems

1250
elems

1250
elems

1250
elems

1250
elems

Experimental!

© 2018 Codeplay Software Ltd.156

© 2018 Codeplay Software Ltd.157

Demo Results - Running std::sort
(Running on Intel i7 6600 CPU & Intel HD Graphics 520)

size 2^16 2^17 2^18 2^19

std::seq 0.27031s 0.620068s 0.669628s 1.48918s

std::par 0.259486s 0.478032s 0.444422s 1.83599s

std::unseq 0.24258s 0.413909s 0.456224s 1.01958s

sycl_execution_policy 0.273724s 0.269804s 0.277747s 0.399634s

© 2018 Codeplay Software Ltd.158

SYCL Ecosystem
● ComputeCpp -

https://codeplay.com/products/computesuite/computecpp● triSYCL - https://github.com/triSYCL/triSYCL● SYCL - http://sycl.tech● SYCL ParallelSTL - https://github.com/KhronosGroup/SyclParallelSTL● VisionCpp - https://github.com/codeplaysoftware/visioncpp● SYCL-BLAS - https://github.com/codeplaysoftware/sycl-blas● TensorFlow-SYCL - https://github.com/codeplaysoftware/tensorflow● Eigen http://eigen.tuxfamily.org

https://codeplay.com/products/computesuite/computecpp
https://github.com/triSYCL/triSYCL
http://sycl.tech/
https://github.com/KhronosGroup/SyclParallelSTL
https://github.com/codeplaysoftware/visioncpp
https://github.com/codeplaysoftware/sycl-blas
https://github.com/codeplaysoftware/tensorflow
http://eigen.tuxfamily.org/

© 2018 Codeplay Software Ltd.159

Eigen Linear Algebra Library
SYCL backend in mainline
Focused on Tensor support, providing

support for machine learning/CNNs
Equivalent coverage to CUDA
Working on optimization for various

hardware architectures (CPU, desktop and
mobile GPUs)

https://bitbucket.org/eigen/eigen/

https://bitbucket.org/eigen/eigen/

© 2018 Codeplay Software Ltd.160

TensorFlow
SYCL backend support for all major CNN

operations
Complete coverage for major image

recognition networks
GoogLeNet, Inception-v2, Inception-v3,

ResNet, ….
Ongoing work to reach 100% operator

coverage and optimization for various
hardware architectures (CPU, desktop and
mobile GPUs)

https://github.com/tensorflow/tensorflow

TensorFlow, the TensorFlow logo and any related marks are
trademarks of Google Inc.

https://github.com/tensorflow/tensorflow

© 2018 Codeplay Software Ltd.161

SYCL Ecosystem
• Single-source heterogeneous programming using STANDARD C++

- Use C++ templates and lambda functions for host & device code
- Layered over OpenCL

• Fast and powerful path for bring C++ apps and libraries to OpenCL
- C++ Kernel Fusion - better performance on complex software than hand-coding
- Halide, Eigen, Boost.Compute, SYCLBLAS, SYCL Eigen, SYCL TensorFlow, SYCL GTX
- Clang, triSYCL, ComputeCpp, VisionCpp, ComputeCpp SDK …

• More information at http://sycl.tech

C++ Kernel Language
Low Level Control

‘GPGPU’-style separation of
device-side kernel source

code and host code

Single-source C++
Programmer Familiarity

Approach also taken by
C++ AMP and OpenMP

Developer Choice
The development of the two specifications are aligned so
code can be easily shared between the two approaches

http://sycl.tech/

© 2018 Codeplay Software Ltd.162

Codeplay
Standards

bodies
• HSA Foundation: Chair of

software group, spec editor of
runtime and debugging

• Khronos: chair & spec editor of
SYCL. Contributors to OpenCL,
Safety Critical, Vulkan

• ISO C++: Chair of Low Latency,
Embedded WG; Editor of SG1
Concurrency TS

• EEMBC: members

Research

• Members of EU research
consortiums: PEPPHER,
LPGPU, LPGPU2, CARP

• Sponsorship of PhDs and EngDs
for heterogeneous programming:
HSA, FPGAs, ray-tracing

• Collaborations with academics
• Members of HiPEAC

Open
source

• HSA LLDB Debugger
• SPIR-V tools
• RenderScript debugger in AOSP
• LLDB for Qualcomm Hexagon
• TensorFlow for OpenCL
• C++ 17 Parallel STL for SYCL
• VisionCpp: C++ performance-

portable programming model for
vision

Presentati
ons

• Building an LLVM back-end
• Creating an SPMD Vectorizer for

OpenCL with LLVM
• Challenges of Mixed-Width

Vector Code Gen & Scheduling
in LLVM

• C++ on Accelerators: Supporting
Single-Source SYCL and HSA

• LLDB Tutorial: Adding debugger
support for your target

Company

• Based in Edinburgh, Scotland
• 57 staff, mostly engineering
• License and customize

technologies for semiconductor
companies

• ComputeAorta and
ComputeCpp: implementations
of OpenCL, Vulkan and SYCL

• 15+ years of experience in
heterogeneous systems tools

Codeplay build the software platforms that deliver massive performance

© 2018 Codeplay Software Ltd.163

What our ComputeCpp users say about us

“We at Google have been working
closely with Luke and his Codeplay
colleagues on this project for almost

12 months now. Codeplay's
contribution to this effort has been

tremendous, so we felt that we should
let them take the lead when it comes

down to communicating updates
related to OpenCL. … we are

planning to merge the work that has
been done so far… we want to put

together a comprehensive test
infrastructure”

Benoit Steiner – Google
TensorFlow engineer

“We work with royalty-free SYCL
because it is hardware vendor
agnostic, single-source C++

programming model without platform
specific keywords. This will allow us to

easily work with any heterogeneous
processor solutions using OpenCL to
develop our complex algorithms and

ensure future compatibility”

ONERA

“My team and I are working with
Codeplay's ComputeCpp for almost a

year now and they have resolved
every issue in a timely manner, while

demonstrating that this technology can
work with the most complex C++

template code. I am happy to say that
the combination of Codeplay's SYCL
implementation with our HPX runtime

system has turned out to be a very
capable basis for Building a

Heterogeneous Computing Model for
the C++ Standard using high-level

abstractions.”

Hartmut Kaiser - HPX

It was a great pleasure this week for
us, that Codeplay released the

ComputeCpp project for the wider
audience. We've been waiting for this
moment and keeping our colleagues

and students in constant rally and
excitement. We'd like to build on this

opportunity to increase the awareness
of this technology by providing sample

codes and talks to potential users.
We're going to give a lecture series on

modern scientific programming
providing field specific examples.“

WIGNER Research Centre
for Physics

© 2018 Codeplay Software Ltd.164

Further information
• OpenCL https://www.khronos.org/opencl/
• OpenVX

https://www.khronos.org/openvx/
• HSA http://www.hsafoundation.com/
• SYCL http://sycl.tech
• OpenCV http://opencv.org/
• Halide http://halide-lang.org/
• VisionCpp https://github.com/codeplaysoftware/visioncpp

https://www.khronos.org/opencl/
https://www.khronos.org/openvx/
http://www.hsafoundation.com/
http://sycl.tech/
http://opencv.org/
http://halide-lang.org/
https://github.com/codeplaysoftware/visioncpp

© 2018 Codeplay Software Ltd.165

Community Edition
Available now for free!

Visit:
computecpp.codeplay.com

© 2018 Codeplay Software Ltd.166

• Open source SYCL projects:
• ComputeCpp SDK - Collection of sample code and integration tools
• SYCL ParallelSTL – SYCL based implementation of the parallel algorithms
• VisionCpp – Compile-time embedded DSL for image processing
• Eigen C++ Template Library – Compile-time library for machine learning

All of this and more at: http://sycl.tech

http://sycl.tech/

/codeplaysoft@codeplaysoft codeplay.com

Thank you for listening

	Slide Number 1
	Who am I? Who are we?
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Codeplay - Connecting AI to Silicon
	3 Act Play
	Act 1
	What have we achieved so far for C++20?
	Use the Proper Abstraction with C++
	Task vs data parallelism
	Review of Latency, bandwidth, throughput
	Definition and examples
	Slide Number 14
	Flynn’s Taxonomy
	What kind of processors should we build
	Multicore CPU vs Manycore GPU
	SIMD hard knocks
	Memory
	Memory is SIMD too
	Data Structure Padding
	Coalescing
	Power of Computing
	In 1998, a typical machine had the following flops
	In 2011, a typical machine had the following flops
	In 2011, a typical machine had the following flops
	In 2011, a typical machine had the following flops
	In 2017, a typical machine had the following flops
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Use the Proper Abstraction with C++
	Slide Number 34
	Use the Proper Abstraction with C++
	Slide Number 36
	Slide Number 37
	Coverage after C++11
	Top500 contenders
	Internet of Things
	Slide Number 41
	Slide Number 42
	Act 2
	The way of CPU and GPU
	The way of CPU and GPU
	The way of CPU and GPU
	Slide Number 47
	Slide Number 48
	The CPU
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	The GPU
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	CUDA vs OpenCL terminology
	Slide Number 85
	SIMD vs SPMD
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Act 3
	SYCL for OpenCL
	Slide Number 92
	The SYCL ecosystem
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Implicit vs Explicit Data Movement
	Slide Number 100
	Coverage after C++17
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Conclusion
	Use the Proper Abstraction with C++
	Slide Number 150
	Slide Number 151
	Slide Number 152
	Slide Number 153
	Slide Number 154
	Slide Number 155
	Slide Number 156
	Slide Number 157
	Slide Number 158
	Eigen Linear Algebra Library
	TensorFlow
	SYCL Ecosystem
	Codeplay
	What our ComputeCpp users say about us
	Further information
	Slide Number 165
	Slide Number 166
	Thank you for listening

